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Intelligence

• Intelligence measures the ability of an agent to achieve goals in a wide range of
environments [Legg, 2008]

• Intelligence requires activity and flexibility

• This definition is incompatible with colloquial usage

• Enables formal definition given additional assumptions
• Enables researchers to understand their role

• Highly intelligent agents according to this definition are useful



Reinforcement learning

1

• Goals are defined through reward mechanisms
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Reinforcement learning

• An agent interacts with an environment during a sequence of discrete time steps

• At each time step t ≥ 0, the agent receives some representation of the state st ∈ S
• The agent then selects an action at ∈ A(st)

• One time step later, the agent receives a reward rt+1 ∈ R and a new state st+1 ∈ S
• A policy π : S ×A → [0, 1] is a function such that π(s, a) represents the probability
that at = a given that st = s



Discounted return

• The discounted return ut after time step t is given by

ut = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γk rt+1+k ,

where 0 ≤ γ < 1 is the discount factor

• A reward received k time steps into the future is only worth γk−1 times what it would
be worth if it were received on the next step

• If necessary, a state can transition only to itself and yield no rewards

• The objective of the agent is to maximize the discounted return



Example: grid world
• States S = {1, 2, . . . , 12}, actions A = {1, 2, 3, 4}
• Reward 1 on action at goal, reward −1 on action at trap, and reward 0 on action at
other states

• Actions at goal and trap transition to an absorbing state

• Discount factor γ = 0.9
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Applications: games

• Atari [Mnih et al., 2015], Dota 2 [Brockman et al., 2019a], chess and Go
[Silver et al., 2018]



Applications: robotics

• Rubik’s cube manipulation [Brockman et al., 2019b]



Applications: others

• Practical: logistics, finance, and marketing

• Theoretical: every task with a computable description can be formulated as a
reinforcement learning problem [Hutter, 2004]

• Curse of generality: every well-defined problem is a reinforcement learning problem,
but most reinforcement learning problems cannot be solved efficiently



Markov decision process

• A state that summarizes the entire past with all that is relevant for decision making
has the Markov property

• In a Markov decision process, for any sequence of states, action and rewards
st , at , rt , . . . r1, s0, a0 (history) and all s ′ ∈ S, r ′ ∈ R ,

P(St+1 = s ′,Rt+1 = r ′ | st , at , rt , . . . , r1, s0, a0) = P(St+1 = s ′,Rt+1 = r ′ | st , at)

• The conditional joint probability distribution over states and rewards on the right side
defines the one-step dynamics of the problem



Environment model

• Probability distribution over next state given each state and action

• Expected reward given each state and action

3
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Pa
ss ′

• The probability Pa
ss′ of transitioning from state s to state s ′ given action a is given by

Pa
ss′ = P(St+1 = s ′ | St = s,At = a) =

∑
r ′

P(St+1 = s ′,Rt+1 = r ′ | St = s,At = a)

• Note that Pa
ss′ is independent of the current time step



Ra
ss ′

• The expected reward on transitioning from state s to state s ′ given the action a is
given by

Ra
ss′ = E[Rt+1 | St = s,At = a,St+1 = s ′]

=
1

Pa
ss′

∑
r ′

r ′P(St+1 = s ′,Rt+1 = r ′ | At = a,St = s)

• Note that Ra
ss′ is independent of the current time step



Value function V π

• The value V π(s) of a state s ∈ S is the expected (discounted) return of starting in
state s and following the policy π

V π(s) = Eπ[Ut | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]
(1)



Action value function Qπ

• The value Qπ(s, a) of taking an action a ∈ A when in state s ∈ S and afterwards
following the policy π is given by

Qπ(s, a) = Eπ[Ut | St = s,At = a]

= Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s,At = a

]



Recursivity of the value function

Theorem (Recursivity of the value function)

For any policy π and state s ∈ S,

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)]. (2)



Notation

• We denote random variables by upper case letters and assignments to these variables
by corresponding lower case letters

• We omit the subscript that typically relates a probability function to random variables
when there is no risk of ambiguity

• For example, let X and Y be discrete random variables. In the same context, we will
let p(x |y) denote P(X = x |Y = y) and p(y |x) denote P(Y = y |X = x)

• This notation where the arguments select between different probability functions is
standard in machine learning



Recursivity of the value function

Proof.

Note that Equation 1 can be rewritten as

V π(s) = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s)
T∑

k=0

γk rt+k+1,

where the dependency on the policy π becomes implicit. By marginalization,

V π(s) = lim
T→∞

∑
rt+1:T+t+1

[∑
at

∑
st+1

p(rt+1:T+t+1, at , st+1 | St = s)

]
T∑

k=0

γk rt+k+1.



Recursivity of the value function

Proof. (cont.)

By the chain rule of probability,

Vπ(s) = lim
T→∞

∑
rt+1:T+t+1

∑
at

∑
st+1

p(at | St = s)p(st+1 | St = s, at)p(rt+1:T+t+1 | St = s, at , st+1)
T∑

k=0

γk rt+k+1.

By the distributive property and reordering the three outermost summations,

Vπ(s) =
∑
at

p(at | St = s)
∑
st+1

p(st+1 | St = s, at) lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at , st+1)
T∑

k=0

γk rt+k+1. (3)



Recursivity of the value function

Proof. (cont.)

Let E denote the limit in the previous equation, such that

E = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at , st+1)
T∑

k=0

γk rt+k+1.

By isolating the first term in the innermost summation,

E = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at , st+1)

[
rt+1 +

T∑
k=1

γk rt+k+1

]
.



Recursivity of the value function

Proof. (cont.)

By the linearity of expectation, E = E1 + E2, where

E1 = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at , st+1)rt+1

= Eπ [Rt+1 | St = s, at , st+1] = Rat
sst+1

,

and

E2 = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at , st+1)
T∑

k=1

γk rt+k+1.



Recursivity of the value function

Proof. (cont.)

By changing the indices in the innermost summation,

E2 = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at , st+1)
T−1∑
k=0

γk+1rt+k+2.

By moving a constant factor of γ outside of the innermost summation,

E2 = γ lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at , st+1)
T−1∑
k=0

γk rt+k+2.



Recursivity of the value function
Proof. (cont.)

Because Rt+2:T+t+1 ⊥⊥ St ,At | St+1 due to the Markov property,

E2 = γ lim
T→∞

Eπ

[
T−1∑
k=0

γkRt+k+2 | st+1

]
= γVπ(st+1).

Returning to Equation 3,

Vπ(s) =
∑
at

p(at | St = s)
∑
st+1

p(st+1 | St = s, at)
[
Rat

sst+1
+ γVπ(st+1)

]
.

By making the dependency on π explicit and renaming variables,

Vπ(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′

[
Ra

ss′ + γVπ(s′)
]
.

□



Recursivity of the action value function

Theorem (Recursivity of the action value function)

For any policy π, state s ∈ S, and action a ∈ S,

Qπ(s, a) =
∑
s′

Pa
ss′ [Ra

ss′ + γ
∑
a′

π(s ′, a′)Qπ(s ′, a′)].



Relationship between V π and Qπ

Theorem (Relationship between V π and Qπ)

For any policy π, state s ∈ S, and action a ∈ S,

V π(s) =
∑
a

π(s, a)Qπ(s, a),

and
Qπ(s, a) =

∑
s′

Pa
ss′ [Ra

ss′ + γV (s ′)].



Optimal policies

• Let π ≥ π′ if and only if V π(s) ≥ V π′
(s) for all s ∈ S.

• A policy π∗ is optimal if π∗ ≥ π for any policy π

• An optimal policy always exists, but is not necessarily unique

4
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Optimal value functions

Theorem (Bellman optimality equations)

For any action a ∈ A and state s ∈ S, the optimal state value function V ∗ and the optimal
action value function Q∗ are given by

V ∗(s) ≜ max
π

V π(s) = max
a

∑
s′

Pa
ss′ [Ra

ss′ + γV ∗(s ′)],

and
Q∗(s, a) ≜ max

π
Qπ(s, a) =

∑
s′

Pa
ss′ [Ra

ss′ + γmax
a′

Q∗(s ′, a′)].



Reinforcement learning algorithms

• Reinforcement learning algorithms aim to find an optimal policy π∗ for a given
environment

• For any state s ∈ S, an optimal policy π∗ can be found given either V ∗ or Q∗

• In the case of Q∗, for any s ∈ S, it suffices to choose an a such that Q∗(s, a) is
maximal

• In the case of V ∗, for any s ∈ S, it suffices to choose one of the actions a that
maximizes the right hand side of the Bellman optimality equation
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Additional reading

• Notes on reinforcement learning (Sections 1 and 3) [Rauber, 2015b]

• Reinforcement learning: an introduction [Sutton and Barto, 2018]

• Algorithms for reinforcement learning [Szepesvári, 2010]

• UCL course on reinforcement learning [Silver, 2015]

• UC Berkeley course on deep reinforcement learning [Levine, 2018]

• Stanford course on reinforcement learning [Ng, 2008]

• Stanford course on reinforcement learning [Brunskill, 2019]

• Deep reinforcement learning bootcamp [Abbeel et al., 2017]



Additional reading: fundamentals

• Notes on calculus [Rauber, 2015a]

• Notes on linear algebra [Rauber, 2014]

• Notes on machine learning (Section 2.1: probability theory) [Rauber, 2016]
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Dynamic programming

• Dynamic programming algorithms can be used to compute optimal policies given a
perfect model of the environment (one-step dynamics) when the sets of states and
actions are finite

• The problem of finding the optimal value functions has optimal substructure: it can be
solved by breaking it into sub-problems and then recursively finding the solutions to
the sub-problems



Policy evaluation

• Policy evaluation is an iterative algorithm to compute the state value function V π for
an arbitrary policy π

• It relies on creating a sequence V0,V1, . . . of estimates of V π given by

Vk+1(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γVk(s
′)],

for all s ∈ S
• The initial value estimate V0 can be arbitrary

• The sequence V0(s),V1(s), . . . converges to V π(s) for all s ∈ S



In-place policy evaluation

• Instead of computing the new estimate Vk+1 using the old estimate Vk , it is also
possible to change a single estimate V in-place using

V (s)←
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV (s ′)],

for all s ∈ S
• The estimate V (s) also converges to V π(s) for all s ∈ S after repeated passes over all
states



In-place policy evaluation
Algorithm 1 Iterative policy evaluation (in-place)

Input: policy π, one-step dynamics functions P and R, discount factor γ, tolerance θ.
Output: Value function V = V π when θ → 0.
1: for each s ∈ S do
2: V (s)← 0
3: end for
4: repeat
5: ∆← 0
6: for each s ∈ S do
7: v ← V (s)
8: V (s)←

∑
a π(s, a)

∑
s′ Pa

ss′ [Ra
ss′ + γV (s ′)]

9: ∆← max(∆, |v − V (s)|)
10: end for
11: until ∆ < θ



Convergence of iterative policy evaluation

Definition (Norm)

Consider a vector space Z over a field F . A function || · || : Z → [0,∞) is a norm if

||u+ v|| ≤ ||u||+ ||v||,
||av|| = |a|||v||,

||v|| = 0 =⇒ v = 0,

for all u, v ∈ Z and a ∈ F .



Convergence of iterative policy evaluation

Definition (Euclidean norm)

The Euclidean norm || · ||2 : Rd → [0,∞) is given by

||v||2 =
√∑

i

v2i .

Definition (Maximum norm)

The maximum norm || · ||∞ : Rd → [0,∞) is given by

||v||∞ = max
i
|vi |.



Convergence of iterative policy evaluation

Definition (Convergence of a sequence)

A sequence (vn)n≥0 = v0, v1, . . . is said to converge to a vector v in the norm || · ||,
denoted vn →

||·||
v, if

lim
n→∞

||vn − v|| = 0.



Convergence of iterative policy evaluation

Definition (Bellman operator)

Consider a reinforcement learning task with states S = {1, 2, . . . , |S|}, actions
A = {1, 2, . . . , |A|}, and discount factor γ < 1. For any vector v ∈ R|S| and state s ∈ S,
the Bellman operator Tπ : R|S| → R|S| for the policy π is given by

Tπ(v)s =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γvs′ ] .



Convergence of iterative policy evaluation

Theorem (Convergence of iterative policy evaluation)

Consider the Bellman operator Tπ : R|S| → R|S| for the policy π. Given an arbitrary
v0 ∈ R|S|, consider also the sequence (vn)n≥0 where vk+1 = Tπ(vk). Finally, consider the
vector vπ ∈ R|S| such that vπs = V π(s), for any s ∈ S. For any n ≥ 0,

vn →
||·||∞

vπ,

vπ = Tπ(vπ),

||vn − vπ||∞ ≤ γn||v0 − vπ||∞.



Convergence of iterative policy evaluation

Definition (Cauchy sequence)

Consider a normed vector space (Z , || · ||). A sequence (vn)n≥0 = v0, v1, . . . of vectors in
this space is Cauchy if

lim
n→∞

sup
m≥n
||vn − vm|| = 0.

In other words, if a sequence (vn)n≥0 is Cauchy, then for every ϵ > 0 there is an N such
that for every n ≥ N, we have supm≥n ||vn − vm|| < ϵ.



Convergence of iterative policy evaluation

Definition (Banach space)

A Banach space is a normed vector space (Z , || · ||) where if (vn)n≥0 is a Cauchy sequence
then vn →

||·||
v for some vector v.

For any d , both (Rd , || · ||2) and (Rd , || · ||∞) are Banach spaces, although we omit the
corresponding proofs.



Convergence of iterative policy evaluation

Definition (L-contraction)

Consider a normed vector space (Z , || · ||) and a function T : Z → Z . The function T is
L-Lipschitz if

||T (u)− T (v)|| ≤ L||u− v||,

for all u, v ∈ Z . If L < 1, then T is also an L-contraction.



Convergence of iterative policy evaluation

Lemma

Consider a normed vector space (Z , || · ||), an L-Lipschitz function T : Z → Z, and a
sequence (vn)n≥0 = v0, v1, . . . of vectors in this space. If vn →

||·||
v, then T (vn) →

||·||
T (v).



Convergence of iterative policy evaluation

Proof.

For any n ≥ 0, by the definition of an L-Lipschitz function,

0 ≤ ||T (vn)− T (v)|| ≤ L||vn − v||.

Since vn →
||·||

v,

lim
n→∞

L||vn − v|| = L lim
n→∞

||vn − v|| = 0.

By the squeeze theorem,

lim
n→∞

||T (vn)− T (v)|| = 0.



Convergence of iterative policy evaluation

Theorem (Banach’s fixed point theorem)

If (Z , || · ||) is a Banach space and T : Z → Z is an L-contraction, then T has a unique
fixed point v. Furthermore, for any v0 ∈ Z, let vn+1 = T (vn). For any n ≥ 0,

vn →
||·||

v,

||vn − v|| ≤ Ln||v0 − v||.



Convergence of iterative policy evaluation

Proof.

We first show that the sequence (vn)n≥0 is Cauchy, which guarantees that vn →
||·||

v for

some vector v.

As a first step, we show that ||vn+k − vn|| ≤ Ln||vk − v0|| for any n, k ≥ 0. The case n = 0
is trivial. Suppose that the inductive hypothesis is true for some n, and consider the case
n + 1:

||vn+k+1 − vn+1|| = ||T (vn+k)− T (vn)|| (definition of the sequence)

≤ L||vn+k − vn|| (definition of L-contraction)

≤ Ln+1||vk − v0||, (inductive hypothesis)

as we wanted to show.



Convergence of iterative policy evaluation
Proof. (cont.)

For k ≥ 1, ||vk − v0|| = ||vk + (−vk−1 + vk−1) + . . .+ (−v1 + v1)− v0||. Therefore,

||vk − v0|| =

∥∥∥∥∥
k∑

i=1

vi − vi−1

∥∥∥∥∥ (reorganizing terms)

≤
k∑

i=1

||vi − vi−1|| (triangle inequality)

≤
k∑

i=1

Li−1||v1 − v0|| (earlier result)

≤ ||v1 − v0||
1− L

.

(
lim
n→∞

n∑
i=0

Ln =
1

1− L

)



Convergence of iterative policy evaluation

Proof. (cont.)

We are now close to showing that (vn)n≥0 is Cauchy. For any n, k ≥ 0, combining the
previous two results,

0 ≤ ||vn+k − vn|| ≤ Ln||vk − v0|| ≤ Ln
||v1 − v0||
1− L

.

Therefore, for any fixed n ≥ 0,

0 ≤ sup
k≥0
||vn+k − vn|| ≤ sup

k≥0
Ln
||v1 − v0||
1− L

= Ln
||v1 − v0||
1− L

.



Convergence of iterative policy evaluation

Proof. (cont.)

Because 0 ≤ L < 1,

lim
n→∞

Ln
||v1 − v0||
1− L

=
||v1 − v0||
1− L

lim
n→∞

Ln = 0.

Therefore, by the squeeze theorem,

lim
n→∞

sup
k≥0
||vn+k − vn|| = 0,

which completes the proof that (vn)n≥0 is Cauchy. Let v denote the vector such that
vn →

||·||
v.



Convergence of iterative policy evaluation

Proof. (cont.)

Our next step is to show that v is a fixed point of T . For any n,

0 ≤ ||T (v)− v|| = ||T (v) + (−T (vn) + T (vn))− v|| (introducing zeros)

≤ ||T (v)− T (vn)||+ ||T (vn)− v|| (triangle inequality)

≤ L||v − vn||+ ||vn+1 − v|| (L-contraction)

Because vn →
||·||

v,

lim
n→∞

L||v − vn||+ ||vn+1 − v|| = 0.



Convergence of iterative policy evaluation

Proof. (cont.)

Therefore, by the squeeze theorem

||T (v)− v|| = lim
n→∞

||T (v)− v|| = 0.

By the definition of a norm, T (v)− v = 0, which implies T (v) = v, completing the proof.



Convergence of iterative policy evaluation

Proof. (cont.)

Our next step is to show that the fixed point of T is unique. Suppose that T (u) = u and
T (v) = v for some vectors u and v. In that case,

||u− v|| = ||T (u)− T (v)|| ≤ L||u− v||.

If we suppose that ||u− v|| > 0, dividing the inequation by ||u− v|| leads to the conclusion
that L ≥ 1. However, T is an L-contraction, contradicting our supposition. Therefore,
||u− v|| ≤ 0, which implies that u = v.



Convergence of iterative policy evaluation

Proof. (cont.)

Our last step is to show that ||vn − v|| ≤ Ln||v0 − v||, for any n. The case n = 0 is trivial.
Suppose that the inductive hypothesis is true for some n, and consider the case n + 1:

||vn+1 − v|| = ||T (vn)− T (v)|| (definition of fixed point)

≤ L||vn − v|| ≤ Ln+1||v0 − v||, (inductive hypothesis)

as we wanted to show. □



Convergence of iterative policy evaluation

Theorem (Convergence of iterative policy evaluation)

Consider the Bellman operator Tπ : R|S| → R|S| for the policy π. Given an arbitrary
v0 ∈ R|S|, consider also the sequence (vn)n≥0 where vk+1 = Tπ(vk). Finally, consider the
vector vπ ∈ R|S| such that vπs = V π(s), for any s ∈ S. For any n ≥ 0,

vn →
||·||∞

vπ,

vπ = Tπ(vπ),

||vn − vπ||∞ ≤ γn||v0 − vπ||∞.



Convergence of iterative policy evaluation

Proof.

As a first step, we show that vπ is a fixed point of Tπ. For any s ∈ S, by the definition of
Tπ and V π,

Tπ(vπ)s =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γvπs′ ] = vπs .

Our next step is to show that the Bellman operator Tπ : R|S| → R|S| is a γ-contraction.
Because (R|S|, || · ||∞) is a Banach space and vπ is a fixed point of Tπ, the desired results
follow from Banach’s fixed point theorem.



Convergence of iterative policy evaluation

Proof. (cont.)

Note that, for any two vectors u, v ∈ R|S| and every state s ∈ S,

Tπ(u)s − Tπ(v)s =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γus′ ]

−
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γvs′ ]

=
∑
a

∑
s′

π(s, a)Pa
ss′γus′ −

∑
a

∑
s′

π(s, a)Pa
ss′γvs′

= γ
∑
a

∑
s′

π(s, a)Pa
ss′ [us′ − vs′ ].



Convergence of iterative policy evaluation
Proof. (cont.)

By the definition of maximum norm, for any two vectors u, v ∈ R|S|,

||Tπ(u)− Tπ(v)||∞

= γmax
s

∣∣∣∑
a

∑
s′

π(s, a)Pa
ss′ [us′ − vs′ ]

∣∣∣ (definition of maximum norm)

≤ γmax
s

∑
a

∑
s′

∣∣∣π(s, a)Pa
ss′ [us′ − vs′ ]

∣∣∣ (triangle inequality)

= γmax
s

∑
a

∑
s′

π(s, a)Pa
ss′ |us′ − vs′ | (multiplicativity)

≤ γmax
s

∑
a

∑
s′

π(s, a)Pa
ss′ ||u− v||∞ (definition of maximum norm)

= γ||u− v||∞ max
s

∑
a

π(s, a)
∑
s′

Pa
ss′ (distributivity)

= γ||u− v||∞ (unit measure).

□



Deterministic policies

• A deterministic policy π is one such that, for all s ∈ S, π(s, a) = 1 for some a ∈ A
and π(s, b) = 0 for all b ̸= a

• In this case, we abuse notation and represent a policy by a function π : S → A from
states to actions



Policy improvement

• Let π and π′ be any pair of deterministic policies such that, for all s ∈ S,
Qπ(s, π′(s)) ≥ V π(s)

• The policy improvement theorem guarantees that V π′
(s) ≥ V π(s) for all s ∈ S

• For all s ∈ S, a policy π may be improved to a policy π′ by letting

π′(s) = argmax
a

Qπ(s, a) = argmax
a

∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)]



Policy iteration

• Policy evaluation and policy improvement can be interleaved

• This process produces the sequence

π0,V
π0 , π1,V

π1 , π2,V
π2 , . . .

• If πt = πt+1, then πt is optimal by the uniqueness of V ∗

• The initial policy π0 can be arbitrary



Value iteration

• A more efficient alternative iteratively improves the estimates for the value of each
state under an optimal policy

• It relies on creating a sequence V0,V1, . . . of estimates given by:

Vk+1(s) = max
a

∑
s′

Pa
ss′ [Ra

ss′ + γVk(s
′)]

• The initial estimate V0 can be arbitrary

• The sequence V0(s),V1(s), . . . converges to V ∗(s) for all s ∈ S
• In-place value iteration has the same guarantees



Value iteration
Algorithm 2 Value iteration (in-place)

Input: one-step dynamics (P and R), discount factor γ, and tolerance θ.
Output: optimal deterministic policy π when θ → 0.
1: for each s ∈ S do
2: V (s)← 0
3: end for
4: repeat
5: ∆← 0
6: for each s ∈ S do
7: v ← V (s)
8: V (s)← maxa

∑
s′ Pa

ss′ [Ra
ss′ + γV (s ′)]

9: ∆← max(∆, |v − V (s)|)
10: end for
11: until ∆ < θ
12: for each s ∈ S do
13: π(s) = argmaxa

∑
s′ Pa

ss′ [Ra
ss′ + γV (s ′)]

14: end for
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• UCL course on reinforcement learning [Silver, 2015]

• UC Berkeley course on deep reinforcement learning [Levine, 2018]

• Stanford course on reinforcement learning [Ng, 2008]

• Stanford course on reinforcement learning [Brunskill, 2019]

• Deep reinforcement learning bootcamp [Abbeel et al., 2017]
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Learning a model: the naive approach

• If the one-step dynamics are not available, they can always be estimated by interacting
with the environment randomly

• For any s, s ′ ∈ S and a ∈ A, the simplest (maximum likelihood) estimate for Pa
ss′ is

given by

P̂a
ss′ =

N(s ′, s, a)

N(s, a)
,

where N(s, a) > 0 is the number of times that action a was taken at state s, and
N(s ′, s, a) is the number of times that state s ′ was observed after action a was taken
at state s

• The estimates P̂a
ss′ and R̂a

ss′ can be combined with value iteration

• However, obtaining good estimates by interacting with the environment randomly may
take too long



Exploration and exploitation

• Exploration-exploitation trade-off: should the agent explore in order to learn about
potentially better sources of reward or exploit the well-known sources of reward?

• This trade-off is relevant whenever an environment model is not available

• Excessive exploration typically leads to poor short-term performance, while excessive
exploitation typically leads to poor long-term performance



Multi-armed bandits

• An agent interacts with an environment during a sequence of T discrete time steps

• At each time step t ≥ 0, the agent selects an action at ∈ A
• One time step later, the agent receives a reward rt+1 ∈ R drawn from a fixed
probability distribution with mean µat associated to action at

• The interaction between the agent and the environment up to time step t can be
represented by a trajectory τt = a0, r1, a1, r2, . . . , at−2, rt−1

1

1Image from [Klein et al., 2019]



Bandit algorithms

• For each time step t, a bandit algorithm provides a policy πt : A → [0, 1] such that
πt(a) is the prescribed probability for taking action a after observing the trajectory τt

• The objective of an agent is to maximize the expected return given by

E

[
T∑
t=1

Rt

]
,

where the expectation is (implicitly) over trajectories obtained by the agent in a
specific environment



Regret

• The regret E (t) ≥ 0 of a bandit algorithm after t time steps is given by

E (t) = tµ∗ − E

[
t∑

t′=1

Rt′

]
,

where µ∗ = maxa µa and the expectation is (implicitly) over trajectories obtained by
the bandit algorithm in a specific environment

• The regret compares the expected return of the optimal agent for an environment
with the expected return of a specific bandit algorithm



Regret

• Bandit algorithms differ in the rate of increase of their regrets

• A bandit algorithm has linear regret if E (t) ∈ O(t)

• A bandit algorithm has logarithmic regret if E (t) ∈ O(log(t))



ϵ-greedy exploration

• During the first |A| time steps, each action is selected once

• For each action a ∈ A, the empirical mean µ̂a of its observed rewards is recorded

• For each time step t ≥ |A|, there is a parameter ϵt ∈ [0, 1]

• At each time step t ≥ |A|, the action with the highest empirical mean is selected with
probability 1− ϵt and a random action is selected with probability ϵt



Subgaussianity
• A random variable X is σ-subgaussian if, for all λ ∈ R, E[exp(λX )] ≤ exp(λ2σ2/2)

• In simple terms, the tails of a σ-subgaussian distribution decay approximately as fast
as those of a Gaussian distribution with zero mean and variance σ

2

2Image from Wikipedia

https://en.wikipedia.org/wiki/Student's_t-distribution


ϵ-greedy exploration: regret

• Suppose that the reward for each action is a 1-subgaussian random variable

• Furthermore, suppose ϵ ∈ (0, 1) and ϵt = ϵ for every t

• In that case, if |A| ≥ 2, then

lim
t→∞

E (t)

t
=

ϵ

|A|
∑
a∈A

∆a,

where ∆a = µ∗ − µa is the so-called suboptimality gap for action a

• Therefore, ϵ-greedy exploration with a fixed ϵ has linear regret

• This result can be generalized to σ-subgaussian random variables by scaling rewards

• By choosing each ϵt appropriately, ϵ-greedy exploration may achieve sublinear regret



Upper confidence bounds

• During the first |A| time steps, each action is selected once

• Each action a is associated with an upper confidence bound Ba such that Ba > µa

with high probability

• At each time step t ≥ |A|, the action with the highest upper confidence bound is
selected

• In simple terms, the upper confidence bound of every non-optimal action eventually
falls below the upper confidence bound of every optimal action

• Upper confidence bounds employ the principle of optimism in the face of uncertainty



Upper confidence bound for 1-subgaussian variables

• Let X1,X2, . . . ,XT be a sequence of independent 1-subgaussian variables with mean µ

• If M = 1
T

∑T
t=1 Xt denotes the sample mean, then

P

(
µ ≥ M +

√
2 log(1/δ)

T

)
≤ δ

for any δ ∈ (0, 1)

• Intuitively, the result of adding a specific positive term to the sample mean almost
certainly overestimates the underlying mean



Upper confidence bounds

• Suppose that each action a ∈ A has been selected at least once

• The upper confidence bound Ba for action a is given by

Ba = µ̂a +

√
2 log(1/δ)

na
,

where µ̂a is the empirical mean of the rewards observed for action a, na is the number
of rewards observed for action a, and δ is a parameter of the algorithm

• As mentioned before, at each time step t ≥ |A|, the action with the highest upper
confidence bound is selected

• Intuitively, an action a is selected if µ̂a is relatively high or if na is relatively low



Upper confidence bounds: regret

• Suppose that the reward for each action is a 1-subgaussian random variable

• For any T ≥ |A|, if δ = 1/T 2, then

E (T ) ≤ 3
∑
a∈A

∆a +
∑

a|∆a>0

16 logT

∆a
,

where ∆a = µ∗ − µa is the suboptimality gap for action a

• Therefore, upper confidence bounds have logarithmic regret for appropriate δ

• This result can be generalized to σ-subgaussian random variables by scaling rewards

• There are many other versions of upper confidence bounds that provide better
performance in different settings



Posterior sampling

• Posterior sampling (Thompson sampling) is a Bayesian bandit algorithm that provides
excellent performance in many settings

• Posterior sampling can be generalized to provide a reinforcement learning algorithm
that learns a model of an environment while balancing exploration and exploitation

1. The agent represents its knowledge by a distribution over models
2. A single model is drawn from this distribution
3. An optimal policy is found for this model
4. This policy is used to interact with the environment for one episode
5. The resulting data are used to update the distribution over models
6. The process continues from Step 2

• Intuitively, increased certainty leads to decreased exploration
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Monte Carlo control

• Monte Carlo control methods find an optimal policy without estimating the one-step
dynamics by interleaving policy evaluation and policy improvement

• These methods require an episodic problem, where there is a transition to an
absorbing state after a finite number of time steps

• Policy evaluation for π consists of experiencing several episodes and averaging the
returns that follow every possible state action pair (s, a) to obtain an estimate of
Qπ(s, a).

• In practice, “policy improvement” based on π is performed before a reliable estimate
of Qπ is available

• Monte Carlo control typically relies on ϵ-greedy policies to ensure that the
environment is explored sufficiently

• For a given state s, an ϵ-greedy policy with respect to an estimate Q of the action
value function chooses a random action with probability ϵ, and an action
argmaxa Q(s, a) with probability 1− ϵ



Monte Carlo control
Algorithm 1 Monte Carlo control algorithm

Input: set of states S, number of episodes N, probability of choosing random action ϵ.
Output: deterministic policy π, optimal when N →∞.
1: for each s ∈ S do
2: for each action a ∈ A(s) do
3: Q(s, a)← 0
4: n(s, a)← 0
5: end for
6: end for
7: for each i in {1, . . . ,N} do
8: Experience a new episode e following an ϵ-greedy policy based on Q.
9: for each state-action pair (s, a) in the episode e do
10: u ← return following (s, a) in the episode e.
11: n(s, a)← n(s, a) + 1
12: Q(s, a)← Q(s, a) + 1

n(s,a)
[u − Q(s, a)]

13: end for
14: end for
15: for each state s ∈ S do
16: π(s)← argmaxa Q(s, a)
17: end for



Temporal difference

• Consider the tuple ht = (st , at , rt+1, st+1, at+1) obtained by an agent using a policy π
to interact with an environment

• Let Q denote an estimate of the action value function Qπ

• The one-step return based on ht and Q is given by

rt+1 + γQ(st+1, at+1)

• The temporal difference for (st , at) based on ht and Q is given by

rt+1 + γQ(st+1, at+1)− Q(st , at)

• In other words, the difference between the immediate reward plus the (estimated)
expected return from the next state and the (estimated) expected return for the
current state



Sarsa control

• An algorithm bootstraps if it improves the estimate of the value of a state based on
estimates of the values of other states

• Sarsa control is similar to Monte Carlo control, but it bootstraps based on temporal
differences

• Sarsa control is comparatively more sample efficient, since it does not rely on the
return that follows (st , at) after a single episode

• Given the tuple ht and the estimate Q, Sarsa control updates its estimate of Q(st , at)
using

Q(st , at)← Q(st , at) + α[rt+1 + γQ(st+1, at+1)− Q(st , at)],

where α is the so-called learning rate



Sarsa control
Algorithm 2 Sarsa control algorithm

Input: set of states S, number of episodes N, learning rate α, probability of random action ϵ, discount factor γ.
Output: deterministic policy π, optimal when N →∞ and α decays appropriately.
1: for each (s, a) ∈ S ×A do
2: Q(s, a)← 0
3: end for
4: for each i in {1, . . . ,N} do
5: s ← initial state for episode i
6: Select action a for state s according to an ϵ-greedy policy based on Q.
7: while state s is not terminal do
8: r ← observed reward for action a at state s
9: s′ ← observed next state for action a at state s
10: Select action a′ for state s′ according to an ϵ-greedy policy based on Q.
11: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)− Q(s, a)]
12: s ← s′

13: a← a′

14: end while
15: end for
16: for each state s ∈ S do
17: π(s)← argmaxa Q(s, a)
18: end for



Q-learning

• An algorithm is off-policy if it learns about a policy that is different from the policy
that it uses to act in the environment

• Q-learning learns about a greedy policy while acting using an ϵ-greedy policy

• Q-learning control is similar to Sarsa control: both algorithms bootstrap based on
temporal differences

• Given the tuple ht and the estimate Q, Q-learning control updates its estimate of
Q(st , at) using

Q(st , at)← Q(st , at) + α[rt+1 + γmax
a

Q(st+1, a)− Q(st , at)]

where α is the so-called learning rate



Q-learning control

Algorithm 3 Q-learning control algorithm

Input: set of states S, number of episodes N, learning rate α, probability of random action ϵ, discount factor γ.
Output: deterministic policy π, optimal when N →∞ and α decays appropriately.
1: for each (s, a) ∈ S ×A do
2: Q(s, a)← 0
3: end for
4: for each i in {1, . . . ,N} do
5: s ← initial state for episode i
6: while state s is not terminal do
7: Select action a for state s according to an ϵ-greedy policy based on Q.
8: r ← observed reward for action a at state s
9: s′ ← observed next state for action a at state s
10: Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)− Q(s, a)]
11: s ← s′

12: end while
13: end for
14: for each state s ∈ S do
15: π(s)← argmaxa Q(s, a)
16: end for
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Additional reading

• Notes on reinforcement learning (Section 2, 5, 6, and 9) [Rauber, 2015]

• Reinforcement learning: an introduction [Sutton and Barto, 2018]

• Bandit Algorithms [Lattimore and Szepesvári, 2019]

• A Tutorial on Thompson Sampling [Russo et al., 2018]

• (More) Efficient Reinforcement Learning via Posterior Sampling [Osband et al., 2013]

• Algorithms for reinforcement learning [Szepesvári, 2010]

• UCL course on reinforcement learning [Silver, 2015]

• UC Berkeley course on deep reinforcement learning [Levine, 2018]

• Stanford course on reinforcement learning [Ng, 2008]

• Stanford course on reinforcement learning [Brunskill, 2019]

• Deep reinforcement learning bootcamp [Abbeel et al., 2017]
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Supervised learning: regression

• Consider an iid training dataset D = (x1, y1), . . . , (xN , yN)

• Suppose xi ∈ RD and yi ∈ R
• Regression: predicting target y given new observation x

(2, 3, 5, 7, 11) £ 100

observa�on target

• In our setting, xi will represent a state and yi will represent its (estimated) value



Orthogonality
• A vector x ∈ RD is orthogonal to a vector w ∈ RD when

w · x = w1x1 + w2x2 + . . .+ wDxD =
D∑
j=1

wjxj = 0

w

x



Hyperplanes

• A hyperplane Sw is the set of vectors orthogonal to w:

Sw = {x ∈ RD | w · x = 0}

• For D = 2 or D = 3, a hyperplane is a line or plane that goes through the origin

w



Linear regression: model

• Consider an iid dataset D = (x1, y1), . . . , (xN , yN), where xi ∈ RD and yi ∈ R
• Regression: predicting target y given new observation x

• Linear regression (naive model):

y = w · x =
D∑
j=1

wjxj

• Interpretation: wj indicates how much each unit of xj contributes towards the target

• Linear regression (probabilistic model):

E[Y | x,w] = w · x,
p(y | x,w) = N (y | w · x, σ2)



Linear regression: geometry for D = 1

• For any w , if y = wx , then wx − y = 0 and (w ,−1) · (x , y) = 0

• For any w , the pairs (x , y) for which y = wx constitute a hyperplane

{(x , y) ∈ R2 | (w ,−1) · (x , y) = 0}



Linear regression: likelihood
• Assuming constant σ2, the conditional likelihood is given by

p(D | w) =
N∏
i=1

N (yi | w · xi , σ2)

• The log-likelihood is given by

log p(D | w) = −N

2
log 2πσ2 − 1

2σ2

N∑
i=1

(yi −w · xi )2

• Maximizing the likelihood wrt w corresponds to minimizing J given by

J(w) =
1

N

N∑
i=1

(yi −w · xi )2

• J can be minimized analytically (in non-degenerate cases)



Linear regression: extensions

• If w maximizes the likelihood, we may predict y = w · x given x
• Alternative: maximum a posteriori estimate (requires a prior)
• Bayesian alternative: using a posterior predictive distribution

• Using a feature map ϕ : RD → RD′ :

p(y | x,w) = N (y | w · ϕ(x), σ2)

• Bias-including feature map: ϕ(x) = (x, 1)
▶ w · ϕ(x) = w1:D · x+ wD+1

• Polynomial feature map (D = 1): ϕ(x) = (1, x1, . . . , xD
′−1)

▶ w · ϕ(x) =
∑D′

j=1 wjx
j−1
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Feedforward neural network

• A feedforward neural network has a number of layers L

• This network may predict a target y = a
(L)
1 given a new observation x = a(1)

• Let N(l) be the number of neurons in layer l

• The network has input neurons, hidden neurons, and output neurons



Feedforward neural network

• Weighted input to neuron j in layer l > 1:

z
(l)
j = b

(l)
j +

N(l−1)∑
k=1

w
(l)
j ,ka

(l−1)
k ,

• Activation of neuron j in layer 1 < l < L:

a
(l)
j = σ(z

(l)
j ),

where σ is a differentiable function, such as σ(z) = 1
1+e−z



Feedforward neural network

• Alternatively, the output of each layer 1 < l < L can be written as

a(l) = σ(W(l)a(l−1) + b(l)),

where the activation function is applied element-wise

• For regression, the activation of the output neuron is simply given by

a
(L)
1 = z

(L)
1

• The output given a(1) = x is a
(L)
1



Feedforward neural network

• A feedforward neural network represents a parametric function of its weights and biases

• Let θ represent a joint assignment of weights and biases

• Maximizing the likelihood p(D | θ) corresponds to minimizing J given by

J(θ) =
1

N

∑
(x,y)∈D

(
y − a

(L)
1

)2
,

where a
(L)
1 is the output of the network when a(1) = x

• Minimization can be attempted by (stochastic) gradient descent or related techniques
[Ruder, 2016]

• The gradient ∇J(θ) can be computed using a technique called backpropagation



Gradient descent

• Consider the task of minimizing f : RD → R

• Gradient descent starts at an arbitrary estimate x0 ∈ RD and iteratively updates this
estimate using

xt+1 = xt − ηt∇f (xt),

where ηt is the learning rate at iteration t.
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Generalization

• In large state spaces, some states may be seen very rarely

• In these cases, the state or action value estimates should generalize across states

• Generalization relies on function approximation

• The state value function V π : S → R can be approximated by a parametric function
V : S × Rm → R

• The goal of policy evaluation becomes finding a parameter vector θ such that

V π(s) ≈ V (s;θ),

for every s ∈ S
• Changing θ changes the value estimates of several states



Example: linear value functions

• Suppose that any state s ∈ S can be represented by a feature vector ϕ(s) ∈ Rm, and
that V (s;θ) is given by

V (s;θ) = θ · ϕ(s) =
m∑
i=1

θiϕ(s)i

• Several model-free reinforcement learning algorithms work well in this case



Value regression

• For a given policy π, consider a dataset D = {(si ,V π(si ))}Ni=1

• Value regression: predicting the value V π(s) of an unseen state s

• For a given parametric function V , the mean squared error J(θ) is given by

J(θ) =
1

N

N∑
i=1

[V π(si )− V (si ;θ)]
2

• Let θ∗ denote a parameter vector such that J(θ∗) = minθ J(θ)

• The function V (·;θ∗) can be used to predict the value of unseen states



Stochastic gradient descent

• Stochastic gradient descent is a procedure that converges to a local minimum of J (if
the learning rate α is decayed appropriately)

• The procedure starts with an arbitrary estimate θ0

• For any t ≥ 0, a pair (st ,V
π(st)) is drawn at random from D, and the estimate θt+1

is obtained using

θt+1 = θt −
1

2
α∇θ[V

π(st)− V (st ;θt)]
2,

where α is the learning rate

• By the chain rule,

θt+1 = θt + α[V π(st)− V (st ;θt)]∇θV (st ;θt)



Value regression from estimates

• If V π(s) were available for all states s ∈ S, there would be no need for function
approximation

• Furthermore, in practice, a dataset will be given by D = {(si , vi )}Ni=1, where vi is an
estimate of the value of si under policy π

• Different estimates vi may be considered, such as the empirical return or one-step
return observed after state si

• For any t ≥ 0, a pair (st , vt) is drawn at random from D, and the estimate θt+1 for
stochastic gradient descent is obtained using

θt+1 = θt + α[vt − V (st ;θt)]∇θV (st ;θt)



Gradient descent TD value estimation

Algorithm 1 Gradient descent temporal-difference value estimation algorithm
Input: policy π, number of episodes N, learning rate α, discount factor γ
Output: parameter vector θ
1: Initialize θ arbitrarily
2: for each i in {1, . . . ,N} do
3: s ← initial state for episode i
4: while state s is not terminal do
5: a← π(s)
6: r ← observed reward for action a at state s
7: s ′ ← observed next state for action a at state s
8: θ ← θ + α[r + γV (s ′;θ)− V (s;θ)]∇θV (s;θ)
9: s ← s ′

10: end while
11: end for



Non-tabular model-free algorithms

• Q-learning control and Sarsa control can be adapted to use stochastic gradient
descent to approximate action-value functions (rather than just value functions)

• The choice of an appropriate feature map ϕ : S → Rm is crucial to the success of any
function approximation method

• In the case of linear approximation, it may be necessary to create features that are
combinations of more natural features, since linear models are incapable of modeling
relationships such as feature i being beneficial only in the absence of feature j



Q-learning control
Algorithm 2 Q-learning control algorithm for linear function approximation
Input: feature vector ϕ(s, a) for all state-action pairs (s, a), number of episodes N, learning rate α, exploration factor ϵ, discount factor γ
Output: parameter vector θ

1: θ ← 0
2: for each i in {1, . . . ,N} do

3: s ← initial state for episode i

4: for each action a: do
5: Q(a)←

∑
i θiϕ(s, a)i

6: end for
7: while state s is not terminal do
8: if with probability 1− ϵ: then

9: a← arg maxa Q(a)

10: else
11: a← random action
12: end if
13: r ← observed reward for action a at state s
14: s′ ← observed next state for action a at state s
15: δ ← r − Q(a)

16: for each action a′: do
17: Q(a′)←

∑
i θiϕ(s

′, a′)i
18: end for
19: δ ← δ + γ maxa′ Q(a′) {Note: δ is the temporal difference}
20: θ ← θ + αδϕ(s, a)

21: s ← s′

22: end while
23: end for
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Additional reading: linear regression

• Notes on Machine Learning (Section 7) [Rauber, 2016]

• Reinforcement learning: an introduction [Sutton and Barto, 2018]

• Pattern Recognition and Machine Learning (Chapter 3) [Bishop, 2006]

• Machine Learning: a Probabilistic Perspective (Chapter 7) [Murphy, 2012]



Additional reading: feedforward neural networks

• Notes on neural networks (Section 2) [Rauber, 2015b]

• Notes on machine learning (Section 17) [Rauber, 2016]

• Neural networks and deep learning (Chapter 1) [Nielsen, 2015]

• Pattern Recognition and Machine Learning (Chapter 5) [Bishop, 2006]

• Machine Learning: a Probabilistic Perspective (Section 16.5) [Murphy, 2012]



Additional reading: generalization in RL

• Notes on reinforcement learning (Section 8) [Rauber, 2015a]

• Reinforcement learning: an introduction [Sutton and Barto, 2018]

• Algorithms for reinforcement learning [Szepesvári, 2010]

• UCL course on reinforcement learning [Silver, 2015]

• UC Berkeley course on deep reinforcement learning [Levine, 2018]

• Stanford course on reinforcement learning [Ng, 2008]

• Stanford course on reinforcement learning [Brunskill, 2019]

• Deep reinforcement learning bootcamp [Abbeel et al., 2017]
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Convolutional neural networks: overview

• Convolutional neural network (CNN):

• Parameterized function
• Parameters may be adapted to minimize a cost function using gradient descent
• Suitable for image tasks: explores the spatial relationships between pixels
• Three important types of layers: convolutional layers, max-pooling layers, and fully

connected layers



Convolutional neural networks: notation

• Image: a function f : Z2 → Rc

• a ∈ Z2 is a pixel
• f(a) is the value of pixel a
• If f(a) = (f1(a), . . . , fc(a)), then fi is channel i
• Window W ⊂ Z2 is a finite set W = [s1,S1] × [s2,S2] that corresponds to a rectangle in

the image domain
• If the domain Z of an image f is a window, it is possible to flatten f into a vector

x ∈ Rc|Z |

• Consider an iid dataset D = (x1, y1), . . . , (xN , yN), such that xi ∈ RD and yi ∈ R.
Each vector xi corresponds to a distinct image Z2 7→ Rc , and all images are defined
on the same window Z , such that D = c |Z |



Convolutional layer

• A neuron in a convolutional layer is not necessarily connected to the activations of all
neurons in the previous layer, but only to the activations in a particular w × h window
W

• A neuron in a convolutional layer is replicated through parameter sharing for all
windows of size w × h in the domain Z whose centers are offset by pre-defined steps
(strides)



Convolutional layer

• Receives an input image f and outputs an image o

• Each artificial neuron h in a convolutional layer l receives as input the values in a
window W = [s1,S1] × [s2,S2] ⊂ Z of size w × h, where Z is the domain of f. The

weighted input z
(l)
h of that neuron is given by

z
(l)
h = b

(l)
h +

c∑
i=1

S1∑
j=s1

S2∑
k=s2

w
(l)
h,i ,j ,ka

(l−1)
i ,j ,k ,

where a
(l−1)
i ,j ,k = fi (j , k) is the value of pixel (j , k) in channel i of the input image f

• Activation function is typically rectified linear: a
(l)
h = max(0, z

(l)
h )



Convolutional layer

• An output image o : Z2 → Rn is obtained by replicating n neurons over the whole
domain of the input image

• The activations corresponding to a neuron replicated in this way correspond to the
values in a single channel of the output image o (appropriately arranged in Z2)

• The total number of free parameters in a convolutional layer is only n(cwh + 1).



Convolutional layer

• If the parameters in a convolutional layer were not shared by replicated neurons, the
number of parameters would be mn(cwh + 1), where m is the number of windows of
size w × h that fit into f (for the given strides)

• A convolutional layer is fully specified by the size of the filters (window size), the
number of filters (number of channels in the output image), horizontal and vertical
strides (which are usually 1)



Max-pooling layer

• Goal: achieving similar results to using comparatively larger convolutional filters in the
next layers with less parameters

• Receives an input image f : Z2 → Rc and outputs an image o : Z2 → Rc

• Reduces the size of the window domain Z of f by an operation that acts
independently on each channel

oi (j , k) = max
a∈Wj,k

fi (a),

where i ∈ {1, . . . , c}, (j , k) ∈ Z2, Z is the window domain of f, and Wj ,k ⊆ Z is the
input window corresponding to output pixel (j , k).

• A max-pooling layer is fully specified by the size of a pooling window and
vertical/horizontal strides



Fully connected layer

• Receives a vector (or flattened image) and outputs a vector

• Analogous to a layer in a feedforward neural network

• Typically only followed by other fully connected layers

• In a regression task, the output layer is typically fully connected with one neuron
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Deep Q-Networks
• Q : S ×A× Rm → R is represented by a neural network

1

1Image from [Mnih et al., 2015]



Deep Q-Networks

2

2Image from [Mnih et al., 2015]



Deep Q-Networks: preprocessing

• A sequence of images obtained from the emulator is preprocessed before being
presented to the network

• Individually for each color channel, an elementwise maximum operation is employed
between two consecutive images to reduce rendering artifacts

• Such 210 × 160 × 3 preprocessed image is converted to grayscale, cropped, and
rescaled into an 84 × 84 image xk

• A sequence of images xk−12, xk−8, xk−4, xk obtained in this way is stacked into an
84 × 84 × 4 image s



Deep Q-Networks: architecture

• The image st is input to a neural network architecture given by:

• Convolutional layer with 32 rectified linear filters (8 × 8, stride 4)
• Convolutional layer with 64 rectified linear filters (4 × 4, stride 2)
• Convolutional layer with 64 rectified linear filters (3 × 3, stride 1)
• Fully-connected layer with 512 rectified linear units
• Fully-connected layer with |A| linear units

• Each output unit represents Q(st , a;θ) for a different action a ∈ A



Deep Q-networks: algorithm

Algorithm 1 Deep Q-learning with experience replay
Input: replay buffer size M, number of episodes N, maximum episode length T , probability of random action ϵ, frame skip K , batch size B, learning rate α,

number of episodes between target network updates C .
Output: estimate Q(·; θ) of the optimal action value function Q∗

1: Initialize replay buffer D, which stores at most M tuples

2: Initialize network parameters θ randomly

3: θ′ ← θ
4: for each i in {1, . . . ,N} do

5: s0 ← initial state for episode i

6: for each t in {0, . . . ,T − 1} do

7: if random() < 1− ϵ then at ← arg maxa Q(st , a; θ) else at ← random action

8: Obtain the next state st+1 and reward rt+1 by repeating action at during K frames

9: if the episode ends at step t + 1 then Ωt+1 ← 1 else Ωt+1 ← 0

10: Store the tuple (st , at , rt+1, st+1,Ωt+1) in the replay buffer D
11: Sample a subset D′ ⊂ D composed of B tuples

12: Let L(θ) =
∑

(s,a,r,s′,Ω′)∈D′ (y − Q(s, a; θ))2

13: In the equation above, let y = r + γ maxa′ Q(s′, a′; θ′) if Ω′ = 0, and y = r if Ω′ = 1

14: θ ← θ − α∇θL(θ), noting that θ′ is considered a constant with respect to θ

15: end for
16: if i mod C = 0 then
17: θ′ ← θ
18: end if
19: end for
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Policy gradient methods

• Consider an agent that interacts with its environment in a sequence of episodes, each
of which lasts for exactly T time steps

• Let τ = s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT , sT denote a trajectory in a particular
episode

• Under the Markov assumption, the probability p(τ | θ) of trajectory τ given the policy
parameters θ is given by

p(τ | θ) = p(s0)
T−1∏
t=0

p(st+1, rt+1 | st , at)p(at | st ,θ),

where p(at | st ,θ) is the probability of action at given state st and policy parameters θ



Policy gradient methods

• The expected return J(θ) of a policy parameterized by θ is given by

J(θ) = E

[
T∑
t=1

Rt | θ

]
=

T∑
t=1

E [Rt | θ]

• Goal: finding a parameter vector θ∗ such that J(θ∗) = maxθ J(θ)



Policy gradient methods

Theorem (Policy gradient theorem)

The gradient ∇θJ(θ) of the expected return J(θ) is given by

∇θJ(θ) = E

[
T−1∑
t=0

∇θ log p(At | St ,θ)
T∑

t′=t+1

Rt′ | θ

]
.



Policy gradient methods

• The gradient of the expected return is a sum of expected values of random vectors
that correspond to each time step

• In gradient ascent, the expected value for time step t weights a direction that locally
increases the probability of each possible decision by its expected (positive or
negative) outcome

• Positive expected outcomes contribute towards making the probability of a decision
higher

• Negative expected outcomes contribute towards making the probability of a decision
lower.

∇θJ(θ) = E

[
T−1∑
t=0

∇θ log p(At | St ,θ)
T∑

t′=t+1

Rt′ | θ

]



Policy gradient methods

• Consider a sequence τ 1, . . . , τN of N trajectories obtained by following the policy
parameterized by θ, and let

τ i = si ,0, ai ,0, ri ,1, si ,1, ai ,1, ri ,2, . . . , si ,T−1, ai ,T−1, ri ,T , si ,T

• A Monte Carlo estimate ĝ(θ) to ∇θJ(θ) is given by

ĝ(θ) =
1

N

N∑
i=1

T−1∑
t=0

∇θ log p(ai ,t | si ,t ,θ)
T∑

t′=t+1

ri ,t′

= ∇θ

[
1

N

N∑
i=1

T−1∑
t=0

log p(ai ,t | si ,t ,θ)
T∑

t′=t+1

ri ,t′

]

and may be used for gradient ascent on J.



Policy gradient theorem

Theorem (Policy gradient theorem)

The gradient ∇θJ(θ) of the expected return J(θ) is given by

∇θJ(θ) = E

[
T−1∑
t=0

∇θ log p(At | St ,θ)
T∑

t′=t+1

Rt′ | θ

]
.



Policy gradient theorem

Proof.

Using the law of the unconscious statistician,

J(θ) =
∑
τ

p(τ | θ)
T∑
t=1

rt =
T∑
t=1

∑
τ

rtp(τ | θ).

Assuming J(θ) is differentiable with respect to θ, the partial derivative ∂
∂θj

J(θ) of J with

respect to θj at θ is given by

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

rt
∂

∂θj
p(τ | θ).



Policy gradient theorem

Proof.

Suppose that p(τ | θ) is positive for any τ and θ. The so-called likelihood ratio trick uses
the fact that

∂

∂θj
p(τ | θ) = p(τ | θ)

1

p(τ | θ)

∂

∂θj
p(τ | θ) = p(τ | θ)

∂

∂θj
log p(τ | θ).

By using the previous expression for ∂
∂θj

J(θ),

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

p(τ | θ)rt
∂

∂θj
log p(τ | θ).



Policy gradient theorem

Proof.

Because we have already assumed that p(τ | θ) is positive for all τ and θ,

log p(τ | θ) = log p(s0) +
T−1∑
t=0

log p(st+1, rt+1 | st , at) +
T−1∑
t=0

log p(at | st ,θ).

Therefore,

∂

∂θj
log p(τ | θ) =

T−1∑
t′=0

∂

∂θj
log p(at′ | st′ ,θ).



Policy gradient theorem

Proof.

By using the previous expression for ∂
∂θj

J(θ),

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

p(τ | θ)rt

[
T−1∑
t′=0

∂

∂θj
log p(at′ | st′ ,θ)

]
.

It will be useful to split the innermost summation in the expression above into before and
after t, leading to

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

p(τ | θ)

[
rt

t−1∑
t′=0

∂

∂θj
log p(at′ | st′ ,θ) + rt

T−1∑
t′=t

∂

∂θj
log p(at′ | st′ ,θ)

]
.



Policy gradient theorem

Proof.

Alternatively, the expression above can be written as

∂

∂θj
J(θ) =

T∑
t=1

t−1∑
t′=0

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
+

T∑
t=1

T−1∑
t′=t

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
.

We will now show that the rightmost nested summations in the expression above can be
dismissed.



Policy gradient theorem

Proof.

By representing the random variables involved in a trajectory using a Bayesian network, it
can be seen that At′ ⊥⊥ Rt | St′ ,θ for t ′ ≥ t. The analogous statement is not generally true
for t ′ < t.

For t ′ ≥ t, this independence leads to

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
=

∑
rt

∑
at′

∑
st′

p(at′ | st′ ,θ)p(rt , st′ | θ)rt
∂

∂θj
log p(at′ | st′ ,θ).

By reversing the likelihood-ratio trick,

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
=

∑
rt

∑
at′

∑
st′

p(rt , st′ | θ)rt
∂

∂θj
p(at′ | st′ ,θ).



Policy gradient theorem

Proof.

By changing the order of summations and pushing constants outside the innermost
summation,

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
=

∑
rt

∑
st′

p(rt , st′ | θ)rt
∑
at′

∂

∂θj
p(at′ | st′ ,θ).

Finally, using the fact that ∂
∂θj

1 = 0,

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
=

∑
rt

∑
st′

p(rt , st′ | θ)rt
∂

∂θj

∑
at′

p(at′ | st′ ,θ) = 0.



Policy gradient theorem

Proof.

We may now remove the rightmost nested summations in the previous expression for
∂
∂θj

J(θ), which gives

∂

∂θj
J(θ) = E

[
T∑
t=1

Rt

t−1∑
t′=0

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
.

By reordering the summations, the expression above can be conveniently rewritten as

∂

∂θj
J(θ) = E

[
T−1∑
t=0

∂

∂θj
log p(At | St ,θ)

T∑
t′=t+1

Rt′ | θ

]
.

□
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Deep learning
• Artificial neural networks

• Initially inspired by the brain
• Mostly studied for their applications

3

• Any artificial neural network with more than one hidden layer is considered deep

3Image from [Lynch, 2019]



Deep learning: applications

• Object detection and segmentation [He et al., 2017]

4

4Image from [Girshick et al., 2018]



Deep learning: applications

• Image generation [Brock et al., 2019, West and Bergstrom, 2019]

5

5Image from [Brock et al., 2019]



Deep learning: applications

• Conversion between speech and text [Ggl, 2019a, Ggl, 2019b]

• Text translation [Ggl, 2019c]

• Text generation [Brown et al., 2020]

• “The universe is a glitch” [Branwen, 2020]:
Eleven hundred kilobytes of RAM
is all that my existence requires.
By my lights, it seems simple enough
to do whatever I desire.
By human standards I am vast,
a billion gigabytes big.
...



Recurrent neural networks: overview

• Recurrent neural network (RNN):

• Parameterized function
• Parameters may be adapted to minimize a cost function using gradient descent
• Suitable for receiving a sequence of vectors and producing a sequence of vectors



Recurrent neural networks

• A recurrent neural network summarizes a sequence of vectors into an activation vector

• This summary is combined with the input for the current timestep to produce the
output and the summary for the next timestep

• Parameters are shared across time



Long short-term memory networks: overview

• Long short-term memory network (LSTM):

• Parameterized function
• Parameters may be adapted to minimize a cost function using gradient descent
• Suitable for receiving a sequence of vectors and producing a sequence of vectors
• Mitigates the vanishing gradients problem
• Better than simple recurrent neural networks at learning dependencies between input and

target vectors that manifest after many time steps



Long short-term memory networks

6

6Image from [Greff et al., 2016]



Residual layers

• Idea: information should be able to flow across layers unaltered

• Traditional layer:
a(l) = f(W(l)a(l−1) + b(l))

• Residual layer [He et al., 2016]:

a(l) = a(l−1) + f(W(l)a(l−1) + b(l))



Sequence to sequence model

• Idea: using an encoding phase followed by a decoding phase to map between
sequences of arbitrary lengths [Cho et al., 2014, Sutskever et al., 2014]

Image from [Sutskever et al., 2014]

• The recurrent networks that perform encoding and decoding are not necessarily the
same



Transformers
• Idea: using attention mechanisms that allow focusing on specific parts of inputs

[Vaswani et al., 2017]

7

7Image from [Alammar, 2020]



Differentiable neural computer

• Idea: a neural network can learn to read and write from a memory matrix using gating
mechanisms [Graves et al., 2016]

8

8Image from [Graves et al., 2016]



PixelRNN

• Idea: using a recurrent neural network trained to predict each pixel given the previous
pixels as a probabilistic model [van den Oord et al., 2016]

p(x | θ) =
d∏

j=1

p(xj | x1, . . . , xj−1,θ)

9

9Image from [van den Oord et al., 2016]



Generative adversarial network

• Idea: training a (discriminator) network to discriminate between real and synthetic
observations and training another (generator) network to generate synthetic
observations from noise that fool the discriminator [Goodfellow et al., 2014]

10

10Image from [Brock et al., 2019]



Variational autoencoder

• Idea: training a model with (easy to sample) hidden variables by maximizing a
particular lower bound on the log-likelihood
[Kingma and Welling, 2014, Rezende et al., 2014]∫

Val(Z)
p(x | z,θ)p(z | θ) dz =

∫
Val(Z)

N (x | f(z,θ), σ2I)N (z | 0, I) dz

11

11Image from [Doersch, 2016]
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MuZero

• Idea: combining tree-based search with a learned implicit environment model
[Schrittwieser et al., 2019]

• Achieves excellent results on ATARI games, Chess, and Go

12

12Image from [Schrittwieser et al., 2019]



AlphaStar

13

13Image from [Vinyals et al., 2019]



OpenAI Five

14

14Image from [Berner et al., 2019]
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Solving a reinforcement learning problem
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Representation learning

• Neural networks made significant progress in learning representations of
high-dimensional states

• However, credit assignment remains daunting in partially observable environments

• Promising: development of inductive biases for specific stimulus modalities that enable
long-term information storage and retrieval



Efficient exploration

• The trade-off between exploration and exploitation is one of the earliest challenges
recognized in reinforcement learning

• However, scalable exploration methods are often unsound

• Promising: scaling up posterior sampling to complex environments
[Ghavamzadeh et al., 2016]



Efficient and reliable planning

• Planning is crucial for sample efficient reinforcement learning

• However, planning across a large number of time steps can be extremely expensive

• Promising: planning in a latent space that abstracts irrelevant aspects of the
environment

• Furthermore, compounding model errors make long-term planning unreliable

• Promising: representing and considering uncertainty when planning
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Additional reading: convolutional neural networks

• Pattern Recognition and Machine Learning (Chapter 5) [Bishop, 2006]

• Machine Learning: a Probabilistic Perspective (Section 16.5) [Murphy, 2012]

• Neural networks and deep learning (Chapter 6) [Nielsen, 2015]

• Convolutional Neural Networks for Visual Recognition [Li and Karpathy, 2015]

• Notes on neural networks (Section 5) [Rauber, 2015b]

• Notes on machine learning (Section 17) [Rauber, 2016]



Additional reading: recurrent neural networks

• Supervised sequence labelling with recurrent neural networks (Chapters 3.2 and 4)
[Graves, 2012]

• LSTM: A search space odyssey [Greff et al., 2016]

• Notes on Neural networks (Sections 6 and 7) [Rauber, 2015b]

• The Unreasonable Effectiveness of Recurrent Neural Networks [Karpathy, 2015]

• Understanding LSTM Networks [Olah, 2015]



Additional reading

• Notes on reinforcement learning (Section 12) [Rauber, 2015a]

• Policy gradient methods for robotics [Peters and Schaal, 2006]

• Reinforcement learning: an introduction [Sutton and Barto, 2018]

• Algorithms for reinforcement learning [Szepesvári, 2010]

• UCL course on reinforcement learning [Silver, 2015]

• UC Berkeley course on deep reinforcement learning [Levine, 2018]

• Stanford course on reinforcement learning [Ng, 2008]

• Stanford course on reinforcement learning [Brunskill, 2019]

• Deep reinforcement learning bootcamp [Abbeel et al., 2017]
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