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1 Asymptotic analysis

Consider a function f: N — R.
Definition 1.1. For every m € N, inf,,>,, f(n) is the largest r € [—00, 00] such that r < f(n) for every n > m.
Definition 1.2. For every m € N, sup,,>,,, f(n) is the smallest 7 € [~oc, oc] such that r > f(n) for every n > m.
Definition 1.3. The limit inferior liminf, _, . f(n) is defined by
a0 =l ()
Since the function g given by g(m) = inf,, >, f(n) is non-decreasing, the limit exists in [—o0, 00].
Proposition 1.1. If z < liminf, . f(n), then z < f(n) for all sufficiently large n € N.
Proposition 1.2. If z > liminf, . f(n), then z > f(n) for infinitely many n € N.
Definition 1.4. The limit superior limsup,,_, ., f(n) is defined by

limsup f(n) = lim sup f(n).

n—soo M0 >
Since the function g given by g(m) = sup,,>,, f(n) is non-increasing, the limit exists in [—oo, oo].
Proposition 1.3. If z > limsup,,_,. f(n), then z > f(n) for all sufficiently large n € N.
Proposition 1.4. If z < limsup,,_, . f(n), then z < f(n) for infinitely many n € N.

Proposition 1.5. For every m € N, the infimum, limit inferior, limit superior, and supremum are related by

inf f(n) <liminf f(n) <limsup f(n) < sup f(n).
n>m n— 00 n—00 n>m

Definition 1.5. The function f is said to converge in [—oo, o0] if and only if

liminf f(n) = limsup f(n).

n—00 n—00

Definition 1.6. The set of asymptotically positive function .# is defined by
F ={f:N—= R | there is an m € N such that f(n) > 0 for every n > m}.
Definition 1.7. For every f € & and g € #, let (f/g) € F be given by
(/5)(n) = {é’(”)/ e
For convenience, we often write (f/g)(n) as f(n)/g(n), since (f/g)(n) = f(n)/g(n) for all sufficiently large n € N.
Definition 1.8. If g € .%#, then the following subsets of .# are defined:

o<g>={fefhmsupf(’”=o},

n—oo  g(M)

fey\hmsupm< }

n—00 (n)



Consider a real number a > 0.

Example 1.1. Since lim,,_,, an/n? = limsup,,_, . an/n? = liminf,,_,., an/n* = 0:

e (n > an) € o(n — n?), often written as an € o(n?).

e (n+— an) € O(n +— n?), often written as an € O(n?).
e (nan) ¢ Q(n+— n?), often written as an ¢ Q(n?).
e (n > an) ¢ w(n — n?), often written as an ¢ w(n?).
o (n+an) ¢ O(n+— n?), often written as an ¢ O(n?).

Example 1.2. Since lim,,_,, n?/an = limsup,,_, . n?/an = liminf,,_, o n?/an = oco:

e (n—n?) ¢ o(n+ an), often written as n? ¢ o(an).
e (n—n?) ¢ O(n+ an), often written as n? ¢ O(an).
€ Q(n ~— an), often written as n? € Q(an).

)
. € w(n ~ an), often written as n? € w(an).

( )
( )
o (n+ n?)
( )
( )

¢ o(n +— n?), often written as an? ¢ o(n?).

( )
e (n+ an?) € O(n — n?), often written as an? € O(n?).
o (n > an?) € Q(n — n?), often written as an? € Q(n?).
o (n— an?) ¢ w(n — n?), often written as an? ¢ w(n?).
e (n+— an?) € O(n +— n?), often written as an? € O(n?).

Proposition 1.6. For every f € .# and g € .%, unless the product on the right side below is 0 - 0o or oo - 0,

limsup f(n)g(n) < (lim sup f (n)> (lim sup g(ﬂ)) :

n— oo n—oo n—oo

Proposition 1.7. For every f € .# and g € .%, unless the product on the right side below is 0 - 0o or oo - 0,

liminf f(n)g(n) > (lim inff(n)) (lim infg(n)) .

n—oo n—oo n—oo

Proposition 1.8. If f € .% and liminf,, o f(n) > 0, then

1 1
lim su = ,
n%oop f( ) liminf,, f(n)

where 1/00 is used to denote 0 on the right side above.

Proposition 1.9. If f € .# and limsup,,_, ., f(n) < oo, then

1
lim inf =
oo f(n)  limsup, . f(n)’

where 1/0 is used to denote oo on the right side above.

Consider the functions f € .#, g € #, and h € Z.
Proposition 1.10. If f € .%, then f € O(f), f € Q(f), and f € O(f). Furthermore, o(f) C O(f) and w(f) C Q(f).
Proposition 1.11. If f € o(g) and g € o(h), then f € o(h).



Proof. By Proposition 1.6,
0 < limsup 7f(n) = lim sup 7f(n)g(n) < (lim sup f(n)) (lim sup gm)) =

O
Proposition 1.12. If f € O(g) and g € O(h), then f € O(h).
Proof. By Proposition 1.6,
ligsolip JCEZ; = hrILILS;l)p m < <li7rgisotép i;g;;) <lig1ﬂs;p ZEZ))) < 00
O
Proposition 1.13. If f € Q(g) and g € Q(h), then f € Q(h).
Proof. By Proposition 1.7,
i {5 = Hnint SO > (imint 205) (e 55 >0
O
Proposition 1.14. If f € w(g) and g € w(h), then f € w(h).
Proof. By Proposition 1.7,
oo 2 i 05 = Hmint SR > (e 70 ) (1mint 70 ) =
O
Proposition 1.15. If f € O(g) and g € ©(h), then f € O(h).
Proof. Since f € O(g) and g € O(h), we have f € O(h). Since f € Q(g) and g € Q(h), we have f € Q(h). O

Theorem 1.1. If f € % and g € .%, then
o f€O(g)if and only if g € Q(f).
e f €o(g)if and only if g € w(f).

Proof. If f € O(g) and f ¢ o(g), then limsup,,_,. f(n)/g(n) € (0,00). In that case, g € (f), since

lim inf 9(n) = 1

) T Tmsup, o Fn)g0n)

If f € O(g) and f € o(g), then limsup,,_,. f(n)/g(n) =0 and liminf,_, g(n)/f(n) = oo, so that g € w(f).
If g € Q(f) and g ¢ w(f), then liminf, . g(n)/f(n) € (0,00). In that case, f € O(g), since

f(n) 1

lim su = — < 00.
el g(n) ~ liminf, o0 g(n)/f(n)

If g € Q(f) and g € w(f), then liminf, o g(n)/f(n) = co and limsup,, ., f(n)/g(n) =0, so that f € o(g). O

Proposition 1.16. If f € & and g € #, then f € O(g) if and only if g € O(f).
Proof. If f € ©(g), then f € O(g) implies g € Q(f) and f € Q(g) implies g € O(f); and vice versa. O
Definition 1.9. The following binary relations are defined on the set .%:

e f <gifandonlyif f € o(g).

e fZgifandonlyif f € O(g).



e [ gifandonlyif f e Q(g).

o [ gifandonlyif f € w(g).

e f~ gifandonlyif f € O(g).
Proposition 1.17. The binary relations < and > are strict preorders.
Proof. By the definition of strict preoder:

e It is false that f < f. If f < g and g < h, then f < h.

o It is false that f > g. If f = g and g > h, then f >~ h.

O
Proposition 1.18. The binary relations = and = are preorders.
Proof. By the definition of preorder:
e It is true that f 3 f. If f 2 g and g S h, then f S h.
e It is true that f = f. If f =~ g and g = h, then f = h.
O
Proposition 1.19. The binary relation ~ is an equivalence relation.
Proof. 1t is true that f ~ f. If f ~ g, then g~ f;if g~ f, then f ~g. If f ~gand g ~ h, then f ~ h. O

Proposition 1.20. The binary relations defined on the set .% are related by the following:
1. If f < g, then f = g.
2. If f > g, then f - g.
3. If f 2 gand g 2 f, then f ~ g.
4. f f = gand g = f, then f ~ g.
5. If f < g, then not f =~ g.
6. If f = g, then not f 23 g.

Proof. The first two claims follow from Proposition 1.10; the next two follow from Theorem 1.1; and the last two
follow from the fact that liminf,, o f(n)/g(n) <limsup,_, . f(n)/g(n). O

Definition 1.10. Let A € {0,0,Q,w,©}. For any functions f : N =R, g: N> R, and h € Z,
f(n) = g(n) + A(h(n))
denotes that there is a function I € A(h) such that f =g +1.
Consider a function f € %.
Example 1.4. If a > 0, then f(n) = ©(af(n)). In order to see this, note that f =0+ f and f € ©(af), since

R A (O fln)
0<hnn—l>£faf(n) _hyrlr;so%paf(n) —E<oo.

Example 1.5. If f(n) = n? 4+ O(n?), then f(n) = ©(n?). Suppose that there is an [ € O(n + n?) such that
f(n) =n? +1(n) for every n € N. In that case,

2 l I
lim sup ) = limsup L(n) =1+ limsup @ < 00,
n—oo n2 n—oo n2 00 n?
2
timinf 2~ g ) g g (0
n—oo 1 n—00 n2 n—oo N2

so that f € ©(n — n?). Since f =0+ f and f € O(n — n?), we have f(n) = O(n?).



2 Subgaussian random variables

For details about the notation employed below, see the measure-theoretic probability notes by the same author.
Consider a probability triple (Q, F,P) and a constant o > 0.

Definition 2.1. A random variable X : Q@ — R is O-subgaussian if and only if P(X = 0) = 1.

Definition 2.2. A random variable X : Q — R is o-subgaussian if and only if, for every A € R,
E () < X%

Proposition 2.1. If a random variable X :  — R is o-subgaussian, then, for every A € R,

E (eAIXI) < 9%

Proof. For every A € R, note that e*X! = e)‘X]I{XZO} + e”\X]I{X<0}. Since e* > 0 for every x € R, note that
A2 (=0)202 2202

E (eAX]I{XZO}) <E (eAX) <e = and E (e‘AX]I{X@}) <E (e‘AX) <e 2z  =e 2 . Therefore,

2202

E <e)“X|) =E (eAXH{Xzo}) +E (efAXH{X<0}) <2 7.

Proposition 2.2. If a random variable X : Q — R is o-subgaussian, then E(X) = 0.

o2
Proof. Recall that e* > x + 1 for every « € R. Therefore, E(e/X!) > E(|X]) + 1 and E(|X|) < 2% — 1.
For every A € R, recall that the function ¢ : R — R given by ¢(x) = e’* is convex. By Jensen’s inequality,

2252

) = (E(X)) S E(¢(X)) =E(eM) <e™2,

so that AE(X) < A202/2 for every A € R. If A < 0, then E(X) > Ao?/2. If A > 0, then E(X) < Ao?/2. Therefore,

Ao Ao
= lim — <E(X)< lim —
0 /\ﬂf){ 2 = (X) < ,\gg+ 2

0.

Proposition 2.3. If a random variable X : Q — R is o-subgaussian, then Var(X) < o2.
Proof. Recall that e” = 3> 2" /n! for every x € R. Therefore, for every A > 0 and k € N,

00 k

GMX‘:Z n! ZZ n! :Z

n=0 n=0 n=0

AnX™
n!

Foanxn
2 Z n! |

n=0

Since E (eMX‘) < 00, note that E(|X|*) < oo for every k € N. By the dominated convergence theorem,

E (M) —E (f‘: Anxn> _ i NE(X") - ME (X?) +§: )\HE(XH)’

n! n! 2 n!

n=0 n=0 n=3

where we also used the fact that E(X) = 0.
For every A € [0,1], note that A\*® < \* for every n > 2. Therefore, for every A € [0, 1],

o0 o0 o
22,2 A2n02n AZUQ A2n02n A202 02n A2U2 o2
==y =1 <1 A <1 e
c ; 2 T +nz::2 T R ;2%!— Tty the

For every A € [0, 1], by the definition of a o-subgaussian random variable,

+ /\4e§.

ME(X?)  SSNE(X")  Ao?
+Z n! = 2

n=3



For every A € (0,1], by multiplying both sides by 2/\%,
0 A2, (Xn) .2
2 2 9 o2

E (X )+22T§0 +2\%T .
By taking the limit of both sides when A — 07,
s A2 (X7 o2

# < o2+ 27 lim A\ =2
A0+ L= n! A—0+

If the limit on the left side above is zero, then E (Xz) < ¢2. In that case, considering that E(X) = 0, note that
Var(X) = E(X?) — E(X)? = E(X?) < 02, so that the proof will be complete. For every A € (0, 1],

> AN 2E (X" > A 3RE (X
5 ”‘ﬂZ (x")

ot n! n!
For every k € N and \ € (0, 1], note that E(X*) < E(|X|*) < co and A*¥ < 1. Therefore,

0 A2 (X
3 (X"

n!

&0 n—3 n
CAS ARG

n!
n=3

n=3

n—3
SAZ% )\Z |X‘ < AE(X) < 227
n=3

n=3 n=3

so that

o2

<272 lim A=0.
A—=0t

e AN 2E (X"
3 (Xx™)

0 < lim
n!

A—0t

O
Proposition 2.4. If a random variable X : Q — R is o-subgaussian, then ¢X is |c|o-subgaussian for every ¢ € R.

Proof. This proposition is trivial if ¢ = 0. If ¢ # 0, ¢X is a random variable and, for every \ € R,

(re)202 226252 A2c|202 A2(lclo)?
2

E(MX)) =E(eP9X)<e™ 7 =e" 77 =" 2 =e

Consider the constants o1 > 0 and o5 > 0.

Proposition 2.5. If the random variable X; : Q2 — R is o;-subgaussian, the random variable X5 is o9-subgaussian,
and X; and X5 are independent, then X; + X5 is \/0‘% + og-subgaussian.

Proof. For every A € R, because e**! and e**? are independent and P-integrable,

2252 2242 A2(02402)
E(AX1+X2))  F(M1HA) — B(AX1 X2 ) = B(AME(M?) < eI
so that the random variable X; + X5 is \/0? + 03-subgaussian. O

Proposition 2.6. If the random variable X; : 2 — R is oj-subgaussian and the random variable X5 is oo-
subgaussian, then X; + X is (01 + 03)-subgaussian.

Proof. Note that E (|e/\X1 |p) =E (eAle) < ooand E (|e>‘X2|q) =E (eAqX2) < ooforevery A€ R,p>1,and g > 1.
By Hélder’s inequality, if p > 1 and p~! + ¢! = 1, then

]E(e,\(X1+X2)) _ E(GAX1+)\X2) _ IE(e’\Xle’\X2) < E(|€)\X1 }P)%qu)\xz |q)% _ E(e/\pxl)%E(ex\qXZ)%.

By the definition of subgaussian random variables,

1 1
A2p252 \ P 224262\ @ A2po2  AZ2g02 2 2 2
) < (5 (25) " 2 L Rt

Let p = (01 + 02) /o1 and ¢ = (01 + 02)/02, so that p > 1 and p~! + ¢! = 1. In that case, for every A € R,
B(eMXi+Xa)) < & (F2otr220d) | 9 (sl t2m0a40]) _ Alontnal

so that the random variable X; + X5 is (01 + 02)-subgaussian. O



Proposition 2.7. If a random variable X : Q — R has a normal distribution with mean 0 and variance 1, then X
is 1-subgaussian.

Proof. For every A € R, considering a probability density function for the random variable X,

2

% /\acf— — (== *)
E(*X) = [ 7S 2 Leb(de) = Leb(dz) = e > / Leb(dz) = e ¥ .
)= A N CE
where we used the fact that Az — %2 = —% + %2 and recognized a probability density function for a random
variable that has a normal distribution with mean A and variance 1. O

Proposition 2.8. If a random variable X : Q — R has a normal distribution with mean 0 and variance 2, then
X is o-subgaussian.

Proof. Recall that X/o has a normal distribution with mean 0 and variance 0?/0%? = 1. Therefore, X/o is 1-
subgaussian, so that 02 = X is |o|-subgaussian. O

Lemma 2.1 (Hoeffding’s lemma). If X : Q@ — R is a random variable such that E(X) = 0 and P(X € [a,b]) =
for some a < b, then X is (b — a)/2-subgaussian.



3 Concentration of measure

Consider a probability triple (2, 7, P) and a constant o > 0.

Theorem 3.1. If X : 2 — R is a o-subgaussian random variable, then, for every € > 0,
e2
P(X < —¢) <e 27,
E2
P(X >e€) <e 27,
e2
P(|X|>¢€) <2 202,

Proof. Recall that the function g : R — [0, 00] given by g(z) = €*® is non-decreasing for every A > 0. For every
€ € R, by Markov’s inequality,

E(e ) ¢S AZo2 5,
]P(X = _6) = A€ =< eAe =e ’
2.2
E(eAX) 6% 20 2252 —\
P(X z 6) = A€ < A€ =e 2 ‘

N
N
N
N
N
N

€2 g2 et €2 eZ e (l—l) _ 2
]P)(XS 76) <eost 2 o2 €202 o2 — eo2\2 =e 22,

2 _2

e o

2
P(X >¢)<eoTz o2

Il
9]
0
il
|
A
I
@
QN‘ s,
—~
ol
|
—_
~—
Il
9
0
il

Therefore, for every € > 0,

2

P(X|>e)=P{X < —c}U{X >e}) <P(X < —¢) +P(X >¢) <2 22,

Proposition 3.1. If X : Q — R is a o-subgaussian random variable, then, for every ¢ € (0, 1],
P (X < /202 1og(1/5)) <,
P (X > /202 1og(1/5)) <4,

P (|X| > /202 1og(2/5)) <.

Proof. Let 6 € (0,1]. If e = /202 1og(1/4), then € > 0 and 6 = ¢~ 252, which implies the first two inequalities. If
2
€ = /2021log(2/0), then € > 0 and § = 2e¢™ 202, which implies the last inequality. O

Proposition 3.2. If X : Q — R is a o-subgaussian random variable, then, for every ¢ € (0, 1],
P (X > —\/202 1og(1/5)) >1-4,
i (X < /202 1og(1/5)) >1-4,
P <|X\ < /202 10g(2/6)) >1-04.

Proof. These inequalities follow from Proposition 3.1 and the fact that P(F¢) =1 —P(F) for every F' € F. O



Consider a sequence of independent random variables (X : Q@ — R | k € NT), each of which has the same law
as a random variable X € £2(2, F,P) and let u = E(X).

Definition 3.1. For every ¢t € N*, the sample mean M; : ) — R after ¢ observations is given by

= % > Xi(w)
k=1

Proposition 3.3. For every ¢t € N, E(M,;) = u and Var(M;) = Var(X)/t.

Proof. Recall that £2(Q2, F,P) is a vector space over R, so that M; € £L2(2, F,P). By the linearity of expectation,

t t
1 1
E(M,)=E (tZXk> = {ZE(X’“) - =
k=1 k=1
For every ¢ € R and Y € £2(Q, F,P), recall that
Var(cY) = E((cY)?) — E(cY)? = E(?Y?) — (cE(Y))? = E(Y?) — PE(Y)? = ¢ Var(Y).

Therefore, because the random variables (X}, | k € N*) are independent and identically distributed,

t

1 : 1 1
Var(M;) = Var ( ZXk> = t—ZVar <Z Xk> =5 ZVar(Xk) = t—QtVar(X).
k=1

k=1
O
Proposition 3.4. For every t € NT and € > 0,
Var(X
B(M, — il > ¢) < Y2HX)
te
Proof. By Chebyshev’s inequality, for every € > 0,
Var(X
) — Var(a) = B(M, — ) > B(M, — ] > o).
O
Proposition 3.5. If X — y is a o-subgaussian random variable, then, for every t € Nt and ¢ > 0,
o2
P(|M; — pu| >€) < —
(1M =i 2 ) < T
Proof. This proposition is a consequence of Proposition 2.3 and Proposition 3.4, since
0% > Var(X — p) = E(X — p)?) = E(X — p)* = Var(X) — (E(X) — p)* = Var(X).
O

Proposition 3.6. If X — p is a o-subgaussian random variable, then, for every t € Nt and ¢ > 0,

t62
P(M; <p—e) <e 27,

te?

P(My > p+e) <e 27,

2

P(|M, — | > €) < 2e 2.2

Proof. Recall that E(X — u) = 0 and Var(X — p) = Var(X). For every t € N,

(i)t



Because (Xj — p | k € NT) are independent o-subgaussian random variables, Proposition 2.5 guarantees that
22:1 (X — ) is (ov/t)-subgaussian and Proposition 2.4 that M; — p is (0/v/t)-subgaussian. By Theorem 3.1,

2
< te?

P(My—p<—€)<e V0 = T = o i 7

te?

2
P(M— 2 ) < ¢ T = T - i

— 62 _ e te2
P(|M; — p| > €) < 2e 2(/vD* =2¢ 2(%/1) =2¢ 207,

Proposition 3.7. If X — i is a o-subgaussian random variable, then, for every t € N* and ¢ € (0, 1],

(Mt < pu—+/202log(1/8)/ ) <4,
P (M, > p+ /207 10g(1/0)]1) <6,

P(IM, — | > /207 10g(2/0) /1) < 0.

te?
Proof. Let § € (0,1]. If e = y/2021og(1/6)/t, then € > 0 and § = €™ 207, which implies the first two inequalities. If
te2
€ = /202log(2/0)/t, then € > 0 and 6 = 2e™ 207, which implies the last inequality. O

Proposition 3.8. If X — i is a o-subgaussian random variable, then, for every ¢ € N* and § € (0, 1],

(Mt>,u V202log(1/9)/ )>1—
P (M, < i+ V207 10g(1/0)/1) =16,

P(|M; — p] < v/20%10g(2/5)/t) > 1 —6.
Proof. These inequalities follow from Proposition 3.7 and the fact that P(F¢) =1 — P(F) for every F € F. O

Theorem 3.2 (Hoeffding’s inequality). Consider a sequence of independent random variables (Y3 : @ — R | k € NT)
and suppose that there are constants ay € R and by € R such that a; < by and P(Yy € [ag,bx]) = 1 for every
k € NT. In that case, for every ¢t € NT and € > 0,

i 2.2
1 —_—— e
P <t Z(Yk - ]E(Yk)) Z 6) <e SE_q (b —ap)? .

k=1

Proof. For every k € N*t, note that E (Y, —E(Y%)) = 0 and P((Yx — E(Y%)) € [ar — E(Yx), b — E(Y%)]) = 1, so
that Yy — E(Yy) is (b — ag)/2-subgaussian by Lemma 2.1. Because (Y — E(Y%) | ¥ € NT) are independent random

variables, Proposition 2.5 guarantees that Zzzl(Yk —E(Yy)) is \/22:1(1% — ay,)?/4-subgaussian and Proposition
2.4 that SF_ (Vi — E(Yi))/t is \/Zi}:l(bk — ay)?/(4¢?)-subgaussian. By Theorem 3.1,

2
- € 2 2422

¢ I
P (1 (Y — E(Y)) > 6) <e 2(y/Thmy teme? /) —e 77 Tk Cema)? _ 0TS Gran)? |
" E >e| <
k=1

O

Theorem 3.3 (Bretagnolle-Huber-Carol inequality). Suppose that there is an m € NT such that X (w) € {1,...,m}
for every w € Q. Consider a vector p € [0,1]™ such that p; = P(X = i) for every i € {1,...,m} and a random
vector P, : Q — [0,1]™ such that P, ; = 1/t 2221 I{x,—=} for every t € N* and i € {1,...,m}. For every ¢ € (0,1],

P (1P = pll > v/2(l0g(1/0) + mlog(2)) /t) < 4.

10



Proof. Recall that |a| = max(a, —a) for every a € R. Therefore, for every ¢t € NT,

m

Py - P’L il = /\iPz i) = )\Pz %
1P~ plh = Zn pl=30, max MP—p) Aegn%’i}mz bi = pi)

For every t € NT, by expanding the previous expression and exchanging the order of the summations,

1 t
[P —pl = m?ﬁ}mzk (t;]l{ka} Zp> Ae{m?ﬁ}m*ZZA Lix =iy — Aipi-

=11i=1

For every k € {1,...,t} and A € {—1,1}"™, let Yk()‘) = > Ailfx,=i} = Ax,, so that |Yk(>‘)| <1 and

E (Y,j”) —E (; /\i]I{Xk_i}> - ; NP(X), = 0) = ; ANP(X = i) = ;)\ipi.

For every t € NT, by rewriting a previous expression,

t

IPi=plh =, uax, 73 (5 B ().
Therefore, for every t € N* and ¢ > 0,
_ LS~ (y ) oy _ LN (v g (y)
sz ={, o 4002 () 2 b= U S (-2 (87)) 2 )
=1 Ae{-1,1}m k=1
By employing a union bound, Theorem 3.2, and the fact that the set {—1,1}™ has 2™ elements,

t
P(IP—pllize)s P(i;(yﬁ)—E(Yé”))>e>< S e e

Ae{-1,1}m Ae{-1,1}m

2

Let 6 € (0,1]. If € = /2 (log(1/8) + mlog(2)) /¢, then € > 0 and 6§ = ome=t5 Therefore,

P (117 = plly = /2 (log(1/) + m1og(2)) /t) < 6.

11



4 Stochastic bandits

Definition 4.1. A set of actions A4 is a non-empty subset of N.

Definition 4.2. For a set of actions A, consider a sequence of probability measures v = (P, | a € A) on the
measurable space (R, B(R)). If h : R — R is a B(R)-measurable function and there is a constant ¢ € [0,00) such
that [, |h(x)| P,(dx) < ¢ for every action a € A, then h is v-integrable.

Definition 4.3. For a set of actions .4, consider a sequence of probability measures v = (P, | a € A) on the
measurable space (R, B(R)). If the identity function is v-integrable, the mean u! of action a is defined by u? =
fR x P,(dz) and the supremum mean pY is defined by p% = sup, p2. If ¥ = p¥ for some action a € A, then v is a
stochastic bandit for the set of actions A.

Proposition 4.1. If v = (P, | a € A) is a stochastic bandit for the set of actions A, then there is a constant
¢ € [0,00) such that ¥ € [—c¢, c] for every action a € A.

Proof. Since the identity function is v-integrable, there is a constant ¢ € [0,00) such that [ 2| P,(dx) < ¢ for
every action a € A. Therefore, [p%| = | [ @ Pu(dx)| < [g || Pa(dz) < c for every action a € A. O

Definition 4.4. For a set of actions A, a policy 7 is a sequence of functions (m; : R — A | t € NT), where the
so-called policy m; for time step ¢ is B(R?)-measurable.

Proposition 4.2. For a set of actions A, a stochastic bandit v = (P, | a € A), and a policy 7 = (m; | t € NT),
there is a probability triple (2, F,P) carrying a stochastic process (X; :  — R | ¢ € N) such that E(|X;|) < co and

]P)(Xt eB | X(),...,Xt,l) :PAt(B)

almost surely for every t € Nt and B € B(R), where A; = m;(Xo, ..., X¢_1). Additionally, if a function h: R — R
is v-integrable, then E(|h(X})|) < oo for every ¢t € NT.

Proof. By Kolmogorov’s extension theorem, there is a probability triple (2, F,P) carrying a countable set of inde-
pendent random variables {Z;, : @ = R | t € Nt and a € A} such that P(Z;, € B) = P,(B) for every t € N*t,
a € A, and B € B(R). For every t € N, let 4; : Q@ — A and X; : Q@ — R be given by

Ap(w) = i (Xo(w ) S Xm1(w)),
Xi(w) = Zt 4, (w) (W ZH{At —a} (W) Zt,a(w),

where X : Q — R is given by Xo(w) = 0.
For every t e N let F;_1 =0 (Uk<t,a U(Zk,a)>. For every t € Nt and a € A, note that o(Ija,-q)) € 0(4;) C

o(Xo,..., X¢—1) € Fy—1. Because F;_1 and 0(Z; ) are independent, so are Ij4,—,} and Z; .
Therefore, if a function h : R — R is v-integrable, then E (Jh(X})]) < oo for every t € Nt since

E (|h(X,)]) ZE Tia,—a) [M(Z10))) ZIE Iia,—ay) E(IM(Zt0))) :ZIP’(At:a)/RM(xH P,(dz) < ¢ < 0.

In particular, because the identity function is v-integrable, E (] X;|) < oo for every ¢ € N*.
By definition, almost surely for every t € N* and B € B(R),
P(Xt €eB | Xo, - .. aXt—l) =E (H{XtGB} | O'(Xo, c aXt—l)) .
For every t € NT and B € B(R), note that {X; € B} = J,{A4: = a} N {Z;,, € B}. Therefore, almost surely,

P(X; € B|Xo,..., X1 1) = > E(Ia,—a)liz, ,eny | o(Xo,..., Xi 1)) .

For every t € NT and a € A, recall that Ifa,—ay is 0(Xo, ..., X;—1)-measurable. Therefore, almost surely,

P(Xi € B|Xo,...,Xe-1) = Y Ta—a}BE Iz, epy | 0(Xo,..., Xi1))

a

Since o(Xo,...,X;—1) C Fi—1 and o (H{Z,, aeB}) C 0(Z,,,) are independent, almost surely,

P(X; € B| Xo,...,Xi_1) Z]I{At o E (Iiz, .cny) Z]I{Af_a}P = P4, (B).
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Definition 4.5. The canonical space (£, F) that carries the reward process X = (X; | t € N) is a measurable
space such that 2 = R*°. Furthermore, for every ¢t € N, the function X; : Q — R is given by X;(w) = w; and the
o-algebra F on  is given by F = o(Xo, X1,...).

Theorem 4.1. For every set of actions A, stochastic bandit v = (P, | a € A), and policy m = (m; | t € NT), there
is a probability measure P*7 on the the canonical space (2, F) that carries the reward process X = (X; | t € N)
such that E”7 (| X;|) < oo and

P (X; € B | Xo, ..., Xy—1) = Pa,(B)
almost surely for every t € Nt and B € B(R), where A; = m;(Xo, ..., X¢_1). Additionally, if a function h: R — R

is v-integrable, then E*™(|h(X;)|) < oo for every t € NT. The probability triple (2, F,P*™) is called a canonical
triple for the stochastic bandit v under the policy .

Proof. Proposition 4.2 ensures that there is a probability triple (Q”“,f”vﬁ,ﬁw’”) carrying a stochastic process
(X" : Q¥™ — R | t € N) such that, almost surely,

I@”J (Xtu’ﬂ— eB | X(I)I’Tranth;) = Pfit(B)
for every t € N* and B € B(R), where A, = m,(X}",..., X/'™").

Consider the function X*7™ : Q™ — Q given by X" (&) = (X/""(@) | t € N). The function X" is F*™ /F-
measurable, so that the function P*™ : F — [0, 1] defined by

P (F) = BT <(XM)1 (F)) Bom ({0 € 007 | X7(@) € F})

is a probability measure on the measurable space (€2, F).
In order to show that X*™ is o(X", ..., X,"")/0(Xo, ..., X;)-measurable for every ¢t € N*, let Z; be given by

t
It:{ﬂ{Xk€Bk}|Bk€B(R) foreverykE{O,..-J}}»

k=0

so that Z; is a m-system on Q such that o(Z;) = 0(Xo, ..., X;). For every t € NT and I; € T,

(X2m) A1) = (X0m)- <ﬂ{xke3k}> N &)~ (X0 € By = (XL € B,

k=0 k=0 k=0

which uses the fact that

(X¥™) "L ({X), € By)) = {w e | XV (@) € {we Q| wy € Bk}} — [XV7 € By}

Since (X*™)~1(I;) € o(Xy™, ..., X]T) for every I; € T;, XV™ is or(Xg”T7 .., X" Jo(Xo, ..., X;)-measurable.
For every t € Nt and H,_, € U(Xo, oy X1), let H_y = (X»™)~'(H,_,). For every B € B(R),

B (Ixemyln, ) = P“7 ({X; € BY 0 Hyoy) = B ((X97) 71 (X, € BY) N (X977 (Hio))
Because H; 1 € o(XJ'™, ..., X1'7),
BT (Ixeemln, ) = B ({X07 € BYN Hot ) =B (Lgunepy T, ) =B (P4 (B, ).

where A; = (X", ..., X/"). Therefore,

= et ) =27 (St P00, | = SR (1d = abn ).
a
For every a € A, note that P™ ({A; = a} N Hy_1) is given by

PY" ({A, = a} O Hy_1) = P*7 ((X'”’“)*l({At —a})n (X”’”)*l(Ht_l)) — P ({At —a}n ﬁt_l) :
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which uses the fact that
(X (A = a}) = {0 € 07 | X¥7(@) € {w € Q| milwo,. .. we1) = a}} = {4; = a}.

Finally, for every t € N*, H;, 1 € 0(Xo,...,X;_1), B € B(R),
E"™ (Iix,enlm, . ) ZP B)P"™ ({Ay = a} N Hy_q) =E"™ (Pa,(B)lg,_,).
Because Py, (B) is 0(Xo, ..., X;—1)-measurable, almost surely,

pvm (Xt €B | X(), PN Xt—l) =[E»T (H{XtEB} ‘ O'(Xo, ce ,Xt_l)) = PAt (B)

For every t € NT, consider the law £; : B(R) — [0, 1] given by
Ly(B) = P*"(X, € B) =PV~ ((XM)—l ({X, e B})) = P""(X/" € B).
If a function h : R — R is v-integrable, then E*™ (Jh(X;)|) < oo for every t € NT, since
B (WD) = [ )] £4(de) = B2 (h(XT 7)) < o.

In particular, because the identity function is v-integrable, E*'™ (| X;|) < oo for every ¢t € NT.
O

For the remaining, consider a set of actions A, a stochastic bandit v = (P, | a € A), a policy 7 = (m | t € NT),
and let (2, F,P*7™) be a canonical triple for the stochastic bandit v under the policy .

Proposition 4.3. For every t € NT, if a function h : R — R is v-integrable, then
E"" (h(Xt) | Xoy. ooy Xe1) = ZH{AFG} / h(z) P,(dx)
p R

almost surely, where A; = m(Xo, ..., X¢—1).

Proof. Since the function h : R — R is v-integrable, recall that E*>™(|h(X;)|) < oo for every ¢ € NT.
First, suppose that h = I for some B € B(R). Because I5(X;) = I{x,ep}, almost surely,

EY™ (Ip(Xy) | Xo,...,Xe1) = Pa,(B ZH{At ay Pal ):Z]I{At:a}/]lg(x) P, (dx).
a R

Next, suppose that h is a simple function that can be written as h = >_;", bglp, for some fixed by, b, ..., by, €
[0,00] and By, Ba, ..., By € B(R). Almost surely,

(Zbkl{Bk Xf) |X0,..., t ) Zbk ZH{Af a}/HBk d:l? Z]I{At a}/Zbk]IBk )

k=1

Next, suppose that h is a non-negative B(R)-measurable function. For any k£ € N, consider the simple function
hi = ay o h, where ay, is the k-th staircase function. Almost surely, since hy(X;) T h(Xy),

E"7" (h(Xt> | XO) s 7Xt71) =E"" (kli)ngo hk(Xt) | X0> B th) = klin’olo E¥™ (hk?(Xt) | X07 s 7Xt71> :
Since hy T h, by the monotone-convergence theorem, almost surely,

BT (h(X0) | Xo,..., Xpm1) = Jim Y Tpa,—q) / hi(z) P, ZH{At —a) / lim /() Pa(dz).
oo 2 R

Finally, suppose that h = h* — h™ is a B(R)-measurable function. Almost surely,

E™ (h(X¢) | Xo,. .., Xi1) <ZH{Af a}/ Tz )Pa(d;z:)> - (ZH{A#@}/Rh(I) Pa(dx)>.
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By the linearity of the integral, almost surely,

BT (h(X0) | Xore s Xe1) = 3 Tparmay /R (h* (2) = b~ (2)) Pa(dz) = 3 T areay /R h(z) Pa(dz)

O
Proposition 4.4. If t € N* and A; = m(Xo,..., X;_1), then E"7™ (X, | A;) = p*, almost surely.
Proof. For every t € NT, E¥™ (] X;]) < oo and A; is o(Xo, ..., X;—1)-measurable. Therefore, almost surely,
E"™ (X [ A)) = EV™ (EV7™ (X | Xo, ..., Xe—1) [ Ar) = ZH{At a}/ (da) = Tqa,—aystt, = 4,
by the tower property, Proposition 4.3 applied to the identity function, and taking out what is known. 0

Proposition 4.5. If t € N* and A; = m(Xo, ..., X¢_1), then

Dk (Xt) — EVT (Eu,w (Xt ‘ At)) Ev:™ MAt ZMIIIP)II T ) ]

Definition 4.6. For every t € N*, the total reward S; after ¢ time steps is given by S; = 22:1 Xi.
Definition 4.7. For every ¢t € NT, the regret R;"" of policy m on v after ¢ time steps is given by

t
Ry™ =tul =Y EVT (Xy).

Definition 4.8. For every action a € A, the suboptimality gap is defined by Al = p% — u¥, so that A? > 0.
Definition 4.9. The number of times 777, : @ — {0,...,t} that policy 7 selects a € A by time t € N* is given by

w) = Tia,—a} ()
k=1

where Ay = m(Xo, ..., Xp—1) for every k < t. Note that ) T/, (w) =t for every w € Q.
Definition 4.10. The average reward M, : @ — R that policy m observes for a € A by time ¢ € NT is given by

1

M, (w) =

)

Tﬂ‘

> X (@) A, —a} (@)
t,a(w) k=1

whenever T}, (w) > 0, where Ay = 74 (Xo, ..., Xj—1) for every k < t.

Theorem 4.2. For every t € NT, the regret R;"" of policy 7 on v after ¢ time steps is given by

Rtl/,ﬂ' Z AVED T 7r
Proof. For every t € N*, let Ay, = m(Xo,..., Xp_1) for every k < t, so that EV™(T[,) = S PP (A), = a) and

SE(IN) =YY P (A =a) =Y Y P (A =a) =t

a k=1 k=1 a
By the definition of the regret R;"™ of policy 7 on v after ¢ time steps,

t

t
R;”W:tu:—ZE”’T X) ZZNZP”” A =a)— ZZMZIP”’”(Ak:a).

k=1 k=1 a k=1 a

By rearranging terms and the definition of suboptimality gap,

ZZ /u‘a ]P)l/ﬂ' _ ZAVZ]P;VW 7a):ZAZEV,7T(71t )
k=1 a

a
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Proposition 4.6. If ¢t € NT, then R;"™ > 0.
Proof. Since A¥ > 0 and E”™ (Tt”a) > 0 for every a € A and t € NT, the claim is a consequence of Theorem 4.2. [
Proposition 4.7. Consider an action a* € A such that p%. = p%. If 7; = a* for every t € NT, then R}"™ = 0.

Proof. For every t € N, note that Ty, = 0 for every a # a*. Therefore,
RYT = AUEYT(TE,) = ALEST(T],.) = (4 — p BV (T] ) = 0.

O

Proposition 4.8. For every t € NT_ let Ay = m(Xo, ..., Xx_1) for every k < t. If R;"™ = 0, then w, = pf almost
surely for every k < t.

Proof. For every t € NT, by Theorem 4.2,

t t

Ry =3 AUEVT(TT,) ZA”ZE” Ia,=a}) = > B <Z H{Ak—a}AZ> =2 ET(AG).

a k=1 k=1

Suppose that P*™ (u4 = p2) < 1 for some k < ¢, so that P*™ (u4, < p¥) > 0 and P*™ (A% > 0) > 0. In that
case, E”™ (A" ) > 0, so that R{"" > 0. O

For convenience, let Ry™ = 0.

Proposition 4.9. If R,"™ = o(t), then

Proof. Since R”™ : N — R is asymptotically positive by assumption,

0 = limsup o > hm inf ‘" >0,
t—o00 —o0
so that
0= lim B = lim pj — liE”’” (Xk) = py — lim — i:E””T (X
t—oo ¢ t—o00 t P t—oo t —

O

Definition 4.11. The number of times 7;." : @ — {0,...,t} that policy 7 selects an optimal action on the
stochastic bandit v by time step ¢ € N¥ is given by

t
@) =D Ly =y Z Iiay =0y (@
k=1

where A = 7 (Xo, ..., Xk—1) for every k < t.

Proposition 4.10. The number of times Tt'jf : Q — {0,...,t} that policy 7 selects an optimal action on the
stochastic bandit v by time step ¢t € NT is given by

T w) = Y Thw).

alAv=0
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Proof. For every t € N let Ay = m(Xo, ..., Xk_1) for every k < t. In that case,

{A%, =0} :U{Ak =aand A} =0} = U {4y =a},

alAY=0

so that

w):ZH{A —o}(w Z Z I ap=a} (W Z ZH{Ak —a}(w Z T (w).
k=1

k=1a|A%=0 alAY=0 k=1 a|AY=0
O
Proposition 4.11. If the set of actions A is finite and R;"™ = o(¢), then
Evm TVJT
lim 7( b ) =1.
t—o0
Proof. By Theorem 4.2,
RV,Tr AZEV,W Tﬂ—a TTra Ev™ T‘n'a
0= lim —— = lim 2 (1) = lim A”i( t’)=ZAZ lim 7( t"),
t—oo ¢ t—00 t t—00 t t—o00 t
so that lim;_, oo E¥7 (T[fa) /t = 0 whenever A > 0. Therefore,
' Ev™ (Ttﬂa) Ev:™ (Ttﬂa)
0= > Jm = =jm > —
alAy>0 alAv>0
For every t € N*, recall that ) T/, = t. By Proposition 4.10,
t= ZEuyﬂ(TtT:'a) — Z El/,ﬂ(Tg?a) + Z EVJT(TtT)I' ]Euw VTr Z Euw
a alAY=0 alAY>0 alAY>0
so that
s BT | B
alAY>0
Therefore, considering a previous equation,
Ev:m TIJ,T{‘ Ev-m Tu,'fr
0= lim 177( i) =1- lim B (L) t’*).
t—o0 t—o00
Since E*™ (T}") > 0 for some ¢t € N* and E*7 (T}.") < E*™ (T},"), note that E*™ (T;.[) = O(t). O

Definition 4.12. For a set of actions A, an environment class £ is a set of stochastic bandits for A.

Definition 4.13. For a set of actions .4 and an environment class &, consider a probability triple (£,G,Q) such
that R;™ : € — [0, 00] is G-measurable for every policy 7 and time step ¢ € NT. The Bayesian regret BJ of policy
m after t € NT time steps is given by

Bt = [ ReTQ(a).

Definition 4.14. The stochastic bandit v = (P, | a € A) is o-subgaussian if, for every a € A, the random variable
Z, on the probability triple (R, B(R), P,) given by Z,(z) =  — % is o-subgaussian. Note that E,(Z,) = 0.
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5 Explore-then-commit
Definition 5.1. If (z, € R | n € N) is a sequence of real numbers, then arg max, =, is given by

argmax x, = inf({m € N | x,,, = supx,}).
n n

Note that arg max, z, € NU {oo}, since inf(f)) = oo.
Consider a measurable space (€2, F) and a stochastic process (Y, : @ - R | n € N).

Definition 5.2. The function arg max,, ¥;, : @ — NU {0} is given by

(arg max Yn) (w) = argmax Y, (w).
Proposition 5.1. The function argmax,, Y, : @ — NU {co} is F-measurable.
Proof. Recall that the function sup,, Y, is F-measurable, so that the function Z,, : @ — NU {co} given by

m, if Y, (w) = sup,, Y, (w),

Zm =ml =su + ool u =
(w) = mlpy,, —sup,, v, (@) + 00y, 2eup,, v} (@) {oo, i Y, () # sup,, Yo ()

is F-measurable for every m € N. Furthermore, recall that the function inf,, Z,, is F-measurable and note that

inf Z,, (w) = inf ({m €N | Yyu(w) = sup mm}) — argmax Y, (w) = (arg max Yn> ().

m n n

O

Consider a number of actions n € NT, a set of actions A = {1,...,n}, a stochastic bandit v = (P, | a € A), a
policy m = (m; | t € N*1), and let (2, F,P*™) be a canonical triple for the stochastic bandit v under the policy .

Definition 5.3. A policy 7 implements explore-then-commit with m € NT exploration steps if, for every ¢t € N*,

(t—1)modn)+1, ift<mn,

arg max, M if t > mn.

7Tt(X0, . aXt—l) = {

Note that M{, is well-defined for every t > n and a € A.

Proposition 5.2. If the policy 7 implements explore-then-commit with m € N7 exploration steps and ¢ < mmn,
then P™(X; € B) = P,,(B) for every B € B(R), where a; = ((t — 1) mod n) + 1.

Proof. For every t € N such that ¢t < mmn, let A; = m(Xo, ..., X;_1), so that A, = a;. For every B € B(R),
P»" (X, € B) =E"7 (IE’”r (H{XteB} | Xo, ... ,Xt_1)) =E"™ (P4,(B)) =E”™ (P,,(B)) = P,,(B).
O

Proposition 5.3. If the policy 7 implements explore-then-commit with m € Nt exploration steps, then the random
variables Xg, X1, ..., X;n, are independent in (Q, F,P¥7).

Proof. Note that Xy and X are independent because o(Xy) = {0, Q}. Suppose that Xy, X1, ..., X; are independent
for some ¢ € NT such that ¢t < mn. We will show that Xy, X1,..., X;41 are independent.
For every By, By, ...,Bi11 € B(R), by taking out what is known,

t+1 t+1 t
pv T (n {Xk S Bk}) =E»7" (H ]I{XkEBk}> =E"" (H ]I{XkeBk}]EV’Tr (]I{Xt+1EBt,+1} ‘ Xo, . ,Xt)> .
k=0

k=0 k=0

Let a;+1 = (t mod n) + 1, so that m11(Xo,...,X;) = ar+1. In that case,

t+1 t t
L <ﬂ {Xk € Bk}) =E”" ((H ]I{XkEBk}> Payis (Bt+1)> =E"" (H H{XkEBk}> Py iy (Bisa).
k=0

k=0 k=0
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By Proposition 5.2 and because Xy, X1, ..., X; are independent by assumption,

t+1 t t+1
v (ﬂ (X, € Bk}> =PV (ﬂ (X € Bk}> P*™ (X¢41 € Byy1) = H P""™ (X} € By).
k=0 k=0 k=0

O

Proposition 5.4. If the policy 7 implements explore-then-commit with m € NT exploration steps and v is a
I-subgaussian stochastic bandit, then X; — p is 1-subgaussian for every ¢t < mn, where a; = ((t — 1) mod n) + 1.

Proof. For every a € A, recall that the random variable Z, on the probability triple (R, B(R), P,) is 1-subgaussian,
where Z,(z) = x — p%. By Proposition 5.2, the law of X, is P,, for every t € {1,...,mn}. For every A € R,

R ( A(Xi— ﬂat)) _ / Mol ) p, (day) = / Mo @) P, (day) = B, (%) < ey
R R

O

Theorem 5.1. If the policy 7 implements explore-then-commit with m € N exploration steps and v is a 1-
subgaussian stochastic bandit, for every ¢t € NT such that t > mn,

n

R/ < <mz AV> (t — mn) Z AZef#Z)?.

a=1

Proof. For every k € NT, let Ay = m(Xo,...,Xg_1). For every a € A,

mna ZH{Ak a} ZH{((k 1) mod n)+1= “}( ) m-
k=1

Theorem 4.2 completes the proof for the case where t = mn, since (t — mn) = 0 and
n n
Ri = >0 AL (T0) =m > AL
a=1 a=1

Consider a time step ¢t € N* such that ¢ > mn. In that case,

t

@) =Y Taea @)+ D La—ap @) =m+ (t = mn){a—arg max,, M7
k=mn+1

/}(w).

Because ties are possible, for every a € A and t > mn,
RV (Tga) =m + (t — mn)P"™ <a = arg max M,’;n7a,> <m—+ (t —mn)P"" (M > sup M a/) ]

mn,a
a’

Let a* denote an action such that p. = p”. For every a € A and t > mn,

P (Mr‘frrzn a Z sSup M:rrln,a’> =P (ﬂ{ mn,a Z M;rrzn a’}> S P (M;rrwz a = M:Ln a* ) .
For every a € A and t > mn, by adding AY to both sides of the inequality that defines an event,
P <M > supM ) <P (M 0 — M7, 0o > 0) =P (M7, o — M7 e+ (e — ) > ALY,

mn,a mn,a mna mn,a m

so that

P (an a 2> Sup M':;,n,(l./) < P ((M:;n a :U’Z) (M::m a* MZ*) > AZ) .
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For every a € A, by the definition of the average reward My, , that policy m observes for a by time mn,

m—1 m—1 m—1
. (LY 1 )
an a( ) He = (m Xa+in > - E ,ua - E (Xa+in(w) - :ua) .
i=0

=0

Proposition 5.4 guarantees that X, y;, —p% is 1-subgaussian for every a € {1,...,n} and i € {0,...,m—1}, since
((a+in—1) mod n)+1 = a. Proposition 5.3 guarantees that Xa, Xatns -+ > Xat(m—1)n are independent. Therefore,

ZZ_Ol (Xagin — g is \/m-subgaussian, which implies that M, , — uy is 1/i/m-subgaussian. Since this applies
for every a € A, we also conclude that M, .. — g« is 1/y/m- 5ubgaubs1an For every a € A, note that M, — s
is 0(Xa; Xatns -+ Xay(m—1)n)-measurable. By Proposition 5.3, if a # a*, then (M}, , —pi) and —(MJ,, .« — pi)

are independent, which further implies that (M],rm o ua) - (an,a* - ua*) V/2/m-subgaussian. If ¢ = a*, then
(M,’,Tm o ,ug) (Mf,rm o /LZ*) =0, and therefore also y/2/m-subgaussian. By Theorem 3.1, since AY > 0,

(ay)?

> sup Mgln,a/) <e 2(«/2/m)2 — e

m(AaY)?
4

P <M

mn,a

By returning to a previous inequality, for every a € A and t > mn,

m(AaY)?
4

EY™(T],) <m+ (t —mn)e”
For every ¢t > mn, Theorem 4.2 once again completes the proof, since

R™ = Xn: AGE"T (TtT,ra> < zn: AY (m + (t - mn)e_mig)g> = (m z": AZ) (t—mn Z Are - )2
a=1 a=1

a=1
O

In order to minimize the regret, the previous result suggests that the exploration factor m should balance
between the first term (non-decreasing with respect to m) and the second term (non-increasing with respect to m).
This is a specific instance of the so-called exploration-exploitation trade-off.

Proposition 5.5. Consider a 1-subgaussian stochastic bandit v = (P;, P»). Let A = max(AY, A¥), and suppose
that A > 0. For some t € Nt let m = 1if t <4/A? and let m = [% log (%)—‘ if t > 4/A2. If 7 is a policy that

implements explore-then-commit with m exploration steps, then

4
YT A+ — AVt
R/™ < +\/é\f

Proof. First, consider some ¢ € N* such that t < 4/A2, so that m = 1. By Theorem 4.2, since A < 2/+/,
2 2 9
R™ = AVEVT(T],) < AY E”7 T7r = AE"7™ TF | =tA < t— = 2v/t.
TS (Er)-oeih

Second, consider some ¢ € N such that ¢ > 4/A2, so that m = [% log (%ﬂ Note that m > 1 and

tA? tA? tA?
= < - .
mA A[AQIOg(ZL)-‘A(l Alog(4)> A+A10g<4>
Consider the case where t < 2m. By Theorem 4.2,
R{™ = A{E"™ (T7) + AgE"™ (T7;) < mA.

Now consider the case where ¢ > 2m. By Theorem 5.1,

_ ma?
1

R{™ <mA + (t —2m)Ae”
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Because the function f : (0,00) — (0,00) given by f(x) = tAe= "% is decreasing,

tAe*% = f(m) =f <’VA42 log (%:)W) <f (A42 log (%:)) = tAeflog(%) = %

Therefore, for every t € NT such that t > 4/A2

m 4 A 4
RUT < mA+tAe ™ <A+ = log () T+

A 4 A

Consider the function g : (0,00) — R given by g(x) = xlog(4t/x?)+x, so that g(4/A) = (4/A) log (tA?/4)+4/A.
Note that g(x) = zlog(4t) — 2z log(x) + z, ¢'(z) = log(4t) — 2log(x) — 1, and ¢’ (x) = —2/x. The second derivative
test guarantees that g(z) < g (2vt/\/€) = 4v/t/\/e for every x € (0,00). Therefore, for every t € NT,

4
R <A+ —Vt
v < +\/é\f

O

The previous result suggests a specific number of exploration steps for a policy that implements explore-then-
commit. However, this policy is only suitable for a fixed horizon and a fixed suboptimality gap.
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6 Restarts

Consider a number of actions n € NT, a set of actions A = {1,...,n}, a stochastic bandit v = (P, | a € A), a
policy m = (m; | t € N*), and let (€, F,P*™) be a canonical triple for the stochastic bandit v under the policy 7.

Definition 6.1. A policy 7 restarts to the policy 7’ after ¢ € N steps if, for all k € N and (zo, ..., z¢4_1) € RFF
Tk (Toy ooy Tiak—1) = T (0, Tpa1y ooy Tak1)-
Proposition 6.1. If a policy 7 restarts to the policy 7’ after ¢ € N steps, then
P"" (Xy41 € By, ..., Xyan € By) =P"" (X; € By, ..., Xy € Bp)
for every k € N* and By, ..., By € B(R).
Proof. Consider the case where k = 1. For every B; € B(R),
P (Xy41 € By) =BV (B (Iyx,,,eny | Xo,... Xi)) =B (Pa,., (B1)) ,
where A;y1 = w1 (Xo, ..., Xi) = 71(0). Because A;1q is a constant function,
P*™ (Xy41 € B1) = Pryoy(B1) = E*™ (Pry(0)(B1)) = E*™ (Pryx0)(B1)) = B*™ (X1 € By).
In order to employ induction, suppose that there is a k € NT such that, for every By, ..., By € B(R),
P*" (X441 € B, ..., Xeon € B) =P*™ (X1 € By,..., Xy € By).
In that case, there is a probability measure £ : B(R*) — [0, 1] on the measurable space (R*, B(R¥)) such that
L(By x -+ X By) =P"" (X411 € By, ..., Xeqx € By) =P"™ (X, € By,..., X € By)

for every By,..., By € B(R), so that £ is the joint law of (X;y1,..., X¢tr) and the joint law of (Xy,..., Xk).
For every By,..., By+1 € B(R),

P"" (X1 € B, ..o, Xipkt1 € Bryr) =E77 (EV’7r (H{Xt,JrleBl,-<~7Xt+k€Bk}]I{Xt+k+1eBk'+1} | Xo, .. 7Xt+k)) )

By taking out what is known,

P (Xt-‘rl € By,... ’Xt-i-k-‘rl S Bk-‘rl) =E»" (H{Xt+1EBI;-~',Xt+k€Bk}PAt+k+1 (Bk-‘rl)) )
]P)V)Tr/ (Xl € Bla o 7Xk+1 € Bk+1) =E"" (H{XIEBI7~~-7XkeBk}PA;c+1(Bk+1)) 3
where At+k+1 = 7Tt+k+1(X0, e 7Xt+k:) and A;i?-‘rl = 7T;€+1(0, Xl, ce ,Xk). Since At+k+1 = 7T;€+1(0, Xt+1, ce ,Xt+k),

P"" (X431 € Bry oo, Xegkg1 € Brg1) = BV (f( X1, -0, Xegr))
P (X1 € By,..., Xp41 € Bry) =BV (f(X1,..., Xk)),

where the function f : R*¥ — [0,1] is given by

k
f(l‘) = (H HBi (xl)> P7r2€+1(0,11,.“,:ck)(Bk+1)-
i=1
Since L is the joint law of (X¢11,..., X¢1x) and the joint law of (Xq,..., Xk),

P"" (X¢41 € By, oo, Xigkg1 € Bryr) = /k f(x)L(dx) =P"™ (X1 € By,..., Xp1 € Bri1) -
R
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Proposition 6.2. If a policy 7 restarts to the policy n’ after ¢t € NT steps, for every h € N¥,
RIf, = R+ By

Proof. For every h € N*t, by definition of the regret R}, s

t+h ¢ t+h
R = e - 3 = (o= ) o (- 3 mrn).
k=1 k=1 k=t+1
By definition of the regret R;"" and changing the indices of the second summation,
h
RyY, =R+ (h“: - ZEV’W(XHk)) :
k=1

By Proposition 6.1, we know that P¥™ (X, € B) = P*" (X}, € B) for every k € NT and B € B(R). Therefore,
E"™(Xy4x) = EV™ (X)) for every k € NT and

h

RyT, =R;™ + (h#;: -S> B (Xk)> =R," + R;”
k=1

O

Definition 6.2. Consider a sequence of policies (ﬂ(k) | k € NT) and a sequence of positive natural numbers
(hy € Nt | k € Nt). For every k € N*t, suppose that the policy 7(%) restarts to the policy 7**1) after hy, steps.
If 7 = 71, we say that policy 7 restarts to the sequence of policies (w(k) | k € NT) given the sequence of relative
steps (hg | k € NT).

Proposition 6.3. If the policy 7 restarts to the sequence of policies (w(k) | k € NT) given the sequence of relative
steps (hy € Nt | k€ NT), for every [ € NT,

Zk 1 ZR

Proof. Tf I = 1, then Ry™ = RY™ . By Proposition 6.2, if | > 1, then

l
(1) (1) (2)
RD,T{‘ _ Rl/ﬂT _ Ru,w +RV7T 2 :R
k=1 hk Skt b ha Shosh 1

O

Proposition 6.4. If the policy 7 restarts to the sequence of policies (7(¥) | k € N*) given the sequence of relative
k
steps (hx € N* | k € NT) and there is a function f: N* — [0, 00) such that RZ’:( ' < f(hy) for every k € NT, then

RY™ <y f(he)
k=1

for every t € NT, where p; = min{l € N* | 22:1 hi > t} is the number of restarts by time step t.

Proof. For every t € N*, let p; = min{l € N* | Y20 _ hy > ¢}, so that 32" | hy, > t. By Proposition 6.3,

Pt
Ruﬂ' < RV 7;t Zth Zf(hk)
k=1

O

The previous result can be used to provide a regret upper bound based on the regret upper bounds of policies
suitable for fixed horizons. This is exemplified by the so-called doubling trick, which is presented below.
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Proposition 6.5. If the policy 7 restarts to the sequence of policies (w(k) | k € NT) given the sequence of relative
v ()
steps (2871 | k € NT) and R};", < V2K for every k € NT, then, for every ¢t € N*,

R/™ <21+ V2)Vt.

Proof. For every t € N*, let p, = min{l € N* | YL _ 2%=1 > ¢} s0 that p, = [logy(t + 1)]. By Proposition 6.4,

v, T S —1 __ < -1 _ (\@)pt -1 (\/i)pt
i S; > _;(ﬁ)k TSl SVaed

Since p; <logy(t +1) +1 = logy(t + 1) +1ogy(2) =logy 2(t + 1) and 1+ 1/t < 2,

1)< Va2Vt
V21 V21

R;y™ <

ToV2-1 0 V2-1 0 V21

210g2(t+1) 2t 1 1
(Va)os: 204D /O T) i+

Note that doubling the horizon after each restart is not generally appropriate.
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7 Action times

Consider a number of actions n € NT, a set of actions A = {1,...,n}, a stochastic bandit v = (P, | a € A), a policy
m = (m |t € NT), and a canonical triple (Q, F,P¥™) for the stochastic bandit v under the policy 7. Furthermore,
let (F%): denote the natural filtration of the reward process (X | t € N), so that F; = o(Xy, ..., X;) for every t € N.

Definition 7.1. The time C}, , : @ — N* U {oo} until policy 7 selects a € A exactly m € N times is given by
Cholw) =inf ({t € NT | T], (w) > m}).

If t € Nt and C}, ,(w) =t, then m(Xo(w), ..., X;—1(w)) = a and CF,; ,(w) > t.

Proposition 7.1. The time C, , : Q2 — NT U {oo} until 7 selects a € A exactly m € NT times is a stopping time.

Proof. Recall that C7, , is a stopping time if {C], , <t} € F; for every t € NU{oo}. If t = 0, then {C}, , <0} = 0.
If t € NT, then{ma<t}:{ >m}and{ta2m}6}}1 If t = oo, then {CT, , < oo} = Q.

m,a

Definition 7.2. For every a € A and m € N, the function Xex 9 — Ris given by

X (w) . XCZ;L,@(W) (W)’ 1f O;rl,a(w> < o,
e, if O, , () = oc.

Recall that X¢x ~is F-measurable because (X; | t € N) is adapted to (F;); and C7, , is a stopping time.

Definition 7.3. For every a € A, the constant policy 7(®) = (ﬂ't(a) | t € N1) is given by 7rt(a) = q for every t € NT.

Proposition 7.2. For every a € A, m € N, and By, ..., B, € B(R),
P*"" (X, € By,..., X € By) = [| Pu(Bs
k=1

Proof. For every a € A, m € Nt and By, ..., B,, € B(R), if the empty product denotes one,
(@) (@) w (S
PvT (X1 EBl,...7Xm€Bm):EV77T (EVJT ((H H{XkGBk}> H{XmeBm} |X07...,Xm1>> .
k=1

By taking out what is known and using the fact that 71'7(7(:) (Xoy.. s Xm—1) = a,
v,m(®) v,
P»™ (X1 € By,...,Xm € Bp) = Pu(B)E” <H H{XkeBk}>

Therefore, P*»™" (X1 € By) = P,(B1). Suppose that the proposition is true for some m — 1 € N*. In that case,

P (X1 € Bi,..., Xy € By) = Pu(Bu)P*™ " (X1 € Bi,..., X1 € Bu1) = [[ Pu(B
k=1

O

Proposition 7 3. For every a € A, m € N, and t € N if h : R — R is B(R)-measurable, then the function
Ler .=t Hk 1 (XC" ) is Fy—1-measurable.

Proof. For every a € A, k € N*, and t; € N, note that {C], = tx} = {C], < tx} N {Cf, <t — 1}°, so that
{CF .=t} € Fyy1. Forevery w € Q, m € N*, and t € N*, if OF, (w) =t, then CT ,(w) < --- < CF, ,(w) =t, s0

m—1
Ly =t H hMXer ) =iy =1 (H > H{c;,ftk}h(th)) :

k=1 tp<t

If k € NT and t; <t, then Licr =ty is Fe—1-measurable. If ¢; <, then h(Xt,) is also F;_1-measurable. O
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Proposition 7.4. For every a € A and m € NT if a function h : R — [0, 00] is v-integrable, then
E"™ (H{%G@} T r(xer, ) < g <H (X», )
k=1 k=1

whenever E™ (H{Cﬂ iy [Ty (XC;’JQ)) < oo for every t € NT.

m,a

Proof. For every a € A and t € N*, if h is v-integrable, then E*™* (h(X,)) < 0o. Therefore, for every m € N*,

(@) M _ . v,m(® = 1 T T) = z T "
E (gh<xk>> “I[= (h(xk»—kr_[l/Rh( ) Py(dx) = (/Rm ) Pa(d )) ,

k=1

which uses the fact that Xq,..., X, are independent and identically distributed with respect to prom
For every a € A and m € N*, if the empty product denotes one,

E"™ (H{C;;z’a<oo} 11 h(Xc;;u)> =) BT ((H{C};,at} 1:[ h(Xcg,a)> h(Xt)> :

k=1 teENT k=1

Since each expectation on the right side above is finite by assumption, by taking out what is known,

m m—1
EV™ (H{%a@o} H h(XC;a)> = Z EV™ (H{%Qt} H h(Xop JE"T (M(Xy) | Xo, - ,Xt_1)> .

k=1 teENT k=1

By Proposition 4.3, if Ay = 7¢(Xo, ..., X:—1), then almost surely
EY™ (h(Xy) | Xoy. .., Xooq) = ZH{Atza/}/h(x) P, (dx).
o R
For every w € €, recall that C7, ,(w) =t implies A;(w) = a. Therefore, almost surely,

Loy =BT (h(X0) | Xoy .- Xo 1) = Tyes, —1) / h(z) Py (d).
R

By returning to a previous equation,

m m—1
EV™ <H{C:,:,a<oo} II h(Xc;:,a)> = (/R h(x) Pa(dﬂ?)> E™T (H{C,"n,a@o} 11 h(XC?J,a)> :

k=1 k=1

The proposition is true for m = 1, since

E" (]I{Cw <coyh(Xer,) (/ h(z) P,(dz) ) P*™ (CT, < ) /h P, (dx).

If the proposition is true for some m — 1 € N*, because C}, ,(w) < oo implies C,_; ,(w) < oo for every w € €,

B <H{C;L,a<oo}lﬁh<xc;a>> < ( | e Pa<dx>) o (H{cm o ﬁh(xc,;g) < ( | Pa<dx>)m-

O

Proposition 7.5. If v is a 1-subgaussian stochastic bandit and A € R, then the function h : R — [0, 0] given by
h(z) = e’* is v-integrable. Furthermore, for every a € A, m € Nt and t € N*t,

m
E»™ <H{C:1,a_t} H h(Xc';ra)> < o0.

k=1
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Proof. If v is a 1-subgaussian stochastic bandit, recall that the random variable Z, on the probability triple
(R, B(R), P,) given by Z,(x) = & — p! is 1-subgaussian for every a € A. For every A € R,

v v v 2
/e)‘z P,(dz) = / eMZa@rna) p(dr) = eMa / eMa(@) P (dx) < Maer
R R R

By Proposition 4.1, there is a constant ¢ € [0, c0) such that p” € [—c, ] for every a € A. Therefore, the function
h:R — [0, 00] given by h(z) = e’* is v-integrable.
Let a € A and t € NT. We will use induction to show that, for every m € NT and A € R,
E¥™ (H{c;;, agt}BAkaZI Xcg)a) < o0.

Consider the case where m = 1. For every A € R, since E"™(e*X+) < 0o for every ¢/ € NT,

EY™ (H{Cﬁagt}eAxcf‘a) _ ZEV,TK‘ (H{Cﬁa:t’}ekxﬂ> < Z EY™ (6)\th) < oo,

v<t v <t

Suppose that there is an m — 1 € NT such that, for every N € R,
)\/ m—1 X
EV™ (H{Cﬁll <pe DIy Ck,a,) < 00.

For every A\ € R, since I[{C,’;,,agt} = H{C,’;,l,aét}ﬂ{c‘a,aét}’

v, AL Xeg v AT RS Xor AXcm
E" (H{Cv’i,aﬁt}e i C’W) =E" ((H{C;_Laq}e 2k C’M) (H{C,’;L,agt}e Xcmvﬂ)) .

If X = 2), by the inductive hypothesis,

2
AT Xon NSY™ml Xor
E»™ ((H{Cll,aft}e k=1 k,a = E»T™ ]I{C::LfLaﬁt}e k=1 ka | < 00.

Since E»7 (eX'X¢) < oo for every t' € NT,

E"" ((H{ca,a<t}em’%’“)2> =B (Lo, ¢ e ) = 3BT (Lo, oy ) < 3BT () < o0

/<t <t

By the Schwarz inequality, for every A € R,
E¥™ (I[{cfnyagt}e)\z’“:l Xcg)a) < oo.

Therefore, for every a € A, m € Nt t € Nt and A € R, if h: R — [0, 00] is given by h(x) = 7,

v, s v, s v, A, Xer
E” (H{Cfn,a=t} II h(Xcz,a)> <E” (H{c:;,as} II h(XO:,a)> =E” (H{C:;L,ag}e =i C’“*“) < oo
k=1 k=1

Proposition 7.6. If v is a 1-subgaussian stochastic bandit, then, for every a € A, m € NT, and A € R,

A2

23m (Xep —pl,
E»7 (H{C; L<oope™ YO ““)> < e,

Proof. For some m € N* and A € R, consider the function 4 : R — [0, oc] given by h(z) = em®, which is v-integrable
by Proposition 7.5. Recall that, for every a € A and t € N*,

EV™ <]1{%_t} H h(XC;cr’a)> < 0.

k=1
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v

For every a € A, consider the function he : R — [0,00] given by hg(z) = em (=42 = h(x)e~m# <. Since h is
v-integrable, h, is also v-integrable. Furthermore, for every t € NT,

B (H{c;z,ft} 11 ha(Xczs,a)> =E (H{Ca,ft} 11 h(XC:,a)> e < o0,

k=1 k=1

By Proposition 7.4,

k=1

v, 1 v, (@) 1
E" (H{%Q@} 11 ha(Xcga)) <E" (H ha(Xk)> .
k=1

By rewriting the previous inequality, for every a € A, m € NT, and X € R,

PN

E™T (H{C;L a<ooye™ Z’“m:l(xcgvfm) <Evm (eA Z’k"’zﬂxk*“m) .

Since Xy — pY, ..., X, — pf are independent 1-subgaussian random variables with respect to ]P’”’”(a), the ran-
dom variable Y ;" | (X) — pk) is y/m-subgaussian, which implies that (1/m) Y~ (X} — pY) is 1/y/m-subgaussian.
Therefore, by the definition of a 1/1/m-subgaussian random variable,

A S M (Xeom —pl (@) 1 xm v A2
Ev™ (H{C;‘%a<oo}em Dohea( CF Na)) SEV,T{' (€>\m S (Xk ;ta)) < ezm.

Proposition 7.7. If v is a 1-subgaussian stochastic bandit, then, for every a € A, m € N, and ¢ > 0,

v, T 1 ¢ v _me2
P (Cm7a<00,mZ(Xc;€r,a—/J,a)<—e> <e "z,

k=1

1 _me?

YT (C:Tnﬁ < 00, E Z(Xcl:ra — /LZ) > e) <e 2,
k=1

Proof. For every a € A, m e NT, e e R, and A > 0,

A (Xep )

3 T (Xeg D

Ler,  <oore 2 licy, <oy — LT (Xop —u)2e)

23, (Xop , — ) 2T, (Xeg, -

Ba)
Lieg, .<oore 2 Loy, ,<ooye Tt s (e —m>ep

Since the function g : R — [0, 00] given by g(z) = ¢** is non-decreasing for A > 0,

ﬁ 22;1()(07{‘“ —py)

- A
Liog, .<o0ye Z log <oy ™ Lt s (Xop  —m)eps

Ln:l(Xc;;a*MZ)

2
Iicy, ,<ocpe™ > og, <o} UpL s, (Xep )}

By taking expectations of both sides of the inequalities above,

A m

_a I 1 «
E¥T (]I{Cw <o} " = Xe,, M“)) > APV <Cgm a <00, —— Z(XCZ ~ Ha) 2 6) ’
m,a ’ m “
k=1

v, %Zm: (Xer —pg) eV, 0 1 - v
EY (H{C;’;l,a<oo}e k=1\2CF ) > e)‘ P* <Cm,a < 00, E ];(Xc;;a — ua) >e€e].

By Proposition 7.6, for every a € A, m € N*, and X\ > 0,

-2 T (Xer —pp) (=22
E”7" (H{cw <oo}€ P ke ) < :

m,a

A Ssm (Xer —pl
E¥™ (]I{C;;m<oo}em b er, MJ) <exm.
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By rewriting the previous inequalities,

1 & a2
P (Q’Z,a <00, — > (Xep, —mi) < —e> <edm TR
k=1

1 & .
| -
Pv:T (C;rz,a < 00, m ;(XC,Z‘,Q - MZ) > 6) < em A€

For every € > 0, let A = em, so that A > 0. In that case,

Proposition 7.8. If v is a 1-subgaussian stochastic bandit, then, for every a € A, m € NT, and § € (0, 1],

1 21og(1/9)
P ™ O E X — b)Y < — —Z <
(Cmﬂ < m k:1( Cfa ~ Ha) < m <9
1 & 21og(1/9)
v, s E  — ¥ > _ 7 < 0.
P (Cm,a < 00, m kZI(XCk,a lu’a) = m —= d

Proof. Let § € (0,1]. If e = y/2log(1/5)/m, then € > 0 and § = e_mTéz, which implies the two inequalities.
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8 Upper confidence bounds

Consider a number of actions n € NT, a set of actions A = {1,...,n}, a stochastic bandit v = (P, | a € A), a
policy 7 = (7 | t € NT), and a canonical triple (2, F,P*'™) for the stochastic bandit v under the policy 7.

Definition 8.1. The upper confidence bound Ugf;f : Q — R that policy 7 induces for action a € A by time step
t € N* with error § € (0,1) is given by

2log(1/9)

U (w) = MT, (w) +
t,CL( ) t,a( ) /1'7t7'7|'a(w)

whenever T}, (w) > 0. Intuitively, the role of U;r (’f is to overestimate p! with high probability when § is small.

Proposition 8.1. The upper confidence bound UZT (’f : 2 — R that policy  induces for action a € A by time step
t € N* with error § € (0,1) is given by

Uﬂ' 6 ZXC w + 210g(1/6)

m

whenever 77, (w) = m for some m € N*.

Proof. Let we Q,ae A, t € Nt and m € N*. If 17, (w) = m, then Cf ,(w) <t for every k < m, so that

ZXC" ZXC" wlicr <iy(w ZXC Zﬂ{m =t'} ZXt’ )Zﬂ{ckja:t/}(w)
k=1

t'=1 t'=1

Note that {CT , =t} N{C[, , =t'} =0 if k # & and t' € N*.
Let t' <t and Ay = mp(Xo,...,Xy—1). Since Ay (w) = a if and only CF ,(w) =1’ for some k < m,

ZXCW ZXt/ U {cT. a_t/ ZXt/ H{At/ a}( )

t'=1 t'=1

Therefore, for every § € (0,1),

t m
Iy 1 2log 1/5 1 21og(1/0)
; = X Trg = = — _—
U @) = gy o e )+ PR = D3 xe =

Definition 8.2. A policy m implements upper confidence bounds with error § € (0,1) if, for every ¢t € NT,

t, ift<n,
arg max, Uzr_";a, if t >n.

7Tt(X0, e 7Xt,1) = {

Note that Utﬂ_";a is well-defined for every time step ¢ > n and action a € A.

Theorem 8.1. If v is a 1-subgaussian stochastic bandit and the policy m implements upper confidence bounds
with error § = 1/t2 for some t € N*, then

RV < <3zn:Ag) + Y Llef(t).
a=1

alAr>0 @

Proof. If t <n, then T}, <1 for every a € A, so that R"™ =Y AVE"™ (T7,) <>, AL
Let ¢t > n and consider an action a € A such that A} > 0. For every m € N*, since 7], <,

BN (T7,) = B (Lirg o T ) + B (Tprz, ) T ) < 6877 (17, > m) +
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Let 6 = 1/t2 and m = [8log(1/48)/(A%)?], so that m € N*. Furthermore, consider the event E given by

1 & 21og(1/9)
E={—=) Xcr ety
R

Because the events F and E° are disjoint,
PV (TF, > m) =P"" ({I], > m} N E) +P"" ({I], > m} N E°).

We will consider the two terms on the right side of the equation above separately.

First, consider an action a* € A such that p%. = p”, so that a* # a. Furthermore, consider an w € E such that
17, (w) > m. In order to find a contradiction, suppose that uf < U;,Tfl’a* (w) for every t' € NT such that n < ¢/ <.
Since T}, (w) > m, there is a t’ € N* such that C7, ., ,(w) =" and n <t < t. Therefore,

7 (Xo(w), ..., Xp_1(w)) = arg max UtT’rfl,a’ (w) =a.
a/

By Proposition 8.1, since 777, ,(w) =m and w € E,

. 1 & 2log(1/6 . -
UFS o) = 3" Xeg )+ 2B oy it ),
k=1

which is a contradiction because U;flﬁa(w) = Sup, U;,rfl’a, (w).
Therefore, if w € E and T, (w) > m, then u > Ug,rfl o+ (w) for some ¢’ € N* such that n < ¢’ < t. Consequently,
there is an m’ € N* such that m’ <t and T7,. (w) > m’ and

Xep,. (W) +y/ 2ostl/0) loii,l/é) :

=

1
py = —
m

=
Il

1

From the previous statement,

21og(1/0)

m/

P ({17, >m} N E) <P | | ] QT7,. >m/,pf > % > Xep .+
k=1

m’'<t

By the union bound, the fact that 7},.(w) > m' implies C7, ..(w) < oo, and Proposition 7.8,

m

’

P (T > m} N E) € 30 P Cpe < o0l = =030 Xy .+
k=1

m’' <t

21og(1/0) <15

m’ -

Second, consider an w € E° such that T{,(w) > m. Since C}, ,(w) < oo,

vV, T U [ vV, T T (& v, s 1 - 210g(1/5) v
P ({T7, > m} NE®) <P"" ({C}, , < oo} NE) =P (0% <oo,EI;XC;a R T
By subtracting uZ + /2log(1/0)/m from both sides of an inequality above and the definition of AY,

vV, T C Vv, ™ 1 % v v 2 log(l/a)
P ({TF, > m} N E°) <P (Cm’a <OO,EZ(XC;;Q —ua) > Av o [20800 )

m
k=1

Since m > 8log(1/8)/(AL)?, note that \/2log(1/6)/m < AL/2 = A¥ — A¥/2 and

AV [21og(1/6) > &
m 2
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Therefore, by the previous inequality and Proposition 7.7,

prr ({TT ) <por [ o 1 & X S AY < 7m<A85)2
({ t,a>m}m )— m,a EZ( C’7r —MG)_7 e .

By returning to a previous equation,

m<Al/)2

P (7, > m) = P ({T7, > m} N E) + P ({T7, >m} N E¢) <t5+ e =

By returning to a previous inequality, since § = 1/t2,

(A
E¥T (T,Zfa) < tPvm (Tt, m) +m < te” —|— m+ 1.
Since m > 8log(1/8)/(A%)? implies —m(A%)?/8 < log ¥,

8log(1/6) 34 16 log(t)

1
EV™(T],) <6 1=- 1<2 <3 =
(o) S Brmtd =g tm b L2 hm <3+ =0 (8%

For every t > n, since ™ (T7,) < 3 + 161log(t)/(A%)? for every a € A such that A% > 0,
161 161
R;/Jr — Z AZEI/,TI’ (Tﬂ' Z Ay <3 + Og ) <SZAD> + Z Og
alAY>0 a|A“>O ( alAY >0
O

Theorem 8.2. If v is a 1-subgaussian stochastic bandit and the policy 7 implements upper confidence bounds
with error § = 1/t? for some t € N*, then

R;™ < 8\/tnlog(t) +3) A
a=1

Proof. If t < n, then T7, < 1 for every a € A, so that R{"™ =Y AYE"™ (T7,) < >, AL,
Let ¢t > n. For every A > 0, since _, "™ (TF,) =1,

Ry™ = > AEYT(I7) |+ | Y. AUEYT(TV,) | <tA+ ) AYEYT(TY,).
a|lAV <A a|lAV>A alAV>A

From the proof of Theorem 8.1, recall that E*™ (T7,) < 3+ 16log(t)/(Af)? if A% > 0. Therefore,

n

16 log(t 16 log(t
Ry™<tA+ > Ag(3+60g()>§m+ > 161o8(t) +33 AL

AI/ 2 v
alAy>A (&%) alAv>A a a=1

Let A = 4/16nlog(t)/t, so that A > 0. Since AY > A implies 16log(t)/AY < 16log(t)/A,

RV™ <A 4+ —280 16"10g BZA” = Vi/T6nlog(t) + vty/16nlog(t +SZA” = 8y/tnlog(t +SZA”
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9 Relative entropy

Consider probability measures P and Q on a measurable space ({2, F).
Proposition 9.1. If A\; and As are o-finite measures on (€2, F), then A = A\; 4+ Ay is a o-finite measure on (2, F).
Proof. Clearly, A(0) = A (@) + A2(0) = 0. For any sequence (F,, € F | n € N) such that F,, N F,,, = 0 for n # m,

A(LHJFH> =\ (LHJF,L>+A2 <Lnan> Z)\l )+ X (F, Z)\

Consider a sequence (F! € F | n € N) such that Un F! = Q and \(F}) < oo for every n € N. Analogously,

consider a sequence (F2 € F | n € N) such that |J,, 2 = Q and \2(F) < oo for every n € N.
Let F; ; = F}! ﬁF27 so that {J, ; Fi,; = € and )\(F”) =\ (F} ﬂFz) + Ao (FL OF2) < M (FD +)\2(F ) < oo.
Because the set {FZ j | it € Nand j E N} is countable, A is a o-finite measure on (€2, .7-") O

Proposition 9.2. There is a o-finite measure A on (2, F) such that P < A and Q < .

Proof. Let A : F — [0,00] be given by A(F) = P(F) + Q(F). Because P and Q are o-finite measures on (2, F), A
is a o-finite measure on (2, F). If A\(F') =0, then P(F) = 0 and Q(F) = 0. Therefore, P < A and Q < . O

Proposition 9.3. For every o-finite measure A on (2, F) such that P < A and Q < A, there is an F-measurable
function p : Q@ — [0, 00) such that p = dP/d\ almost everywhere and an F-measurable function ¢ : 2 — [0, c0) such
that ¢ = dQ/d\ almost everywhere.

Proof. This is a direct consequence of the Radon-Nikodym theorem. O

Definition 9.1. Consider an F-measurable function p : 2 — [0,00) and an F-measurable function ¢ : Q@ — [0, c0).
The F-measurable function plog (p/q) : 2 — R is defined by

p _ Jp(w)log(p(w)/q(w)), if p(w)g(w) >0,
(plog <q>) )= {0, if p(w)q(w) = 0.

Definition 9.2. Consider a o-finite measure A on (£, F) such that P < XA and Q < A. Let p = dP/dX almost
everywhere and ¢ = dQ/d\ almost everywhere. The relative entropy D(P, Q) between P and Q under A is given by

D(P,Q):/Qplog (Z) A

whenever plog (p/q) is A-integrable and P(¢ = 0) = 0. Otherwise, D(P,Q) = oo
The relative entropy is also called Kullback-Leibler divergence.

Proposition 9.4. If A is a o-finite measure on (£2, F) such that P < A; and Q < A; and As is a o-finite measure
on (92, F) such that P < Ay and Q < A, then the relative entropy D(P, Q) between P and Q under A; is equal to
the relative entropy D (P, Q) between P and Q under .

Proof. Let p; = dP/d)\; almost everywhere, ¢; = dQ/d)\; almost everywhere, p, = dP/d\y almost everywhere, and
g2 = dQ/d)\s almost everywhere. Recall that A = A; 4 As is a o-finite measure on (2, F). Since A; < A and Ay < A,
let I3 = dA1/dX almost everywhere and ly = dAy/d\ almost everywhere. Since P < A and Q < A, let p = dP/dA
almost everywhere and ¢ = dQ/d)\ almost everywhere. By the Radon-Nikodym chain rule, p = p1ly = p2ls almost
everywhere and q¢ = q1l; = ¢o2ls almost everywhere.

We will first show that p; log (p1/¢1) is Ai-integrable if and only if ps log (p2/q2) is As-integrable.

If py log (p1/q1) is Aj-integrable or plog (p/q) is A-integrable,

/p110g< 1) d/\1=/11 (pllog (pl>> d/\:/pllllog (plll) d/\:/plog (p) ) < co.
"0 o ) 1l Q q

If polog (p2/g2) is Ae-integrable or plog (p/q) is A-integrable,

/pglog (pQ) d)\gz/lg <p210g (])2)) d)\:/pglglog (p2l2) d)\:/plog (p) d\ < .
Q q2 Q q2 l2 Q q
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Therefore, py log (p1/g1) is A1-integrable if and only if pslog (p2/g2) is Ae-integrable, In that case,

/p1 log (101) d)q:/plog (p) d)\:/pglog <pQ) dAs.
Q q1 Q q Q q2

It remains to show that P(¢g; = 0) = 0 if and only if P(¢2 = 0) = 0, which follows from the fact that

P(g = 0) :/ pily dA :/ pily dA :/ pily dA :/ p1 dA; = (g = 0),
{q11,=0} {q111=0,p11, >0} {q1=0,p111 >0} {q1=0}

P(q = O) = / pglg d/\ = / p212 d/\ = / p2l2 d)\ = / P2 d)\g = P(QQ = 0)
{g212=0} {g212=0,p212>0} {g2=0,p212>0} {g2=0}

O

Proposition 9.5. Consider a o-finite measure A on (€2, F) such that P < A and Q < A. Let p = dPP/d)\ almost
everywhere and g = dQ/d) almost everywhere. If D(P,Q) < oo, then A(p > 0,¢g =0) = 0.

Proof. If D(P,Q) < oo, then P(¢ = 0) = 0. Since p = dP/d) almost everywhere,

0=P(g=0)= / pdX= / Lyo0qmopp dA,
{q=0} Q

so that A(Ifp~0,q—0yp > 0) = 0. Since {I;,50,4—01p > 0} = {p > 0,q = 0}, we have A\(p > 0,q =0) = 0. O

Proposition 9.6. Consider a o-finite measure A on (2, F) such that P < A and Q < A. Let p = dPP/d\ almost
everywhere and ¢ = dQ/d\ almost everywhere. If D(P,Q) < oo, then fQ pq dX > 0 and f{pq>0} q d\ > 0.

Proof. 1If D(P,Q) < oo, then P(q = 0) = f{q:O}p d\ = 0. Therefore,

1:P(Q):/pd/\: pd)\+/ pdrx= p dA,
Q {g=0} {g>0} {pg>0}

so that A(pg > 0) > 0. Consequently, [, pg dA > 0 and f{pq>0} q dX\ > 0. O

Proposition 9.7. The relative entropy D(P, Q) between P and Q is non-negative.

Proof. Consider a o-finite measure A on (9, ) such that P < A and Q < A. Let p = dP/dX almost everywhere and
g = dQ/dX almost everywhere. It is sufficient to show that the relative entropy D(P, Q) between P and Q under A
is non-negative when D(P, Q) < co. In that case, because p = dP/d\ almost everywhere,

D(P,Q)Z/plog <p) d/\:/ plog <p) d)\:/ —log (q) dP.
Q q {pg>0} q {pg>0} p

Consider the measure space (A, F4,P4) restricted to A = {pg > 0} and recall that

D(IP’,Q)=/ —log (q) dP:/ —log (q"‘> dP 4.
{pg>0} p A pa

Note that the restricted function g4/pj4 : A — (0, 00) is P4-integrable, since

q'—“dm:/ gdP:/ pgd)\:/ qd)\g/qu:Q(Q):l.
ADPlA {pg>0} P {pg>0} P {rg>0} Q

By Jensen’s inequality, because the function ¢ : (0,00) — R given by ¢(z) = —log(z) is convex,
q|A
D(P,Q) > —log == dP4 ) > —1log (1) =0.
ADA

Theorem 9.1 (Bretagnolle-Huber inequality). If F € F, then P(F) 4+ Q(F¢) > e~ P®Q) /2,
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Proof. Tt is sufficient to show that if F' € F, then P(F) + Q(F¢) > ¢~ P®Q® /2 when D(P,Q) < oc.
Consider a o-finite measure A on (2, F) such that P < A and Q < A. Let p = dP/d\ almost everywhere and
g = dQ/dX almost everywhere. Since p + ¢ = min(p, ¢) + max(p, q),

1= % (P(Q)+Q(Q)) = %/Q(p+ q) d\ = %/Q(min(p, q) + max(p,q)) d\ > %/Qmax(p, q) d.

Since min(p, ¢) max(p, ¢) = pq and min(p, ¢) and max(p, q) are A-integrable, by the Schwarz inequality,

(f mw)g RN = dA)Q < ([ minea) ar) ([ maxoa) ar)

Considering a previous inequality,

! ( /Q /i d)\>2 <3 ( /Q min(p, q) dA) ( /Q max(p,q) d)\) < /Q min(p, q) A

Note that, for every F € F,

P(F) 4+ Q(F°) = /Fp dX +/ q d\ > /Fmin(p, q) dX\ + . min(p, q) d\ = /Qmin(p, q) dA.
Considering a previous inequality, for every F' € F,
P(F) + Q(F) > ;(/\ﬁcu) .
Note that [, pg dX > 0 implies [, /pq dA > 0. Since 22 = €2!°¢(®) for every z € (0, 00),
P(F) + Q(FF) > el i1 &),

Consider the measure space (A, Fa,Py4) restricted to A = {pq > 0}.
Note that the restricted function \/qj4/pja : A — (0,00) is P4-integrable, since

/ q‘idm:/ \/5@?:/ p\/Ed)\: \/gquAg/@dA.
A\ PA {pg>0} V P {pq>0} b {pg>0} Q

By Jensen’s inequality, because the function ¢ : (0,00) — R given by ¢(z -1

og
~log (/ \/;quA) = —log VD7 dA | = —log / 44 4p, / ~log q'A dP 4.
Q {pg>0} Dja

Therefore,
q 1 D 1
log (/\/]qu)\> Z/ log\/>dP/ plog () d\=—-—-D(P,Q).
Q2 {pg>0} p 2 Jipg>0} q 2

Considering a previous inequality,

lS convex,

2108 ([, vPa dX) > Z¢~P(RQ)

N —
M\H

P(F) +Q(F°) >
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10 Divergence decomposition

Consider a number of actions n € NT, a set of actions A = {1,...,n}, a stochastic bandit v = (P, | a € A), a
policy 7 = (7 | t € NT), and a canonical triple (2, F,P*'™) for the stochastic bandit v under the policy 7.

Definition 10.1. For every t € NT| the joint law £}}] : B(R*) — [0, 1] is the measure on (R?, B(R")) given by
L7 =P"" ((Xq,...,X) €T).
Proposition 10.1. There is a o-finite measure A on (R, B(R)) such that P, < A for every a € A.

Proof. Let A : B(R) — [0,00] be given by A(B) = >, P,(B). Because P, is a o-finite measure on (R, B(R)) for
every a € A, A is a o-finite measure on (R, B(R)). If A(B) = 0, then P,(B) = 0 for every a € A, so that P, < A\. O

Proposition 10.2. Consider a o-finite measure A on (R, B(R)) such that P, < A for every a € A. Let p, = dP,/dA
almost everywhere for every a € A. For every ¢t € N, consider the function py7; : Rt — [0, 00) given by

plt wlw”v ]‘—[pmC (0w s Tho— 1)($k)

where zg = 0. If ! is the product measure A x --- x X on (RY, B(R")), then p}] = dL};] /d\! almost everywhere.

Proof. Consider the case where t = 1. For every B € B(R), since m1(Xp) = 71(0),
£ (B) = P (X € B) = B (Pryixy (B)) = Praco(B) = [ payio dh= [ i a.

In order to employ induction, suppose there is a t —1 € NT such that p};} | = dL;]_;/d\'"! almost everywhere.
Since pyiy : RY — [0, 00) is B(Rt) measurable, consider the measure L1, : B(R") — [0, 00| given by

L) = [ w7 ax"
r
Recall that Z, = {B1 x---x By | By, € B(R) for every k € {1,...,t}}isan- system on R? such that o(Z;) = B(R").

Therefore, if we show that L£1.¢(I;) = L7} (It) for every I; € T, then L1, = L]}, so that the proof will be complete.
Consider a set I; € Z; given by I; = By x -+ x B;. Because L] is the joint law of Xy,..., X¢,

LY7(L) =P (X1 € By,..., Xy € By) =E"" (Ix,eB,,...x, 1 e} x,eB,}) -

Let Ay = m¢(Xo,...,X¢—1). By taking out what is known,

‘Clllvzr([t) =E"7 (]I{X1EB1,~~-7Xt71EBt71}EV77T (H{XteBt} | Xo, .- 7Xt—1)) =E"" (]I{Xl€B1>~--7Xt—1€Bt—1}PAt, (Bt)) .

Because L[ ; is the joint law of Xi,..., X;_1,

Ly7 (1) = /RH I8, % x By 1 (T1:6-1) Pry(0,20,0-1) (Bt) L7—1(dT1:40-1).

By the inductive hypothesis and since pr, 0,2,.,_,) = dPr,(0,01.,_,)/d\ almost everywhere for every z1.41 € R,

ﬁ?:(lt) = / 2 ]IBl><"'><Bt71(xlit—l)plll;zr—l(xlit—l) (/ ]IBt, (l't)pﬂt(07w1;t71)(1't) )\(d‘rt)> Atil(dxl:t—ly
Rt- R
Since py’7 (T1:¢) = P 1(@1:4—1)Pr, (0,21, 1) (2¢) for every 1., € R* and Fubini’s theorem,
Elj;?(—rt) :/ ) / HBlX-<~th($1:t)Pl1/§:(x1:t) A(dxy) Atil(diﬂlzt—l) = / Pllj:;r A= Li:¢(1y).
Rt-1 JR I

O

Theorem 10.1. If v/ = (P, | a € A) is a stochastic bandit such that D(P,, P.) < oo for every a € A and ¢t € Nt

D(LYT, LY ZD Py, P,)E"™ (TF,) -
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Proof. Consider the o-finite measure X : B(R) — [0,00] on (R, B(R)) given by A(B) = > P,(B) + P,(B). Note
that P, < A and P, < A for every a € A. Let p, = dP,/d)\ almost everywhere and p/, = dP,/dX almost everywhere
for every a € A. For every ¢t € NT, consider the functions p}’} : R — [0,00) and p};" : Rt — [0, 00) given by

t
plll’:(xla v 7xt) = H pﬂk(zo,...,rk,l)(mk)a
k=1

’
, T

t
plf:t (1‘1, s "rt) = H p;rk(xo,,..,wk,l)(xk)a
k=1

where 29 = 0. Recall that ! = dL'T /dA! almost everywhere and p’.;™ = dCY;™ /d\! almost everywhere, where

Al is the product measure A x - -- x A on (Rt, B(R!)). Furthermore, recall that £'7 < At and £V;™ < AL.
For every k € NT, let Ay = mx(Xo,...,Xg_1). For every t € N* let D; be given by

t t
Dy =" D(Pu. PET (T7,) = BT (Z Ity D(Pa P4’> = S B (D(Pa, Ph,)) < oo
a k=1 a k=1
Consider the case where t = 1. Since P,(p], = 0) = 0 for every a € A,

LyT(PYT = 0) = LI (Pr, 0) = 0) = Py (0) (P, 0) = 0) = O
Since A1 = m1(Xo) = m1(0),

v, Pri(0 v, pyzw
Dy =E” (D(PA1aP1/41)) :D(PF1(0)7P7,71(0)) :/pﬂl(o) log </1()> d)‘:/pl:l 10g< 1/1’,17r> d)‘l’
R Py (0) R D11

so that p} log (p?f/pf:iﬂ) is Al-integrable and D; = D(LYT, LY™).
In order to employ induction, suppose that /Dt,l =D(L)] 4, 511/;/{7:1) for some t —1 € N*.
For every zy.; € RY, if p]if (z14) > 0 and p};" (z1.+) = 0, then p}iy ;(z1.4—1) > 0 and there is an action a; € A

such that pg, (x;) > 0. Furthermore, p’fjgfl(xl:t_l) =0 or plf:t’il(xltt_l) > 0 and p],, (z;) = 0. Therefore,

{pid > 0T =0f < ({phi > 0007 = 0f xR) U (U {Pis > 00070 > 0 ¢ {pa, > 0.1, = 0}) -

ay

Let I, = A (p'l/;r > 0,ph;" = 0). By an union bound,
Iy < N ({pﬁr—l >0,p1" ) = 0} X R) + Z/\t ({plﬁf—l >0,p1," > O} X {Pa, > 0,9}, = O}> :
Since A! is the product measure A x --- x X on (RY, B(R?)),

e < N (PHT > 08107, = 0) AR) + YN (P > 0,517, > 0) A (pe, > 0,9), =0).

Since Dy = D(LV] 4, £11/:t,7:1) < 00 by the inductive hypothesis, note that A*~* (plfj;ll > 0,p4", = ) =0.
Since D(P,,, P,,) < 0o, recall that A (ps, > 0,p}, = 0) = 0. Therefore, A’ (p'ff > O,pi/t”r = 0) =1, =0.
Since L7 < A, note that £ (p:F > 0,p%,;™ = 0) = 0. Therefore, completing this step,

0= LT (7 > 0,0 =0) = / L P ANt = / L PNT ANt =LY (T = 0).
{p¥:F>0,p%.;"=0} {p1.{"=0}

It remains to show that p}’} log (pll’zr /p'lj:t’”) is A-integrable and that

pu,w
D, :/ py log yl,’fﬁ d\t.
R* pl:t
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Since L£]:7_, is the joint law of X1,..., X;_1,
1t—1

Dy =Dy +E”7 (D<PAt7PI/4t))

Since D(P,, P)) < oo for every a € A,

=D + D(P‘ﬂ’t(o T1it— 1)’ P 4 (0,274 1)) 511/;?——1(dx12t*1)'

Rt-1

pﬂ't T1:¢— v,
Dy =Dy 1+/ /pTl't(Oﬂflt 1)(xt)10g< S 1)( ;) )‘(dxt) El;tfl(dxlzt—l)'
RT 1

pﬂ't(o T1:t— 1)(

Since py;y_; = dLy] 1 /d\'T! almost everywhere and p}iy (21.¢) = DU (@1:6—1) Py (0,200 1) (T2)

D, = Dt1+/ /Pl
Rt—1

t fL'lt log <p7Tt(0 1t 1)( )) )\(d.’L't) )\t_1(d/x1:t71)'

777(0 T1:t— 1)(xt

Since the function under consideration is A-integrable, by Fubini’s theorem,

pﬂ't T1:t (33)
D, =D;_, +/ Pt (21:4) log <W> A (dwy.4).
Rt

T
7 (0,21,0—1) VTt

Since p¥'7 = dLYT /dAt almost everywhere and L7 is the joint law of X1,..., Xq,
D1 1:t 1:t

7t (U,T1:e—1 T v, v, t X
D, :Dt—1+/ log <W> L07(d1y) = Dy_y +E” <log (pA ( )))

pm(o T1:t 1)(1’25)

PAt (Xt)

By the inductive hypothesis, since p;y | = dL};} ;/d "1 almost everywhere,

L1 (T1:- YT (X, X
Di1 = / log (W) Ly (dry—1) =BT <1og (pll,}tl( - =1
Rt-

Lio1 (11

By the definition of the functions pi1;

pl:éil(le s 7Xt*1)

l// Uy
and py.;~q,

oo l2) £ (o (22)

By combining the equation above with a previous equation,

¢ 8 t v, T
pAk( k) v, T pAk(Xk) V. plzt (Xl,...

Dy = g E¥T | log | == =E"" | log I I ZA 2R =E"" | log | 1L
* k=1 ( (p;\k(‘fk) s P, (Xk) Pri (Xq,. ..

Because L7 is the joint law of X1, ...,
1t

Dt:/ log 7]7”1;,;(931:1‘,)
Rt PLi (1)

)

X, and py;f = dL] /d\' almost everywhere,

ET:(d'xlt) = / pl .t (Il t)log (pltﬂ'(xlt)> At(dzl:t)a
R

1.4 (L1:t

which implies that p}’] log (pl i /p ) is Af-integrable and that D; = D(L};], cv 7).
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11 Relative lower bounds

Consider a number of actions n € NT, a set of actions A = {1,...,n}, a stochastic bandit v = (P, | a € A), a
policy 7 = (7 | t € NT), and a canonical triple (2, F,P*'™) for the stochastic bandit v under the policy 7.

Theorem 11.1. Suppose that A, > 0 for some action a’ € A and consider a stochastic bandit v’ = (P, | a € A)
such that P, = P, for every a # a’. Furthermore, suppose that p” = ,uZ; > p¥ and that D(P,, P.,) € (0,00). In
that case, for every time step t > 1,

—D(P,/ P )E"™(T] /) _ RV

RY"™ > —min(AL, ¥ — p¥)e

o

Proof. Consider an action a’ € A such that A, > 0 and let ¢ > 1. By Theorem 4.2 and Markov’s inequality,
t t
v,m __ AZIEV,TF T‘n’ > AV(EV,TF T7l' ) > 7AV/PI/,7\' s > ).
Rt ; a ( t,a)— a (t,a)—z a (t,a 2)

For every a # a’, note that AZI = u’;/ — ,uZ, = NZ/ —ur > M:/ — p¥. Since A’;; = ,ui/ — ,uZ: =0, by Theorem 4.2,

R = ST AR (T7,) 2 (= ) (=BT (T7,) ) = (= BT (= TF,),
a#a’
where we also used the fact that t =), kY (T{fa) =FEV'm (Tt’ra/) + Za;éa, EY 7 (TtTa).
By Markov’s inequality and since P¥"™ (Tt’fa, < t/2) > pvim (Tgfa, < t/2),

’ ’ t t ’ ’ t t ’ ’ t
Vi NPT (=TT, > 2 ) = 2 — P T(TT < ) > (Y — )P T (T, < 2 )
(:U‘* H’*) < t,a’ = 2) 2(:“‘* N’*) < t,a’ = 2) = 2(:”* ,U,*) < t,a 2>

’ t
Ru N

b2
By combining the previous inequalities,

vV U, u t t v v\, L t
Aa’IP ’ Tt,a’ > 5 + 5(:“’* - /’L*)P Tt,a’ < 5 :

’ t
Rtl/ﬂf +Rty 5T Z 5

Since ab + ¢d > min(a, c)(b+ d) for every a € R, b >0, c € R, and d > 0,

’ t ’ t ’ t
RY™ + Ry " = g min(Ag, pl — p) <Py’ﬂ ( far 2 2) +PT <Tt7,ra’ < 2)) :

Because the random variable T, is 0(X1, . . ., X;_1)-measurable, recall that there is a B(R*~!) /B(R)-measurable
function f7; : R*! — R such that 17, (w) = 7, (X1(w),..., X;—1(w)) for every w € Q. If L7 | denotes the
joint law of X1,..., X;_1 under P*™ and E’f:t’fl denotes the joint law of X7, ..., X;—1 under P*"7,

v, v 3 : v v’ v v, ™ t v ™ ¢
R+ Ry 2 imln(Aa/,u* =)\ Lia (Sl 2 5 + L0 | L < )

By Theorem 9.1, since £}/ ; and ET:t’T_rl are probability measures on the measurable space (R'~! B(R!~1)),

v, vm
e_D(L"lft—l’let—l) t

min(AY, p — ) 3 = g min(A%, pf — e PETE LD,

By Theorem 10.1, since D(P,, P}) = 0 for every a # o’ and D(P,/, P.,) < oo,

RI™ 4+ R >

N | =+

1:t—1

D(LYT | LY ) = Z D(P,, PLE"™ (T] 4 o) = D(Par, Py )EV™ (T7 o) < D(Pur, PL)E"T (T,)) -

By returning to a previous inequality,

=D(Pyr P B (T] 1)

RYT 4 Ry 2 Smin(AY, it pi)e

R
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12 Minimax lower bounds

Consider a number of actions n € NT and an environment class € for the set of actions A = {1,...,n}. Let
(2, F,P»™) denote a canonical triple for a stochastic bandit v € £ and a policy 7 = (7 : R* = A |t € NT).

Definition 12.1. The worst-case regret Rf‘” of policy 7 on the class £ after t € NT time steps is given by

E,m v,
R;" =supR,".
ve€

Definition 12.2. The minimax regret Rf’* of the environment class £ after t € N* time steps is given by

RE* = inf RE™.
s

Definition 12.3. A policy 7 is minimax optimal on the environment class £ after t € N* time steps if Rf’” = Rf’*.

Definition 12.4. The Gaussian measure P : B(R) — [0, 1] with mean ;1 € R and variance o2 > 0 is given by

(z—

02
P(B e Leb(dz),

1 / _
=——= ¢
) V2ro? JB
where 7 denotes the circle constant (as opposed to a policy), so that P is a probability measure on (R, B(R)).

Definition 12.5. A stochastic bandit v = (P, | a € A) is a Gaussian bandit with variance o? > 0 if P, is the
Gaussian measure with mean p” and variance o2 for every a € A.

2
Definition 12.6. Let £,;° denote the set of Gaussian bandits with variance o2 for the set of actions A = {1,...,n}.

n,1 * . . .
Theorem 12.1. The minimax regret Rth " of the environment class 57\’/1 after ¢ > 1 time steps is at least

5}\7’1,* 1
> — —1)t.

Proof. The claim is trivial if n = 1. Therefore, suppose that n > 1. For some t > 1, let A = /(n —1)/4¢t > 0 and
consider an arbitrary policy m for the set of actions A = {1,...,n}.

Let v = (P, | a € A) denote a Gaussian bandit with variance 1 such that p¥ = A and pY = 0 for every a > 1.
Note that AY =0 and AY = ¥ — p? = A for every a > 1.

Let o’ € A denote an action such that a’ > 1 and E*™ (T7,,) = mings, E¥7 (T7,). Let v/ = (P, | a € A) denote
a Gaussian bandit with variance 1 such that 2 = p” for every a # a’ and ,uZ: = 2A\. Note that AY = A, AZ: =0,
and AY = 2A for every a > 1 such that a # a’.

For every a € A, P, and P! are Gaussian measures with variance 1, so that D(P,, P) = (u* —p%')%/2. Therefore,
by Theorem 11.1,

RYT 4 BT 2 Smin(Al, ' — ity PP PR (1) = Lngm2ATRen (),

| o+

Since t = Y , E»7 (17,) and E*™ (TF,) > E*™ (T],,) for every a > 1 such that a # o,
t=ET (T5) + BV (T7,) + S BV (T7,) = B (T7,) + (n— 2)E"™ (T7,,) = (n— DEY™ (T7,.)
a>1|a#a’
so that E*"™ (Tt’fa,) < t/(n —1). By returning to a previous inequality,

242¢

Ae” n-1,

’ 2@, ™
Rtu,ﬂ' + R;j K > Ae—QA E (Tt,a,) >

t
4
Since max(z,y) > (v +y)/2 for every z € R and y € R and A = /(n — 1)/4t,
. Vo Ru,w Ru',ﬂ t anZ 1 1

max(R,"", R, ™) > % > gAe = %\/(n— 1)t > E\/(n— 1)t.
In summary, we have shown that for every policy 7, number of actions n > 1, and time step ¢ > 1, it is possible
to find Gaussian bandits v and v/ with variance 1 such that either R}"™ > \/(n — 1)t/27 or R, "™ > \/(n — 1)t/27.

nl
Therefore, for every policy 7, number of actions n € N*, and time step ¢t > 1, we know that Rth 7>/ (n—=1)t/27.
Consequently, Rf” " = inf, Rf’\f > /(n—1)t/21. O

PN
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13 Asymptotic lower bounds

Consider a number of actions n € NT and an environment class € for the set of actions A = {1,...,n}. Let
(2, F,P»™) denote a canonical triple for a stochastic bandit v € £ and a policy 7 = (7 : R* = A |t € NT).

Definition 13.1. A policy 7 = (m; : Rt — A |t € NT) is consistent over the environment class & if

Rl/ﬂT
lim —%

t—oo tP

=0

for every stochastic bandit v € £ and constant p > 0.

Definition 13.2. The environment class & is unstructured if £ = [, M, where M, is a set of probability measures
on the measurable space (R, B(R)) for every a € A.

Definition 13.3. If £ =[], M, is an unstructured environment class and I € R, then the set M. is given by

Mflz{PaeMa|/xPa(dx)>l}.
R

Definition 13.4. An unstructured environment class € = [[, M, is well-unstructured if:
e For every a € A, if P, € M, and P, € M, are measures such that P, # P/, then D(P,, P,) € (0,0).
e For every stochastic bandit v € £ and action a € A, if AY > 0, then M £ .

Proposition 13.1. The environment class 8}{/1 is well-unstructured.

Proof. For every a € A, let M, denote the set of Gaussian measures with variance 1, so that Ej\l/l =[], M. For
every a € A, recall that if P, € M, is a Gaussian measure with mean x4 € R and variance 1 and P, € M, is a
Gaussian measure with mean p/ € R and variance 1, then D(P,, P!) = (u — p')?/2. Therefore, if P, # P!, then
D(P,, P.) € (0,00). Furthermore, M¥ # () for every a € A and u € R. O

Theorem 13.1. If £ =[], M, is a well-unstructured environment class and a policy 7 is consistent over £, then

vV, T Al/
liminf —2 — > . a
t—oo log(t) a§>0 mfPa’eMZl*/ D(P,, P!)

for every stochastic bandit v = (P, € M, | a € A).

Proof. Consider a policy 7 that is consistent over £ and a stochastic bandit v = (P, € M, | a € A). The claim is
trivial if A? = 0 for every a € A, so suppose that n > 1 and AY, > 0 for at least one action a’ € A.
For any action o’ € A such that A?, > 0, consider a stochastic bandit v/ = (P, € M, | a € A) such that

P! =P, for every a # o’ and P!, € MZ,U, so that % = p* > p¥ and D(P,, P.,) € (0,00).
By Theorem 11.1, for every ¢ > 1,

RY™ 4 R > Smin(al, i — e P P (1)
Because the right side of the inequality above is positive,
log (Ry"™ + R}"™) > log (1) — log (4) + log (min(A%, i — u¥)) = D(Par, P )E" (T7)
By rearranging and dividing both sides of the inequality above by log (),

Ev (T7,)  log(t) — log (4) + log (min(AY,, u — ut)) — log (By™ + ;")
log(t) log (1) '

By taking the limit inferior when ¢ — oo and the superadditivity of the limit inferior,

D(P,,P.)

Evs™ (Ttﬂa’) log (]%:’7T + R;/m)
———— > >1+4liminf —
t—o0 log(t)

/ . .
D(P,,P,,) hglogf 0
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By the relationship between the limit inferior and the limit superior,

Ev® (T7,,) log (Ry"™ + ;")
D(P,/, P.))liminf —————*= > 1 — limsup
t—+00 log(t) t—o0 log(t)

For every p > 0, because the policy 7 is consistent over the environment class &,

Ru,'rr Ru/,ﬂ' Ru,‘n’ Ru’,w
0= lim =2 — + lim =& :lim#.

t—oo P t—oo tP t—o0 tP

Therefore, for every p > 0 and € > 0 there is a T > 1 such that ¢ > T implies (R;"" + R;’l’”)/#’ < e. Since
R{™ + R/ "™ > 0 by a previous inequality, by rearranging and taking the logarithm,

log (R;”’T + R{’”) < log (et?) = log (€) + plog (t) .
By dividing both sides by log(t), for every p > 0 and € > 0 there is a T' > 1 such that ¢ > T implies

log (Rgﬂr + R/ ’ﬂ) - log (€)
log () ~ log (t)

+ p.

Therefore, lim sup,_, . log (R;’ T+ R /’“> /log(t) < p for every p > 0. By returning to a previous inequality,

> 1.

Ev™ (Tﬂ' ) 10g (Rtyﬂr + R’tj 77")
D(P,, P, )hm inf ———=%2 > 1 — limsup
t=oo log(t) =00 log(t)
In summary, for every action a € A such that A¥ >0 and P, € M’[{Z,
P i
D(P,, P))liminf ———== > 1.
B og(t)
For every action a € A such that A? > 0, unless the expression on the left side below is 0 - oo,
. N BT (TE,) : , E"™ (T7)
inf  D(P,, P)) | liminf ———=== = inf D(P,, P))liminf ———=== | > 1.
Prem t—oo  log(t) Premi t—oo  log(t)
Therefore, for every action a € A such that AZ > 0,

Ev™ (TT
lim inf ( t’a) > - !
t—oo  log(t) inf

oot D(Pu B

By Theorem 4.2 and the superadditivity of the limit inferior,

v, Eyﬂ' 7'r T
litm inf IR 5= litm inf AY 1 Z AY htm inf l(tt,a)
oo log(?) e alAr>0 og(t a‘Au>0 oo og(t)

> i
alAy>0 ian;€M55 D(Fa, F3)

Proposition 13.2. If a policy 7 is consistent over the environment class Sj\lf’l and v € 5"’1, then

v, 1

e By
hglolgfm22 Z Iz.
a|AY>0

Proof. For every a € A, let M, denote the set of Gaussian measures with variance 1, so that 57\’/1 =[], M. For
every stochastic bandit v = (P, € M, | a € A) and action a € A,

inf D(P, P = mf o) (M —pl)? _ (ZAD? (AL
premtt > py 2 2 2 2
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By Theorem 13.1, since the environment class 5}\L/’1 is well-unstructured,

R AV 1
liminf —£—> Y - ; =2 >y .
t—oo log(t) oAz mfPAEM'Ji D(P,, P!) o Av

O

Definition 13.5. A policy 7 is asymptotically optimal on a well-unstructured environment class & =[], M, if

R;T AY
lim —t— = - a
t—oo log(t) aAZV>0 mfPéeMZ*V‘ D(P,, P!)

for every stochastic bandit v = (P, € M, | a € A).
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14 Finite-time lower bounds

Consider a number of actions n € N* and the environment class € Nl for the set of actions A = {1,...,n}. Let
(Q, F,P”™) denote a canonical triple for a stochastic bandit v € 5/\/ and a policy 7 = (m : Rt — A |t € N*).

n,l

Definition 14.1. For every stochastic bandit v € £,7", the environment class £” is given by

g ={/ ey pl € [k, ut + 2AY] for every a € A}

Theorem 14.1. Consider a stochastic bandit v € 5}{,’1. If there is a policy m = (m : R* = A |t € NT), a time step
t > 1, a constant C' > 0, and a constant p € (0,1) such that R} '™ < Ct? for every v/ € £, then, for every € € (0,1],

Vo 2 (1 — p)log(t) + log(eA7/8C)
R 2(1+€)2 Z max( AV )

alA¥>0

Proof. Consider a stochastic bandit v = (P, | a € A) such that v € 5}\}’1 and let € € (0,1]. The claim is trivial if
AY =0 for every a € A, so suppose that n > 1 and AY, > 0 for at least one action a’ € A.

Suppose that there is a policy 7 = (m; : R — A |t € N*), a time step ¢t > 1, a constant C' > 0, and a constant
p € (0,1) such that Rf/’ﬁ < CtP for every V' € EV.

For any action a’ € A such that A, > 0, consider a stochastic bandit v = (P, | a € A) such that P, = P,
for every a # a’. Let P), be a Gaussian measure with mean ,uZ: = p¥ 4+ AZ(1+ ¢) and variance 1. Note that
pl > pt 4+ AY = p¥ and p¥, < ¥ 4+ 2AY,, so that v/ € € and pt = p¥, > pk.

By Theorem 11.1, since D(P,, P.,) = (u2 — pi%)?/2 = (A%)2(1 + €)% /2,

D(P, PLE(T7,) _ b Agle—%(AZ/)z(HE)zEV’W(Tzw,a'),

RYT 4 RV > —min(AY, 1l — p)e P Tur T ) = Ze

»Jk\ﬂ

where we also used the fact that min(AY,, p = k) = min(AY,, ul, + AY, + eAl, — p¥) = min(AL,, eAY,) = eAl,.
Since v € £ and V' € &Y,

201" > R{™ + R} ™ 2 AV, e~ 3B (14BN (T],),
Since the right side of the inequality above is positive, by taking the logarithm,
log (2C) + plog (t) > log(t) + log (eA%, /4) — %(Ag,)Q(l +€)’E"T (T7,) -
By rearranging terms, since (A%,)?(1+ ¢€)? > 0,

EX™ (T7,) > (1 —p)log (t) + log (eA%, /8C)).

>__ 2
(AL)2(1 +€)?
In summary, for every a € A such that A? > 0,
2
EX™(TF ) > — = ((1 —p)1 1 AV .
(17.) 2 o (st ags (1= ) og(0) + Tox(eA/5€1) )

By Theorem 4.2,

v, VRV, T 7r v 2 v
R/T= > AVEYT( > > A max((A T o2 ((1—p)log(t)+log(eAa/8C’)),0).

a]AY>0 alAY>0

By rearranging terms,

Ru,ﬂ' >
LT (14e)?

2 (1 —p)log(t) + log(eAL /8C)
Z max ( AV ) .

alAY>0
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