
Notes on Reinforcement Learning
Paulo Eduardo Rauber

2014

1 Introduction
Reinforcement learning is the study of agents that act in an environment with the goal of maximizing cumulative
reward signals. The agent is not told which actions to take, but discovers which actions yield most rewards by
trying them. Its actions also may affect not only the immediate rewards but rewards for the next situations. There
are several methods to solve the reinforcement learning problem.

One of the challenges in reinforcement learning is the exploration versus exploitation problem, which is the
trade-off between obtaining rewards from perceived safe options against exploring other possibilities which may be
advantageous.

A reinforcement learning problem can be divided into four subelements: policy, reward function, value function
and a model.

A policy specifies how an agent behaves in a given scenario. It can be seen as a mapping from the perceived
environmental state to actions.

A reward function defines the goal in a reinforcement learning problem. It maps each state of the environment
to a numerical reward, indicating the intrinsic desirability of that state. An agent’s sole objective is to maximize
the total reward it receives in the long run. Therefore, the reward function should not be modifiable by the agent.

A value function maps a state to an estimate of the total reward an agent can expect to accumulate over the
future starting from that state. Even though a given state may have a small reward, it may be a prerequisite for
achieving states with higher rewards.

A model is an optional element of a reinforcement learning system. A model describes the behavior of the
environment. For example, it can be used to predict the results of actions (both states and rewards). It is possible
to have agents that learn by trial and error, build a model of the environment, and then use the model for planning.

2 Evaluative Feedback
The n-armed bandit problem is very useful to introduce a number of basic learning methods. Suppose an agent
is faced with a choice among n different actions. After each action, a numerical reward is sampled based on a
stationary probability distribution associated to that particular action. The agent’s goal is to maximize the total
reward after a number of iterations.

In this case, the value of an action is the expected reward that follows it. If an agent knew the value of every
action, it would suffice to choose the action with the highest value.

The agent can maintain an estimate of the value of each action. The action with the highest estimated value
is called greedy. Choosing the greedy action (exploitation) may guarantee higher rewards in the short run, while
choosing non-greedy actions may lead to better outcomes later.

Let Qt(a) denote the estimated value of action a at iteration t. We also let Q∗(a) denote the value of a. A
natural way to estimate the value of action a is to average the rewards already received. Concretely, if ka denotes
the number of times action a was chosen, we can compute Qt(a) using

Qt(a) =
r1 + . . .+ rka

ka
.

By the law of large numbers, when ka →∞, Qt(a)→ Q∗(a).
A very simple alternative to always choosing the action with the highest estimated value is the ϵ-greedy selection

rule. This rule chooses the greedy action with probability 1− ϵ and a random action (uniformly) with probability
ϵ. Using this rule, it is important that ties between greedy actions be broken at random. After infinite iterations,
every action will be sampled infinite times. Therefore, Qt(a) converges to Q∗(a) and the chance of choosing the
optimal action converges to 1− ϵ.

Another possibility is to weight the probability of choosing an action with its current value estimate. Let πt(a)
denote the probability of choosing action a at iteration t and n denote the total number of actions. The following

1

equation is called the softmax action selection rule:

πt(a) =
e

Qt(a)
τ∑n

b=1 e
Qt(b)

τ

.

In this case, the probability of an action being selected is in proportion to its estimated value. The parameter
τ is called temperature. When τ is large, the probabilities are more uniform. When τ is near zero, the rule is
greedier. In the case of two actions, this function becomes the sigmoid function.

Fixing an action a and letting k denote the number of times it has been chosen, the equation for estimating
action values as an average of observed rewards can be rewritten as

Qk+1 = Qk +
1

k + 1
(rk+1 −Qk).

If the problem is non-stationary, however, it may be better to estimate the value of an action using

Qk+1 = Qk + α(rk+1 −Qk),

where 0 < α ≤ 1 is called the step-size parameter. In this case, it can be shown that the value of Qk is given by

Qk = (1− α)kQ0 +

k∑
i=1

α(1− α)k−iri.

Since it can be shown that (1− α)k +
∑k
i=1 α(1− α)k = 1, this update rule is a weighted average of the initial

estimate and the observed rewards. The recently observed rewards have more importance than older rewards. In
fact, the weight decreases exponentially for older rewards.

If we denote by αk(a) the step-size parameter used to process the reward given after the k-th selection of action
a, the choice of αk(a) = 1

k leads to the sample average method, while αk(a) = α leads to the constant step-size
method.

There are two conditions that guarantee the convergence of the value estimate to the value of an action a:

∞∑
k=1

αk(a) =∞,

and
∞∑
k=1

α2
k(a) <∞.

Therefore, convergence is guaranteed for the sample average method, but not for the constant step size method.
However, constant step sizes are advantageous if the problem is non-stationary, meaning that the value of actions
may change during the iterations.

There is a simple trick that can be employed to make an agent explore in early iterations. If the initial value
estimates are set optimistically, i.e., significantly higher than the value of the optimal action, even a greedy agent
will explore considerably in the initial iterations until the value estimates are lowered.

Suppose that an observed variable (the state of the system) contained information about the next reward for a
given action. It would be possible to achieve better results than using the strategies described in this chapter. This
motivates the full reinforcement learning problem.

3 The Reinforcement Learning Problem
A reinforcement learning agent interacts with the environment at each of a sequence of discrete time steps t =
0, 1, 3, At each time step t, the agent receives some representation of the environment’s state st ∈ S, where S
is the set of possible states. The agent then selects an action at ∈ A(st), where A(st) is the set of available actions
in state st. One time step later, the agent receives a reward rt+1 and a new state st+1. The agent implements a
policy π(s, a): the probability that At = a given that St = s.

Modeling a problem as a reinforcement learning problem is challenging. Particularly, the boundary between
agent and environment is sometimes not clear. A good strategy may be to abstract as much of the problem as

2

possible and let the agent focus on learning that which is hard to explicitly program. For instance, the action
primitives for a robot may be pre-programmed tasks instead of mechanical control. Anything that cannot be
controlled directly by the agent should be considered part of the environment, including rewards.

At each time step, the agent receives a reward rt ∈ R. The objective of the agent is to maximize the total
amount of reward it receives in the long run. The choice of a reward function is critical in a reinforcement learning
problem. It is particularly important not to impart previous knowledge into the reward function about how to
solve a problem, but only what the agent should achieve. Previous knowledge should be imparted into state value
estimates, which will be discussed later.

Let rt+1, rt+2, rt+3, . . . denote the sequence of rewards received after time step t. A function from a sequence
of rewards to a real number is called a return function, and its value for a specific sequence is called return. A
reinforcement learning agent aims to maximize the expected return.

In a simple formulation, the return could be given by ut = rt+1 + rt+2 + . . .+ rT , where T is the final time step.
When T is finite, we call the problem episodic. An episode ends when the agent reaches a terminal state. After
that, the time is reset and the environment samples from a distribution of initial states.

However, when T = ∞, the simple formulation of ut may be problematic, since the return could be infinite.
This is called a continuous problem. In this case, it is better to consider the discounted return given by

ut = rt+1 + γrt+2 + γ2rt+3 + . . . =

T∑
k=0

γkrt+k+1, (1)

where 0 ≤ γ < 1 is called the discount rate. The discount rate determines the present value of future rewards.
A reward received k time steps into the future is only worth γk−1 times what it would be worth if it were received
immediately. In this formulation, as long as the sequence {rk} is bounded, the (discounted) return is finite. The
choice of γ is important to determine how future-oriented is the agent.

In both continuous and episodic problems, the expected return for each state can be estimated by averaging the
returns observed in several instances of the problem (which may be approximations in the continuous case).

The choice of a reward function is dependent on the definition of return. For instance, consider an agent which
tries to escape a maze. In the episodic case, the reward could be −1 for every move the agent makes until it reaches
the exit. In this case, after T time steps, the reward for the agent would be −T , and maximizing the expected
return would imply in finding the exit early. In the discounted case, the reward could be 1 whenever the agent
found the final step and 0 otherwise. In this case, the expected return would be γk, and minimizing k would be
implied. However, if the same formulation were used in the episodic, undiscounted case, the agent would have no
incentive to find the exit early.

An episodic problem can be modeled as a continuous problem by simply creating a state which yields no rewards
and transitions only to itself. In fact, if we let γ = 1, we can use the same formulation given in Eq. 1 for continuous
tasks, as long as T =∞ and γ = 1 are never both true.

In a reinforcement learning problem the state represents whatever information is available to the agent. States
may be immediate sensations or highly processed versions of data and are often represented by vectors. States don’t
need to represent the environment perfectly or even all that could be useful in making marginally better decisions.

However, a state should respect the Markov property as well as possible. A state that summarizes all that is
relevant for decision making that was observed in past states is said to have the Markov property. More precisely,
given the sequence of states, action and rewards st, at, rt, . . . r1, s0, a0 (called history) observed by an agent, the
state signal is said to have the Markov property if

P (St+1 = s′, Rt+1 = r′ | st, at, rt, . . . , r1, s0, a0) = P (St+1 = s′, Rt+1 = r′ | st, at),

for all s′, r′ and histories. We call the probability distribution function on the right side the one-step dynamics
of the reinforcement learning problem. It can be shown that the one-step dynamics can be used to derive the
probability of all future states and expected rewards only from the initial state.

A reinforcement learning problem that satisfies the Markov property is called a Markov decision process, often
called MDP. In particular, if the state and action sets are finite, the problem is called a finite MDP.

A Markov decision process is defined by its state and action sets and by the one-step dynamics of the environment.
Given any state s and action a, the probability Pass′ of each next state s′ is given by

Pass′ = P (St+1 = s′ | St = s,At = a) =
∑
r′

P (St+1 = s′, Rt+1 = r′ | St = s,At = a).

3

Given any state s, action a and next state s′, the expected value of the next reward is given by

Rass′ = E[Rt+1 | St = s,At = a, St+1 = s′] =
1

Pass′

∑
r′

r′P (St+1 = s′, Rt+1 = r′ | At = a, St = s).

The value V π(s) of a state s is defined as the expected return of starting in state s and following the policy π.
The policy assigns a probability π(s, a) to taking an action a when in a state s. More precisely,

V π(s) = Eπ[Ut | St = s] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s

]
. (2)

Similarly, the value of taking an action a when in state s and afterwards following the policy π is denoted by
Qπ(s, a) and defined as

Qπ(s, a) = Eπ[Ut | St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s,At = a

]
.

The function V π is called state value function for policy π and the function Qπ the action value function for policy
π. These two functions can be estimated, for a given policy, by observing several instances of the reinforcement
learning problem.

The state value function for a policy π is also given by

V π(s) =
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γV π(s′)]. (3)

In order to prove this result, we will employ the notation described in the machine learning notes by the same
author. Firstly, note that Equation 2 can be rewritten as

V π(s) = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s)

T∑
k=0

γkrt+k+1,

where the dependency on the policy π is left implicitly for simplicity of notation. By marginalization,

V π(s) = lim
T→∞

∑
rt+1:T+t+1

∑
at

∑
st+1

p(rt+1:T+t+1, at, st+1 | St = s)

 T∑
k=0

γkrt+k+1.

By the chain rule of probability,

V π(s) = lim
T→∞

∑
rt+1:T+t+1

∑
at

∑
st+1

p(at | St = s)p(st+1 | St = s, at)p(rt+1:T+t+1 | St = s, at, st+1)

T∑
k=0

γkrt+k+1.

By the distributive property and reordering the three outermost summations,

V π(s) =
∑
at

p(at | St = s)
∑
st+1

p(st+1 | St = s, at) lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at, st+1)

T∑
k=0

γkrt+k+1. (4)

Let E denote the limit in the previous equation, such that

E = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at, st+1)

T∑
k=0

γkrt+k+1.

By isolating the first term in the innermost summation,

E = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at, st+1)

[
rt+1 +

T∑
k=1

γkrt+k+1

]
.

4

By the linearity of expectation, E = E1 + E2, where

E1 = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at, st+1)rt+1 = Eπ [Rt+1 | St = s, at, st+1] = Ratsst+1
,

and

E2 = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at, st+1)

T∑
k=1

γkrt+k+1.

By changing the indices in the innermost summation,

E2 = lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at, st+1)

T−1∑
k=0

γk+1rt+k+2.

By moving a constant factor of γ outside of the innermost summation,

E2 = γ lim
T→∞

∑
rt+1:T+t+1

p(rt+1:T+t+1 | St = s, at, st+1)

T−1∑
k=0

γkrt+k+2.

Because Rt+2:T+t+1 ⊥⊥ St, At, Rt+1 | St+1 due to the Markov property,

E2 = γ lim
T→∞

Eπ

[
T−1∑
k=0

γkRt+k+2 | st+1

]
= γV π(st+1).

Returning to Equation 4,

V π(s) =
∑
at

p(at | St = s)
∑
st+1

p(st+1 | St = s, at)
[
Ratsst+1

+ γV π(st+1)
]
.

By making the dependency on π explicit and renaming variables,

V π(s) =
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γV π(s′)] ,

as we wanted to show.
Using a similar argument, it can also be shown that the action value function is given by

Qπ(s, a) =
∑
s′

Pass′ [Rass′ + γ
∑
a′

π(s′, a′)Qπ(s′, a′)].

These two equations are called the Bellman equations and can be interpreted intuitively. Note that, given a
policy and the one-step dynamics of the problem, each of the equations defines a system of |S| linear equations and
variables. For any given policy, it is possible to find the unique expected return for any given state and action at a
state.

It is possible to prove, in the case of a continuous discounted return problem, that adding a constant to all the
rewards only adds another constant to the value of all states. However, in the case of a episodic task, this is not
generally true, due to the variable number of time steps that may occur in each episode.

There are two alternative ways of writing the state and action value functions in terms of each other:

V π(s) =
∑
a

π(s, a)Qπ(s, a),

and

Qπ(s, a) =
∑
s′

Pass′ [Rass′ + γV (s′)].

Solving a reinforcement learning problem consists of finding a policy that has high expected return. Let π ≥ π′

if and only if V π(s) ≥ V π
′
(s) for all s ∈ S. The optimal policy π∗ is such that π∗ ≥ π for any policy π. It is

5

possible to show that this policy exists but is not necessarily unique. We define the optimal state value function
V ∗ and the optimal action value function Q∗ as

V ∗(s) = max
π

V π(s) = max
a

∑
s′

Pass′ [Rass′ + γV ∗(s′)],

and
Q∗(s, a) = max

π
Qπ(s, a) =

∑
s′

Pass′ [Rass′ + γmax
a′

Q∗(s′, a′)],

for all s ∈ S and a ∈ A(s). These are called the Bellman optimality equations. Each equation gives a system of
nonlinear equations that can be used to find V ∗(s) or Q∗(s, a) for any state s and action a. In practice, however,
solving nonlinear systems of equations in problems with many states may be unfeasible.

An optimal policy π∗ can be found given V ∗ or Q∗. In the case of V ∗, it suffices to choose one of the actions a
that maximizes the right hand side of its Bellman optimality equation with uniform probability. In the case of Q∗,
it suffices to choose the a such that Q∗(s, a) is maximal.

A large amount of memory may be required to build up approximations of value functions, policies and models.
Therefore, in many practical problems, these functions must be approximated by a parameterized function.

6

4 Dynamic Programming
The term dynamic programming refers to a collection of reinforcement learning algorithms that can be used to
compute optimal policies given a perfect model of the environment (one-step dynamics). It is assumed that the set
of states and actions are finite.

Policy evaluation is the name given to computing the state value function V π given an arbitrary policy π. As
already stated, it is possible to solve the system of linear equations with variables V π(s) (Eq. 3). However, it is
also possible to create a sequence of approximations to V π by the following rule:

Vk+1(s) =
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γVk(s
′)],

for all s ∈ S. The initial value for each state can be arbitrary. This sequence is guaranteed to converge to V π(s)
for all s ∈ S, as we show in Appendix 4.1. This method is called iterative policy evaluation.

In a given iteration of policy evaluation, instead of computing the new estimate for each state using the estimate
from the previous iteration, it is also valid to consider the latest estimate available for each state. This variation is
classified as an in-place algorithm (Alg. 1).

Algorithm 1 Iterative policy evaluation (in-place)
Input: policy π, one-step dynamics functions P and R, discount factor γ, tolerance θ.
Output: Value function V = V π when θ → 0.
1: for each s ∈ S do
2: V (s)← 0
3: end for
4: repeat
5: ∆← 0
6: for each s ∈ S do
7: v ← V (s)
8: V (s)←

∑
a π(s, a)

∑
s′ Pass′ [Rass′ + γV (s′)]

9: ∆← max(∆, |v − V (s)|)
10: end for
11: until ∆ < θ

A deterministic policy π is one such that, for all s ∈ S, π(s, a) = 1 for some a and π(s, b) = 0 for all b ̸= a.
Thus, in the case of deterministic policies, it is simpler to consider π as a function from states to actions.

Let π and π′ be any pair of deterministic policies such that, for all s ∈ S, Qπ(s, π′(s)) ≥ V π(s). The policy
improvement theorem guarantees that V π

′
(s) ≥ V π(s) for all s ∈ S. This gives a natural way of improving a given

policy π to a better policy π′ by the following rule:

π′(s) = argmax
a

∑
s′

Pass′ [Rass′ + γV π(s′)].

A sequence of evaluations and improvements can be applied to an arbitrary initial policy. Once a policy can no
longer be improved, it is guaranteed to be optimal by the Bellman optimality equations. This technique for finding
an optimal policy is called policy iteration.

A very simple and efficient alternative to policy iteration is called value iteration. This technique successively
improves the estimates for the value of each state s ∈ S, beginning with an arbitrary value V0(s), by the following
rule:

Vk+1(s) = max
a

∑
s′

Pass′ [Rass′ + γVk(s
′)].

It can be shown that the sequence {Vk} converges to V ∗. Algorithm 2 describes how an optimal policy can be
obtained by value iteration.

Asynchronous algorithms can also be used to update the estimates for V .
There are two main disadvantages of both policy iteration and value iteration: they required expensive sweeps

over the state space, which may be prohibitively large, and a complete model of the environment.

7

Algorithm 2 Value iteration
Input: one-step dynamics functions P and R, discount factor γ, tolerance θ.
Output: optimal deterministic policy π when θ → 0.
1: for each s ∈ S do
2: V (s)← 0
3: end for
4: repeat
5: ∆← 0
6: for each s ∈ S do
7: v ← V (s)
8: V (s)← maxa

∑
s′ Pass′ [Rass′ + γV (s′)]

9: ∆← max(∆, |v − V (s)|)
10: end for
11: until ∆ < θ
12: for each s ∈ S do
13: π(s) = argmaxa

∑
s′ Pass′ [Rass′ + γV (s′)]

14: end for

4.1 Appendix: convergence of iterative policy evaluation
This appendix presents a proof of the following theorem.

Theorem 4.1 (Convergence of iterative policy evaluation). Consider the Bellman operator Tπ : R|S| → R|S| for
the policy π. Given an arbitrary v0 ∈ R|S|, consider also the sequence (vn)n≥0 where vk+1 = Tπ(vk). Finally,
consider the vector vπ ∈ R|S| such that vπs = V π(s), for any s ∈ S. For any n ≥ 0,

vn →
||·||∞

vπ,

vπ = Tπ(vπ),

||vn − vπ||∞ ≤ γn||v0 − vπ||∞.

Before presenting the proof, we first introduce relevant definitions, lemmas, and theorems.

Definition 4.1 (Norm). Consider a vector space Z over a field F . A function || · || : Z → [0,∞) is a norm if

||u+ v|| ≤ ||u||+ ||v||,
||av|| = |a|||v||,

||v|| = 0 =⇒ v = 0,

for all u, v ∈ Z and a ∈ F .

Definition 4.2 (Euclidean norm). The Euclidean norm || · ||2 : Rd → [0,∞) is given by

||v||2 =

√∑
i

v2i .

Definition 4.3 (Maximum norm). The maximum norm || · ||∞ : Rd → [0,∞) is given by

||v||∞ = max
i
|vi|.

Definition 4.4 (Convergence of a sequence). A sequence (vn)n≥0 = v0,v1, . . . is said to converge to a vector v in
the norm || · ||, denoted vn →

||·||
v, if

lim
n→∞

||vn − v|| = 0.

In other words, if vn →
||·||

v, then for every ϵ > 0 there is an N such that for every n ≥ N , we have ||vn−v|| < ϵ.

8

Definition 4.5 (Bellman operator). Consider a reinforcement learning task with states S = {1, 2, . . . , |S|}, actions
A = {1, 2, . . . , |A|}, and discount factor γ < 1. For any vector v ∈ R|S| and state s ∈ S, the Bellman operator
Tπ : R|S| → R|S| for the policy π is given by

Tπ(v)s =
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γvs′] .

Definition 4.6 (Cauchy sequence). Consider a normed vector space (Z, || · ||). A sequence (vn)n≥0 = v0,v1, . . . of
vectors in this space is Cauchy if

lim
n→∞

sup
m≥n
||vn − vm|| = 0.

In other words, if a sequence (vn)n≥0 is Cauchy, then for every ϵ > 0 there is an N such that for every n ≥ N ,
we have supm≥n ||vn − vm|| < ϵ.

Definition 4.7 (Banach space). A Banach space is a normed vector space (Z, || · ||) where if (vn)n≥0 is a Cauchy
sequence then vn →

||·||
v for some vector v.

For any d, both (Rd, || · ||2) and (Rd, || · ||∞) are Banach spaces, although we omit the corresponding proofs.

Definition 4.8 (L-contraction). Consider a normed vector space (Z, || · ||) and a function T : Z → Z. The function
T is L-Lipschitz if

||T (u)− T (v)|| ≤ L||u− v||,

for all u,v ∈ Z. If L < 1, then T is also an L-contraction.

Lemma 4.1. Consider a normed vector space (Z, || · ||), an L-Lipschitz function T : Z → Z, and a sequence
(vn)n≥0 = v0,v1, . . . of vectors in this space. If vn →

||·||
v, then T (vn) →

||·||
T (v).

Proof. For any n ≥ 0, by the definition of an L-Lipschitz function,

0 ≤ ||T (vn)− T (v)|| ≤ L||vn − v||.

Since vn →
||·||

v,

lim
n→∞

L||vn − v|| = L lim
n→∞

||vn − v|| = 0.

By the squeeze theorem,

lim
n→∞

||T (vn)− T (v)|| = 0.

The following theorem is central in our proof of Theorem 4.1.

Theorem 4.2 (Banach’s fixed point theorem). If (Z, || · ||) is a Banach space and T : Z → Z is an L-contraction,
then T has a unique fixed point v. Furthermore, for any v0 ∈ Z, let vn+1 = T (vn). For any n ≥ 0,

vn →
||·||

v,

||vn − v|| ≤ Ln||v0 − v||.

Proof. We first show that the sequence (vn)n≥0 is Cauchy, which guarantees that vn →
||·||

v for some vector v.

As a first step, we show that ||vn+k − vn|| ≤ Ln||vk − v0|| for any n, k ≥ 0. The case n = 0 is trivial. Suppose
that the inductive hypothesis is true for some n, and consider the case n+ 1:

||vn+k+1 − vn+1|| = ||T (vn+k)− T (vn)|| (definition of the sequence)
≤ L||vn+k − vn|| (definition of L-contraction)

≤ Ln+1||vk − v0||, (inductive hypothesis)

9

as we wanted to show.
By introducing zeros, note that ||vk − v0|| = ||vk + (−vk−1 + vk−1) + . . . + (−v1 + v1) − v0||, for any k ≥ 1.

Therefore,

||vk − v0|| =

∥∥∥∥∥
k∑
i=1

vi − vi−1

∥∥∥∥∥ (reorganizing terms)

≤
k∑
i=1

||vi − vi−1|| (triangle inequality)

≤
k∑
i=1

Li−1||v1 − v0|| (n = i− 1 and k = 1 using the earlier result)

≤ ||v1 − v0||
1− L

.

(
lim
n→∞

n∑
i=0

Ln =
1

1− L

)
.

We are now close to showing that (vn)n≥0 is Cauchy. For any n, k ≥ 0, combining the previous two results,

0 ≤ ||vn+k − vn|| ≤ Ln||vk − v0|| ≤ Ln
||v1 − v0||

1− L
.

Therefore, for any fixed n ≥ 0,

0 ≤ sup
k≥0
||vn+k − vn|| ≤ sup

k≥0
Ln
||v1 − v0||

1− L
= Ln

||v1 − v0||
1− L

.

Because 0 ≤ L < 1,

lim
n→∞

Ln
||v1 − v0||

1− L
=
||v1 − v0||

1− L
lim
n→∞

Ln = 0.

Therefore, by the squeeze theorem,

lim
n→∞

sup
k≥0
||vn+k − vn|| = 0,

which completes the proof that (vn)n≥0 is Cauchy. Let v denote the vector such that vn →
||·||

v.

Our next step is to show that v is a fixed point of T . For any n,

0 ≤ ||T (v)− v|| = ||T (v) + (−T (vn) + T (vn))− v|| (introducing zeros)
≤ ||T (v)− T (vn)||+ ||T (vn)− v|| (triangle inequality)
≤ L||v − vn||+ ||vn+1 − v|| (definition of the sequence and L-contraction)

Because vn →
||·||

v,

lim
n→∞

L||v − vn||+ ||vn+1 − v|| = 0.

Therefore, by the squeeze theorem

||T (v)− v|| = lim
n→∞

||T (v)− v|| = 0.

By the definition of a norm, T (v)− v = 0, which implies T (v) = v, completing the proof.
Our next step is to show that the fixed point of T is unique. Suppose that T (u) = u and T (v) = v for some

vectors u and v. In that case,

||u− v|| = ||T (u)− T (v)|| ≤ L||u− v||.

If we suppose that ||u−v|| > 0, dividing the inequation by ||u−v|| leads to the conclusion that L ≥ 1. However,
T is an L-contraction, contradicting our supposition. Therefore, ||u− v|| ≤ 0, which implies that u = v.

10

Our last step is to show that ||vn − v|| ≤ Ln||v0 − v||, for any n. The case n = 0 is trivial. Suppose that the
inductive hypothesis is true for some n, and consider the case n+ 1:

||vn+1 − v|| = ||T (vn)− T (v)|| (definition of the sequence and fixed point)

≤ L||vn − v|| ≤ Ln+1||v0 − v||, (definition of L-contraction and inductive hypothesis)

as we wanted to show.

We now present the proof of Theorem 4.1.

Theorem 4.1 (Convergence of iterative policy evaluation). Consider the Bellman operator Tπ : R|S| → R|S| for
the policy π. Given an arbitrary v0 ∈ R|S|, consider also the sequence (vn)n≥0 where vk+1 = Tπ(vk). Finally,
consider the vector vπ ∈ R|S| such that vπs = V π(s), for any s ∈ S. For any n ≥ 0,

vn →
||·||∞

vπ,

vπ = Tπ(vπ),

||vn − vπ||∞ ≤ γn||v0 − vπ||∞.

Proof. As a first step, we show that vπ is a fixed point of Tπ. For any s ∈ S, by the definition of Tπ and Eq. 3,

Tπ(vπ)s =
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γvπs′] = vπs .

Our next step is to show that the Bellman operator Tπ : R|S| → R|S| is a γ-contraction. Because (R|S|, || · ||∞)
is a Banach space and vπ is a fixed point of Tπ, the desired results follow from Banach’s fixed point theorem.

Note that, for any two vectors u,v ∈ R|S| and every state s ∈ S,

Tπ(u)s − Tπ(v)s =
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γus′]−
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γvs′]

=
∑
a

∑
s′

π(s, a)Pass′Rass′ +
∑
a

∑
s′

π(s, a)Pass′γus′ −
∑
a

∑
s′

π(s, a)Pass′Rass′ −
∑
a

∑
s′

π(s, a)Pass′γvs′

=
∑
a

∑
s′

π(s, a)Pass′γus′ −
∑
a

∑
s′

π(s, a)Pass′γvs′

= γ
∑
a

∑
s′

π(s, a)Pass′ [us′ − vs′].

By the definition of maximum norm, for any two vectors u,v ∈ R|S|,

||Tπ(u)− Tπ(v)||∞ = γmax
s

∣∣∣∑
a

∑
s′

π(s, a)Pass′ [us′ − vs′]
∣∣∣ (definition of maximum norm)

≤ γmax
s

∑
a

∑
s′

∣∣∣π(s, a)Pass′ [us′ − vs′]∣∣∣ (triangle inequality)

= γmax
s

∑
a

∑
s′

π(s, a)Pass′ |us′ − vs′ | (multiplicativity)

≤ γmax
s

∑
a

∑
s′

π(s, a)Pass′ ||u− v||∞ (definition of maximum norm)

= γ||u− v||∞ max
s

∑
a

π(s, a)
∑
s′

Pass′ (distributivity)

= γ||u− v||∞ (unit measure).

11

5 Monte Carlo Methods
Monte Carlo methods can be used to solve the reinforcement learning problem without a model (one-step dynamics)
for the environment. The agent learns by averaging observed returns. Even if it is possible to construct a model of
the environment, it is often easier to let the agent learn in this way.

These methods also work by successive policy evaluation and improvement. The most simple way to estimate the
value of a state under π is to average the observed returns after a number of episodes in which the state appears. If
only the first occurrence of a state s in an episode is considered to improve the estimate for V π(s), then the method
is called first-visit. Otherwise, when every occurrence of a state s is considered, the method is called every-visit. In
both cases, when the number of visits to s tends to infinity, this kind of estimate tends to V π(s).

Since a model is not available for Monte Carlo methods, it is useful to estimate action values instead of state
values. Evaluating a policy π by a Monte Carlo method consists on experiencing several episodes and averaging the
returns that follow every possible state action pair (s, a) to obtain an estimate for Qπ(s, a).

As in the previous section, we are interested in improving a policy π. In this case, we do this episode-by-episode.
However, unlike in the previous section, the policies must be ϵ-soft, since we need to guarantee that the method
improves its estimate for the action values. Algorithm 3 illustrates a Monte Carlo based algorithm to solve the
reinforcement learning problem. It is assumed that there is no discounting, since the length of each episode should
be finite.

Algorithm 3 Monte Carlo control algorithm
Input: set of states S, number of episodes N , probability of choosing random action ϵ.
Output: deterministic policy π, optimal when N →∞.
1: for each s ∈ S do
2: for each action a ∈ A(s) do
3: Q(s, a)← 0
4: n(s, a)← 0
5: end for
6: end for
7: for each i in {1, . . . , N} do
8: Experience a new episode e following an ϵ-greedy policy based on Q.
9: for each state-action pair (s, a) in the episode e do

10: u← return following (s, a) in the episode e.
11: n(s, a)← n(s, a) + 1
12: Q(s, a)← Q(s, a) + 1

n(s,a) [u−Q(s, a)]

13: end for
14: end for
15: for each state s ∈ S do
16: π(s)← argmaxaQ(s, a)
17: end for

A method to solve the reinforcement learning problem that uses the value of other states to compute the value of
a state s is said to bootstrap. Since Monte Carlo methods do not bootstrap, in contrast with dynamic programming,
it is possible to evaluate the value of each state separately, which can be necessary in some situations. It is also
possible to evaluate a policy while following another, which is described in detail in [1].

12

6 Temporal-Difference Learning
Temporal-difference learning methods are also capable of learning from experience without a model of the environ-
ment. However, differently from Monte Carlo methods, they bootstrap. Intuitively, this allows them to extract
more information from their experiences.

Instead of waiting for the end of an episode to update their state or action values, a TD agent updates at every
time step. The simplest TD method is called TD(0), and updates the state value estimates using the following rule:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)], (5)

where α is the learning rate and γ is a discount parameter. This rule updates the value of a state based on the
reward after one time-step and the estimated value of the next state.

Sarsa is an on-policy method to solve the control problem: finding an optimal policy by interacting with
the environment. The idea is to adapt Equation 5 to estimate action values, which involves using the tuple
(st, at, rt+1, st+1, at+1), which gives the method’s name. As with other control algorithms, the starting point is an
arbitrary ϵ-soft policy, which is used to estimate action values and improve the policy, which is done after each time
step. Sarsa is exemplified by algorithm 4, which uses ϵ-greedy policies.

Algorithm 4 Sarsa control algorithm
Input: set of states S, number of episodes N , learning rate α, probability of choosing random action ϵ, discount

factor γ.
Output: deterministic policy π, optimal when N →∞ and α decays appropriately.
1: for each s ∈ S do
2: for each action a ∈ A(s) do
3: Q(s, a)← 0
4: end for
5: end for
6: for each i in {1, . . . , N} do
7: s← initial state for episode i
8: Select action a for state s according to an ϵ-greedy policy based on Q.
9: while state s is not terminal do

10: r ← observed reward for action a at state s
11: s′ ← observed next state for action a at state s
12: Select action a′ for state s′ according to an ϵ-greedy policy based on Q.
13: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
14: s← s′

15: a← a′

16: end while
17: end for
18: for each state s ∈ S do
19: π(s)← argmaxaQ(s, a)
20: end for

Another advantage of TD methods over Monte Carlo methods is that episodes don’t need to be finite.
An alternative to Sarsa is Q-Learning, an off-policy control method. This means that Q-learning learns the

action values for a policy that it does not use to act on the environment. The main difference to Sarsa is the update
rule, which is given by

Q(st, aa)← Q(st, at) + α[rt+1 + γmax
a′

Q(st+1, a
′)−Q(st, at)].

Instead of choosing a′ using the current policy, which may be ϵ-soft for learning purposes, this update rule
considers the best possible action according to the current estimate. This avoids the problem of misattributing
an inherent low value for a state in which a bad action choice was made. For the same reason, Q-learning may
converge faster but have lower efficacy during the learning phase (called online efficacy). Algorithm 5 exemplifies a
particular implementation of Q-learning.

Alternatively, the update rule for Q-learning can be given by

Q(st, at)← Q(st, at) + α[rt+1 + γ
∑
a

π(st, a)Q(st+1, a)−Q(st, at)].

13

Algorithm 5 Q-learning control algorithm
Input: set of states S, number of episodes N , learning rate α, probability of choosing random action ϵ, discount

factor γ.
Output: deterministic policy π, optimal when N →∞ and α decays appropriately.
1: for each s ∈ S do
2: for each action a ∈ A(s) do
3: Q(s, a)← 0
4: end for
5: end for
6: for each i in {1, . . . , N} do
7: s← initial state for episode i
8: while state s is not terminal do
9: Select action a for state s according to an ϵ-greedy policy based on Q.

10: r ← observed reward for action a at state s
11: s′ ← observed next state for action a at state s
12: Q(s, a)← Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a)]
13: s← s′

14: end while
15: end for
16: for each state s ∈ S do
17: π(s)← argmaxaQ(s, a)
18: end for

In this case, the probability of choosing each action is taken into account, which may improve its online efficacy.
It is often possible to design a more effective learning algorithm when some part of the environment dynamics is

known. For instance, if the state following a state action pair is always known, it is possible to base policies on the
value of possible successor states, by learning what is called an afterstate value function. In that case, the control
algorithm can learn the state value function V instead of Q.

14

7 Eligibility Traces
The n-step return at time t is defined as

u
(n)
t = rt+1 + γrt+2 + γ2rt+3 + . . .+ γn−1rt+n + γnVt(st+n).

This return can be used to update state (action) values using

V (st)← V (st) + α[u
(n)
t − V (st)].

When n = 1, the update rule above is equivalent to the temporal difference learning rule. When n → ∞, this
rule is equivalent to the rule used in Monte Carlo methods.

It is also possible to average u(i)t for different i. One particularly important weighted average of variable step
returns is the λ-return uλt , which is given by

uλt = (1− λ)
∞∑
n=1

λn−1u
(n)
t .

In this way, the weights given to each n-step return sum to 1. The 1-step return has the highest weight, which
decreases by a factor of λ for each following return. When λ = 0, the definition is once again equivalent to temporal
difference learning with one-step return. When λ → 1, the method is equivalent to Monte Carlo. This gives a
somewhat simple way to control the balance between state (action) value estimates and looking ahead for rewards.
This idea has been shown to be very effective in practice for good choices of λ.

In practice, the update rule based on uλt is efficiently implemented by using eligibility traces. The eligibility
trace et for a state s at time t is defined as

et(s) =

 0 if t = 0,
γλet−1(s) + 1 if s = st and t ̸= 0,
γλet−1(s) if s ̸= st and t ̸= 0.

The following update rule should be applied to every state (action) value:

V (s)← V (s) + α[rt+1 + γV (st+1)− V (st)]et(s). (6)

Intuitively, the observed error for the estimate of the value of the current state st changes the estimate of s by
a factor of αet(s), which is proportional to how soon state s was last visited. In this context, λ is called the trace
decay factor.

The control algorithms presented in the previous section can be adapted to use eligibility traces as described by
Algorithms 6 and 7. Note that the algorithm Q(λ) needs to erase its eligibility traces once a non-greedy action is
taken because of its off-policy evaluation.

The eligibility traces presented in this section are also called accumulating traces. Replacing traces are an
alternative definition that may be better suited to some applications, particularly when the agent is likely to take
the same action at a given state several times, causing a detrimental accumulation of its eligibility trace. The
replacing trace et for a state s at time t is defined as

et(s) =

 0 if t = 0,
1 if s = st and t ̸= 0,
γλet−1(s) if s ̸= st and t ̸= 0.

15

Algorithm 6 Sarsa(λ) control algorithm
Input: set of states S, number of episodes N , learning rate α, probability of choosing random action ϵ, discount

factor γ, trace decay λ
Output: deterministic policy π, optimal when N →∞ and α decays appropriately.
1: for each s ∈ S do
2: for each action a ∈ A(s) do
3: Q(s, a)← 0
4: e(s, a)← 0
5: end for
6: end for
7: for each i in {1, . . . , N} do
8: Set the eligibility trace e to zero for every valid state action pair.
9: s← initial state for episode i

10: Select action a for state s according to an ϵ-greedy policy based on Q.
11: while state s is not terminal do
12: r ← observed reward for action a at state s
13: s′ ← observed next state for action a at state s
14: Select action a′ for state s′ according to an ϵ-greedy policy based on Q.
15: e(s, a)← e(s, a) + 1
16: for each s′′ ∈ S do
17: for each action a′′ ∈ A(s′′) do
18: Q(s′′, a′′)← Q(s′′, a′′) + α[r + γQ(s′, a′)−Q(s, a)]e(s′′, a′′)
19: e(s′′, a′′)← γλe(s′′, a′′)
20: end for
21: end for
22: s← s′

23: a← a′

24: end while
25: end for
26: for each state s ∈ S do
27: π(s)← argmaxaQ(s, a)
28: end for

16

Algorithm 7 Q(λ) control algorithm
Input: set of states S, number of episodes N , learning rate α, probability of choosing random action ϵ, discount

factor γ, trace decay λ
Output: deterministic policy π, optimal when N →∞ and α decays appropriately.
1: for each s ∈ S do
2: for each action a ∈ A(s) do
3: Q(s, a)← 0
4: e(s, a)← 0
5: end for
6: end for
7: for each i in {1, . . . , N} do
8: Set the eligibility trace e to zero for every valid state action pair.
9: s← initial state for episode i

10: Select action a for state s according to an ϵ-greedy policy based on Q.
11: while state s is not terminal do
12: r ← observed reward for action a at state s
13: s′ ← observed next state for action a at state s
14: Select action a′ for state s′ according to an ϵ-greedy policy based on Q.
15: Select the greedy action a∗ for state s′ according to Q, preferring a′ when tied.
16: e(s, a)← e(s, a) + 1
17: for each s′′ ∈ S do
18: for each action a′′ ∈ A(s′′) do
19: Q(s′′, a′′)← Q(s′′, a′′) + α[r + γQ(s′, a∗)−Q(s, a)]e(s′′, a′′)
20: if a∗ = a′ then
21: e(s′′, a′′)← γλe(s′′, a′′)
22: else
23: e(s′′, a′′)← 0
24: end if
25: end for
26: end for
27: s← s′

28: a← a′

29: end while
30: end for
31: for each state s ∈ S do
32: π(s)← argmaxaQ(s, a)
33: end for

17

8 Generalization and Function Approximation
In some situations, it is inadvisable to store state or action value estimates in arrays. In large (or infinite) state
spaces, some states may be seen very rarely. In these cases, the state or action value estimates must generalize
across states. The kind of generalization discussed in this section is based on function approximation, which is
studied extensively in machine learning. For more details, see the corresponding notes by the same author.

The state value function V π can be approximated by a parametric function V : S ×Rm → R. The goal of policy
evaluation becomes finding a θ such that V π(s) ≈ V (s;θ) for every s ∈ S. Changing the parameter vector θ will
typically change the value estimates of several states.

For a given policy π, consider a dataset D = {(si, V π(si))}Ni=1, where si ∈ S for every i. Any regression method
could be used to fit V to this dataset. For simplicity, this section will focus on linear regression by stochastic
gradient descent.

The mean squared error J(θ), a common measure of the quality of function approximation, is given by

J(θ) =
1

N

N∑
i=1

[V π(si)− V (si;θ)]
2.

A parameter vector θ∗ such that J(θ∗) ≤ J(θ) for any other vector θ ∈ Rm is called a global optimum of
J . Finding a global optimum is rarely practical for complicated functions. Several methods used in practice are
guaranteed only to find local optima, which are global optima in a restricted domain of the function.

Gradient descent is a very common technique for finding local optima in smooth functions. Stochastic gradient
descent is a variant that is particularly useful in reinforcement learning. Starting from an arbitrary estimate θ0,
for any t ≥ 0, the esimate θt+1 is given by

θt+1 = θt −
1

2
α∇θ[V π(st)− V (st;θt)]

2,

where the pair (st, V π(st)) is drawn at random (with replacement) from D, α is the learning rate, and ∇θ[V π(st)−
V (st;θt)]

2 is the gradient of [V π(st)−V (st;θt)]
2 with respect to θ. This gradient is the vector of partial derivatives

of the error term (squared term) with respect to each component of θ. Intuitively, at each time step, the estimate
is changed in the direction that locally minimizes the error (squared term) for state st. The direction in which the
error is lowered for each component of θt, for a particular state st, is given by this gradient.

By the chain rule, the equation above can be rewritten as

θt+1 = θt + α[V π(st)− V (st;θt)]∇θV (st;θt).

If α decays with time in the same way as described in Section 2, this method is guaranteed to converge to a
local optimum of J .

Naturally, if V π(s) were available for all states s ∈ S, there would be no need for function approximation.
Furthermore, in practice, a dataset will be given by D = {(si, vi)}Ni=1, where vi is an estimate of the value of si
under policy π, for every i. In that case, given an estimate for the parameter vector θt and a pair (st, vt) drawn at
random (with replacement) from D, the parameter vector θt may be updated using

θt+1 = θt + α[vt − V (st;θt)]∇θV (st;θt).

Instead of drawing pairs (st, vt) at random from a fixed dataset, it is also possible to perform updates based on
the states (and corresponding returns) observed while interacting with the environment using a policy π. This is
the foundation of the algorithms presented in this section.

The update for TD(λ) is given by

θt+1 = θt + α[uλt − V (st;θt)]∇θV (st;θt).

It can be shown that this is equivalent to the following update rule using eligibility traces:

θt+1 = θt + αδtet,

where
δt = rt+1 + γV (st+1;θt)− V (st;θt),

18

and
et = γλet−1 +∇θV (st;θt),

and e0 = 0. Note that there is a vector of eligibility traces with the same number of components as a parameter
vector.

Algorithm 8 is a complete algorithm for approximating V π using gradient descent.

Algorithm 8 Gradient descent TD(λ) value estimation algorithm
Input: policy π, number of episodes N , learning rate α, discount factor γ, trace decay λ
Output: parameter vector θ
1: Initialize θ arbitrarily
2: for each i in {1, . . . , N} do
3: e← 0
4: s← initial state for episode i
5: while state s is not terminal do
6: a← π(s)
7: r ← observed reward for action a at state s
8: s′ ← observed next state for action a at state s
9: δ ← r + γV (s′;θ)− V (s;θ)

10: e← γλe+∇θV (s;θ)
11: θ ← θ + αδe
12: s← s′

13: end while
14: end for

Linear functions of the parameter vector θ are widely used for function approximation, mainly due to their
stronger theoretical guarantees. In that case, a state is often represented by a feature vector ϕ(s), which should be
useful for generalization across states. Given a parameter vector θ, the value estimate V (s;θ) is then given by

V (s;θ) =
∑
i

ϕ(s)iθi.

Clearly, ∇θV (s;θ) = ϕ(s). Algorithms 9 and 10 illustrate Sarsa(λ) and Q(λ) based on linear function approxi-
mation.

The choice of feature vectors is crucial to the success of any function approximation method. Intuitively, the
features should correspond to natural features of the state, which should facilitate generalization. For instance, a
robot might represent its state as a combination of its position, velocity, and remaining power. In the case of linear
models, it might be necessary to create features that are the combinations of other natural features, since linear
models are, in general, incapable of modeling interactions such as feature i being beneficial only in the absence of
feature j.

High dimensional state spaces often need to be simplified for use with linear models. There are several techniques
to accomplish this. The states can be represented in feature vectors by discretizing the state space into overlapping
hyperspheres (coarse coding) or by tiling into hypercubes (tile coding, which may combine several tilings with
different offsets). States can also be represented by feature vectors of distance calculations to random points
sampled in the state space (similar to coding by radial basis functions).

19

Algorithm 9 Sarsa(λ) control algorithm for linear function approximation
Input: feature vector ϕ(s, a) for all state-action pairs (s, a), number of episodes N , learning rate α, probability of

choosing random action ϵ, discount factor γ, trace decay λ
Output: parameter vector θ
1: θ ← 0
2: for each i in {1, . . . , N} do
3: e← 0
4: s← initial state for episode i
5: for each a ∈ A(s): do
6: Q(a)←

∑
i θiϕ(s, a)i

7: end for
8: a← argmaxa∈A(s)Q(a)
9: With probability ϵ: a← random action in A(s)

10: while state s is not terminal do
11: e← γλe+ ϕ(s, a)
12: r ← observed reward for action a at state s
13: s′ ← observed next state for action a at state s
14: δ ← r −Q(a)
15: for each a ∈ A(s): do
16: Q(a)←

∑
i θiϕ(s

′, a)i
17: end for
18: a′ ← argmaxa∈A(s′)Q(a)
19: With probability ϵ: a′ ← random action in A(s′)
20: δ ← δ + γQ(a′)
21: θ ← θ + αδe
22: s← s′

23: a← a′

24: end while
25: end for

20

Algorithm 10 Q(λ) control algorithm for linear function approximation
Input: feature vector ϕ(s, a) for all state-action pairs (s, a), number of episodes N , learning rate α, probability of

choosing random action ϵ, discount factor γ, trace decay λ
Output: parameter vector θ
1: θ ← 0
2: for each i in {1, . . . , N} do
3: e← 0
4: s← initial state for episode i
5: for each a ∈ A(s): do
6: Q(a)←

∑
i θiϕ(s, a)i

7: end for
8: while state s is not terminal do
9: if with probability 1− ϵ: then

10: a← argmaxaQ(a)
11: e← γλe+ ϕ(s, a)
12: else
13: a← random action in A(s)
14: e← ϕ(s, a)
15: end if
16: r ← observed reward for action a at state s
17: s′ ← observed next state for action a at state s
18: δ ← r −Q(a)
19: for each a ∈ A(s′): do
20: Q(a)←

∑
i θiϕ(s

′, a)i
21: end for
22: a′ ← argmaxa∈A(s′)Q(a)
23: δ ← δ + γQ(a′)
24: θ ← θ + αδe
25: s← s′

26: end while
27: end for

21

9 Planning and Learning
Model free reinforcement learning methods, such as temporal difference learning, can be used together with model
based methods, such as dynamic programming. In section 3, the one-step dynamics of the environment was presented
as a complete model, i.e., a mechanism that can be used by the agent to predict the consequence of its actions.

In the case of deterministic environments, where the outcome of an action at a given state is always the same,
it is sufficient to store these outcomes in a table as the agent learns. In stochastic environments, it is necessary to
learn distribution models that represent the probabilities of each possible outcome and expected rewards.

In this context, planning is the process where the agent simulates, using its internal model, the environment
and updates its value estimates.

Algorithm 11 illustrates the combination of direct reinforcement learning, using one-step Q-learning, and model
learning in a deterministic environment. This method could be enhanced by eligibility traces, but that was omitted
for simplicity.

Algorithm 11 Dyna-Q control algorithm for deterministic environments
Input: set of states S, number of episodes N , number of planning steps per episode K, learning rate α, probability

of choosing random action ϵ, discount factor γ.
Output: deterministic policy π, optimal when N →∞ and α decays appropriately.
1: for each s ∈ S do
2: for each action a ∈ A(s) do
3: Q(s, a)← 0
4: end for
5: end for
6: for each i in {1, . . . , N} do
7: s← initial state for episode i
8: while state s is not terminal do
9: Select action a for state s according to an ϵ-greedy policy based on Q.

10: r ← observed reward for action a at state s
11: s′ ← observed next state for action a at state s
12: M(s, a)← s′, r
13: Q(s, a)← Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a)]
14: snext ← s′

15: for each k in {1, . . . ,K} do
16: s← random previously observed state
17: a← random action previously taken in state s
18: s′, r ←M(s, a)
19: Q(s, a)← Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a)]
20: end for
21: s← snext
22: end while
23: end for
24: for each state s ∈ S do
25: π(s)← argmaxa∈A(s)Q(s, a)
26: end for

The main advantage of using model learning is the possibility of updating the value of any state at a given time
step. This includes states that are not even visited in a given episode. In practice, this may considerably reduce
the necessity of interaction with the environment.

Algorithm 12 presents a variation of the previous algorithm for stochastic environments. The algorithm performs
full backup, as in dynamic programming methods, using estimates of Pass′ and Rass′ learned during interaction with
the environment.

However, in the case of non-stationary environments, meaning that the environment changes its behavior with
time, a model may become incorrect. In this case, the agent may become stuck behaving suboptimally. Even
using ϵ-greedy action selection, some action sequences may become too unlikely. This is a classical instance of the
exploitation versus exploration problem. There is a simple heuristic that can overcome this problem in planning
agents. If the agent stores the time n since the last execution of action a at state s, the planning step may consider
the reward for the state-action combination as r + κ

√
n for a small parameter κ and the reward estimate (given

22

Algorithm 12 Dyna-Q control algorithm for stochastic environments
Input: set of states S, number of episodes N , number of planning steps per episode K, learning rate α, probability

of choosing random action ϵ, discount factor γ.
Output: deterministic policy π, optimal when N →∞ and α decays appropriately.
1: for each s ∈ S do
2: for each action a ∈ A(s) do
3: Q(s, a)← 0
4: R(s, s′, a)← 0
5: N (s, a)← 0
6: Nn(s, a, s′)← 0
7: end for
8: end for
9: for each i in {1, . . . , N} do

10: s← initial state for episode i
11: while state s is not terminal do
12: Select action a for state s according to an ϵ-greedy policy based on Q.
13: r ← observed reward for action a at state s
14: s′ ← observed next state for action a at state s
15: N (s, a)← N (s, a) + 1
16: Nn(s, a, s′)← Nn(s, a, s′) + 1

17: R(s, s′, a)← R(s, s′, a) + r−R(s,s′,a)
Nn(s,a,s′)

18: Q(s, a)← Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a)]
19: snext ← s′

20: for each k in {1, . . . ,K} do
21: s← random previously observed state
22: a← random action previously taken in state s
23: Q(s, a)←

∑
s′ [

Nn(s,a,s
′)

N (s,a)][R(s, a, s′) + γmaxa′ Q(s′, a′)]

24: end for
25: s← snext
26: end while
27: end for
28: for each state s ∈ S do
29: π(s)← argmaxa∈A(s)Q(s, a)
30: end for

23

by the model) r. In this case, a whole sequence of exploratory actions may be undertaken. In practice, however,
controlling κ may be challenging.

In algorithm 11, simulated transitions are sampled uniformly. However, this is usually not the best choice, even
for the dynamic programming methods presented in section 4. A simple heuristic called prioritized sweeping may
be employed to choose transitions for planning. This heuristic prefers to update values for transitions that go into
states that had their values considerably changed in the current episode. A method based on this heuristic, for
deterministic environments, is presented in algorithm 13.

Algorithm 13 Prioritized sweeping Dyna-Q control algorithm for deterministic environments
Input: set of states S, number of episodes N , number of planning steps per episode K, learning rate α, probability

of choosing random action ϵ, discount factor γ, heap threshold h.
Output: deterministic policy π, optimal when N →∞ and α decays appropriately.
1: H ← empty maximum priority queue (max-heap)
2: for each s ∈ S do
3: for each action a ∈ A(s) do
4: Q(s, a)← 0
5: end for
6: end for
7: for each i in {1, . . . , N} do
8: s← initial state for episode i
9: while state s is not terminal do

10: Select action a for state s according to an ϵ-greedy policy based on Q.
11: r ← observed reward for action a at state s
12: s′ ← observed next state for action a at state s
13: M(s, a) = s′, r
14: p← |r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a)|
15: if p > h then
16: Insert (s, a) into H with priority p
17: end if
18: snext ← s′

19: for each k in {1, . . . ,K} or empty(H) do
20: s, a← first(H)
21: s′, r ←M(s, a)
22: Q(s, a)← Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a)]
23: for each s̄, ā predicted to lead to s do
24: r̄ ← predicted reward for transition s̄, ā
25: p← |r̄ + γmaxa∈A(s)Q(s, a)−Q(s̄, ā)|
26: if p > h then
27: Insert (s̄, ā) into H with priority p
28: end if
29: end for
30: end for
31: s← snext
32: end while
33: end for
34: for each state s ∈ S do
35: π(s)← argmaxa∈A(s)Q(s, a)
36: end for

Algorithm 13 maintains a priority queue (max-heap) with every state-action pair whose estimate would change
considerably when updated, ordered by the size of the change. When the pair is updated, the change is propagated
to transitions that are predicted to lead to it. This idea dramatically increases the performance of agents in some
environments.

Another important heuristic is called trajectory sampling. In this case, transitions are selected for planning
following the on-policy distribution. In other words, state-action pairs that are frequently visited are more likely to
be sampled for updates by planning.

24

10 Policy Gradient Methods *
For details on the probability notation employed in this section, see the machine learning notes by the same author.

Consider an agent that interacts with its environment in a sequence of episodes, each of which lasts for exactly
T time steps (without loss of generality for episodic problems).

At each time step t, suppose that the agent observes a state st ∈ Val(St), receives a reward rt ∈ Val(Rt), and
chooses an action at ∈ Val(At). Furthermore, suppose that Val(St),Val(Rt), and Val(At) are finite for all t.

A policy gradient method represents a policy by a probability distribution over actions given states, and its goal
is finding parameters for such a policy that achieve maximum expected return.

Let τ = s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT , sT denote a trajectory in a particular episode, such that τ ∈
Val(T). Assuming the Markov property, the probability p(τ | θ) of trajectory τ given the parameters θ is given by

p(τ | θ) = p(s0)

T−1∏
t=0

p(st+1, rt+1 | st, at)p(at | st,θ),

where p(at | st,θ) is the probability of action at given state st and parameters θ, which is given by the policy.
Given a policy parameterized by θ, consider the expected return J(θ) given by

J(θ) = E

[
T∑
t=1

Rt | θ

]
=

T∑
t=1

E [Rt | θ] .

Using the law of the unconscious statistician,

J(θ) =
∑
τ

p(τ | θ)
T∑
t=1

rt =

T∑
t=1

∑
τ

rtp(τ | θ).

Consider the task of finding a θ∗ such that J(θ∗) = maxθ J(θ). Assuming J(θ) is differentiable with respect to
θ, it is possible to attempt to solve this optimization task by gradient-based methods, such as gradient ascent.

The partial derivative ∂
∂θj

J(θ) of J with respect to θj at θ is given by

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

rt
∂

∂θj
p(τ | θ).

Suppose that p(τ | θ) is positive for any τ and θ. The so-called likelihood ratio trick uses the fact that

∂

∂θj
p(τ | θ) = p(τ | θ) 1

p(τ | θ)
∂

∂θj
p(τ | θ) = p(τ | θ) ∂

∂θj
log p(τ | θ).

By using the expression above,

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

p(τ | θ)rt
∂

∂θj
log p(τ | θ).

Because we have already assumed that p(τ | θ) is positive for all τ and θ,

log p(τ | θ) = log p(s0) +

T−1∑
t=0

log p(st+1, rt+1 | st, at) +
T−1∑
t=0

log p(at | st,θ).

Therefore,

∂

∂θj
log p(τ | θ) =

T−1∑
t′=0

∂

∂θj
log p(at′ | st′ ,θ).

By using the expression above,

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

p(τ | θ)rt

[
T−1∑
t′=0

∂

∂θj
log p(at′ | st′ ,θ)

]
.

25

It will be useful to split the innermost summation in the expression above into before and after t, leading to

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

p(τ | θ)

[
rt

t−1∑
t′=0

∂

∂θj
log p(at′ | st′ ,θ) + rt

T−1∑
t′=t

∂

∂θj
log p(at′ | st′ ,θ)

]
.

Alternatively, the expression above can be written as

∂

∂θj
J(θ) =

T∑
t=1

t−1∑
t′=0

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
+

T∑
t=1

T−1∑
t′=t

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
.

We will now show that the rightmost nested summations in the expression above can be dismissed.
By representing the random variables involved in a trajectory using a Bayesian network, it can be seen that

At′ ⊥⊥ Rt | St′ ,θ for t′ ≥ t. In other words, the action at time step t′ ≥ t does not depend on the reward at time
step t given the state at time step t′ and the policy parameters. The analogous statement is not generally true for
t′ < t. For t′ ≥ t, this independence leads to

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
=
∑
rt

∑
at′

∑
st′

p(at′ | st′ ,θ)p(rt, st′ | θ)rt
∂

∂θj
log p(at′ | st′ ,θ).

By reversing the likelihood-ratio trick,

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
=
∑
rt

∑
at′

∑
st′

p(rt, st′ | θ)rt
∂

∂θj
p(at′ | st′ ,θ).

By changing the order of summations and pushing constants outside the innermost summation,

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
=
∑
rt

∑
st′

p(rt, st′ | θ)rt
∑
at′

∂

∂θj
p(at′ | st′ ,θ).

Finally, using the fact that ∂
∂θj

1 = 0,

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
=
∑
rt

∑
st′

p(rt, st′ | θ)rt
∂

∂θj

∑
at′

p(at′ | st′ ,θ) = 0.

We may now remove the rightmost nested summations in the previous expression for ∂
∂θj

J(θ), which gives

∂

∂θj
J(θ) =

T∑
t=1

t−1∑
t′=0

E
[
Rt

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
= E

[
T∑
t=1

Rt

t−1∑
t′=0

∂

∂θj
log p(At′ | St′ ,θ) | θ

]
.

By reordering the summations, the expression above can be conveniently rewritten as

∂

∂θj
J(θ) = E

[
T−1∑
t=0

∂

∂θj
log p(At | St,θ)

T∑
t′=t+1

Rt′ | θ

]
.

Finally, the gradient ∇θJ(θ) of the expected return J at θ is given by

∇θJ(θ) = E

[
T−1∑
t=0

∇θ log p(At | St,θ)
T∑

t′=t+1

Rt′ | θ

]
.

This result has a subtle intuitive interpretation. In simple terms, the gradient of the expected return is a sum
of expected values of random vectors that correspond to each time step. The expected value for time step t weights
a direction that locally increases the probability of each possible decision by its expected (positive or negative)
outcome. Therefore, in gradient ascent, positive expected outcomes contribute towards making the probability of a
decision higher, while negative expected outcomes contribute towards making the probability of a decision lower.

Consider a sequence τ 1, . . . , τN of N trajectories obtained by following the policy parameterized by θ, and let

τ i = si,0, ai,0, ri,1, si,1, ai,1, ri,2, . . . , si,T−1, ai,T−1, ri,T , si,T .

26

A Monte Carlo estimate ĝ(θ) to ∇θJ(θ) is given by

ĝ(θ) =
1

N

N∑
i=1

T−1∑
t=0

∇θ log p(ai,t | si,t,θ)
T∑

t′=t+1

ri,t′ ,

and may be used for gradient ascent. However, in practice, this estimate may require too many trajectories for
accuracy. The remainder of this section presents some alternatives.

Firstly, we will show that introducing a so-called baseline function results in an alternative expression for the
gradient ∇θJ(θ). Concretely, consider the expected value

E

[
T−1∑
t=0

∂

∂θj
log p(At | St,θ)

[[
T∑

t′=t+1

Rt′

]
−Bθt (St)

]
| θ

]
=

∂

∂θj
J(θ)−

T−1∑
t=0

E
[
∂

∂θj
log p(At | St,θ)Bθt (St)

]
,

where Bθt is an arbitrary function that may depend on the policy parameters θ and the time step t. By definition,

E
[
∂

∂θj
log p(At | St,θ)Bθt (St)

]
=
∑
st

∑
at

p(at | st,θ)p(st | θ)
∂

∂θj
log p(at | st,θ)Bθt (st).

Reversing the likelihood ratio trick,

E
[
∂

∂θj
log p(At | St,θ)Bθt (St)

]
=
∑
st

p(st | θ)Bθt (st)
∑
at

∂

∂θj
p(at | st,θ) =

∑
st

p(st | θ)Bθt (st)
∂

∂θj
1 = 0.

Therefore, an alternative expression for the gradient ∇θJ(θ) is given by

∇θJ(θ) = E

[
T−1∑
t=0

∇θ log p(At | St,θ)

[[
T∑

t′=t+1

Rt′

]
−Bθt (St)

]
| θ

]
.

A common choice of baseline function Bθt is an approximation to the (typically unknown) value function V θt
given by

V θt (s) = E

[
T∑

t′=t+1

Rt′ | St = s,θ

]
.

Because V θt (s) is the expected return for starting at state s at time step t and following a policy parameterized
by θ, the corresponding estimate to ∇θJ(θ) intuitively tends to increase the probability of actions that are followed
by surprisingly large returns, and is generally more efficient in practice than the alternative presented so far. For
details on value function approximation methods, see the previous sections. Note that, in episodic problems, the
value of a state often depends on the time step.

Consider once again the partial derivative ∂
∂θj

J(θ) of J with respect to θj at θ given by

∂

∂θj
J(θ) = E

[
T−1∑
t=0

∂

∂θj
log p(At | St,θ)

T∑
t′=t+1

Rt′ | θ

]
.

By definition,

∂

∂θj
J(θ) =

T−1∑
t=0

∑
st

∑
at

∑
rt+1

· · ·
∑
rT

p(st, at, rt+1, . . . , rT | θ)
∂

∂θj
log p(at | st,θ)

T∑
t′=t+1

rt′

=

T−1∑
t=0

∑
st

∑
at

p(st, at | θ)
∂

∂θj
log p(at | st,θ)

∑
rt+1

· · ·
∑
rT

p(rt+1, . . . , rT | st, at,θ)
T∑

t′=t+1

rt′

= E

[
T−1∑
t=0

∂

∂θj
log p(At | St,θ)Qθt (St, At) | θ

]
,

27

where the so-called action value function Qθt is given by

Qθt (s, a) = E

[
T∑

t′=t+1

Rt′ | St = s,At = a,θ

]
.

Intuitively, Qθt (s, a) is the expected return for starting at state s at time step t, choosing action a, and then
following the policy parameterized by θ.

Therefore, another expression for the gradient ∇θJ(θ) of the expected return J at θ is given by

∇θJ(θ) = E

[
T−1∑
t=0

∇θ log p(At | St,θ)Qθt (St, At) | θ

]
.

However, using this expression to obtain an estimate to the gradient∇θJ(θ) typically requires approximating the
unknown action value function Qθt . Such approximation will generally introduce bias (convergence to an undesired
expected value) in the corresponding estimate to ∇θJ(θ). For details on action value function approximation
methods, see the previous sections. Note that, in episodic problems, the action value of a state-action pair often
depends on the time step.

The advantage function Aθt is defined by Aθt (s, a) = Qθt (s, a)−V θt (s), for all s and a. By combining the previous
results, yet another expression for the gradient ∇θJ(θ) of the expected return J at θ is given by

∇θJ(θ) = E

[
T−1∑
t=0

∇θ log p(At | St,θ)Aθt (St, At) | θ

]
.

Using this expression to obtain an estimate to the gradient∇θJ(θ) typically requires approximating the unknown
advantage function Aθt . Such approximation also generally introduces a bias in the corresponding estimate to
∇θJ(θ). However, in practice, such estimate is generally more efficient than the alternatives presented so far.

11 Recurrent Policy Gradient Methods *
In contrast to the reinforcement learning methods presented in the previous sections, recurrent policy gradient
methods admit partially observable environments [5]. For details on the probability notation employed in this
section, see the machine learning notes by the same author. This section also uses a slightly different convention
for labeling time steps.

Consider an agent that interacts with its environment in a sequence of episodes, each of which lasts for exactly
T > 1 time steps (without loss of generality for episodic problems).

At each time step t, suppose that the environment is in hidden state st ∈ Val(St), the agent receives an
observation xt ∈ Val(Xt), a reward rt ∈ Val(Rt), and chooses an action at ∈ Val(At). Furthermore, suppose that
Val(St),Val(Xt),Val(Rt), and Val(At) are finite, for all t.

A recurrent policy gradient method represents a policy by a probability distribution over actions given the
history of observations and actions, and its goal is finding parameters for such a policy that achieve maximum
expected return.

Let τ = s1, x1, r1, a1, . . . , sT−1, xT−1, rT−1, aT−1, sT , xT , rT denote a trajectory in a particular episode, such
that τ ∈ Val(T). Furthermore, let vi:j = vi, vi+1, . . . , vj .

We will assume that the probability p(τ | θ) of trajectory τ given the parameters θ is given by

p(τ | θ) = p(s1)p(x1 | s1)p(r1 | s1)
T−1∏
t=1

p(at | x1:t, a1:t−1,θ)p(st+1 | st, at)p(xt+1 | st+1)p(rt+1 | st+1),

where p(at | x1:t, a1:t−1,θ) is the probability of action at given the history of observations and actions up to time
t, which is given by the policy. Intuitively, the hidden state st encodes all the information required to generate the
observation xt and the reward rt. Furthermore, the action at may depend on the observed history up to time t
(excluding the rewards, which may be encoded into the observations without loss of generality).

Given a policy parameterized by θ, consider the expected return J(θ) given by

J(θ) = E

[
T∑
t=1

Rt | θ

]
=

T∑
t=1

E [Rt | θ] .

28

Using the law of the unconscious statistician,

J(θ) =
∑
τ

p(τ | θ)
T∑
t=1

rt =

T∑
t=1

∑
τ

rtp(τ | θ).

Consider the task of finding a θ∗ such that J(θ∗) = maxθ J(θ). Assuming J(θ) is differentiable with respect to
θ, it is possible to attempt to solve this optimization task by gradient-based methods, such as gradient ascent.

The partial derivative ∂
∂θj

J(θ) of J with respect to θj at θ is given by

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

rt
∂

∂θj
p(τ | θ).

Suppose that p(τ | θ) is positive for any τ and θ. The so-called likelihood ratio trick uses the fact that

∂

∂θj
p(τ | θ) = p(τ | θ) 1

p(τ | θ)
∂

∂θj
p(τ | θ) = p(τ | θ) ∂

∂θj
log p(τ | θ).

By using the expression above,

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

p(τ | θ)rt
∂

∂θj
log p(τ | θ).

Because we have already assumed that p(τ | θ) is positive for all τ and θ,

log p(τ | θ) = log [p(s1)p(x1 | s1)p(r1 | s1)] +
T−1∑
t=1

log [p(at | x1:t, a1:t−1,θ)p(st+1 | st, at)p(xt+1 | st+1)p(rt+1 | st+1)] .

Therefore,

∂

∂θj
log p(τ | θ) =

T−1∑
t′=1

∂

∂θj
log p(at′ | x1:t′ , a1:t′−1,θ).

By using the expression above,

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

p(τ | θ)rt

[
T−1∑
t′=1

∂

∂θj
log p(at′ | x1:t′ , a1:t′−1,θ)

]
.

It will be useful to split the innermost summation in the expression above into before and after t, leading to

∂

∂θj
J(θ) =

T∑
t=1

∑
τ

p(τ | θ)

[
rt

t−1∑
t′=1

∂

∂θj
log p(at′ | x1:t′ , a1:t′−1,θ) + rt

T−1∑
t′=t

∂

∂θj
log p(at′ | x1:t′ , a1:t′−1,θ)

]
.

Alternatively, the expression above can be written as

∂

∂θj
J(θ) =

T∑
t=1

t−1∑
t′=1

E
[
Rt

∂

∂θj
log p(At′ | X1:t′ , A1:t′−1,θ) | θ

]
+

T∑
t=1

T−1∑
t′=t

E
[
Rt

∂

∂θj
log p(At′ | X1:t′ , A1:t′−1,θ) | θ

]
.

We will now show that the rightmost nested summations in the expression above can be dismissed, because
E = E

[
Rt

∂
∂θj

log p(At′ | X1:t′ , A1:t′−1,θ) | θ
]
= 0 for t′ ≥ t.

By representing the random variables involved in a trajectory using a Bayesian network, it can be seen that
At′ ⊥⊥ Rt | X1:t′ , A1:t′−1,θ for t′ ≥ t. In other words, the action at time step t′ ≥ t does not depend on the reward
at time step t given the history of observations and actions up to time t′ and the policy parameters. The analogous
statement is not generally true for t′ < t. For t′ ≥ t, this independence leads to

E =
∑
rt

∑
x1:t′

∑
a1:t′−1

∑
at′

p(rt, x1:t′ , a1:t′−1, at′ | θ)rt
∂

∂θj
log p(at′ | x1:t′ , a1:t′−1,θ)

=
∑
rt

∑
x1:t′

∑
a1:t′−1

∑
at′

p(at′ | x1:t′ , a1:t′−1,θ)p(rt, x1:t′ , a1:t′−1 | θ)rt
∂

∂θj
log p(at′ | x1:t′ , a1:t′−1,θ).

29

By reversing the likelihood-ratio trick,

E =
∑
rt

∑
x1:t′

∑
a1:t′−1

∑
at′

p(rt, x1:t′ , a1:t′−1 | θ)rt
∂

∂θj
p(at′ | x1:t′ , a1:t′−1,θ).

By pushing constants outside the innermost summation and using the fact that ∂
∂θj

1 = 0,

E =
∑
rt

∑
x1:t′

∑
a1:t′−1

p(rt, x1:t′ , a1:t′−1 | θ)rt
∂

∂θj

∑
at′

p(at′ | x1:t′ , a1:t′−1,θ) = 0.

We may now remove the rightmost nested summations in the previous expression for ∂
∂θj

J(θ), which gives

∂

∂θj
J(θ) =

T∑
t=1

t−1∑
t′=1

E
[
Rt

∂

∂θj
log p(At′ | X1:t′ , A1:t′−1,θ) | θ

]
= E

[
T∑
t=1

Rt

t−1∑
t′=1

∂

∂θj
log p(At′ | X1:t′ , A1:t′−1,θ) | θ

]
.

By reordering the summations, the expression above can be conveniently rewritten as

∂

∂θj
J(θ) = E

[
T−1∑
t=1

∂

∂θj
log p(At | X1:t, A1:t−1,θ)

T∑
t′=t+1

Rt′ | θ

]
.

Finally, the gradient ∇θJ(θ) of the expected return J at θ is given by

∇θJ(θ) = E

[
T−1∑
t=1

∇θ log p(At | X1:t, A1:t−1,θ)

T∑
t′=t+1

Rt′ | θ

]
.

This result has a subtle intuitive interpretation. In simple terms, the gradient of the expected return is a sum
of expected values of random vectors that correspond to each time step. The expected value for time step t weights
a direction that locally increases the probability of each possible decision by its expected (positive or negative)
outcome. Therefore, in gradient ascent, positive expected outcomes contribute towards making the probability of a
decision higher, while negative expected outcomes contribute towards making the probability of a decision lower.

Consider a sequence τ 1, . . . , τN of N trajectories obtained by following the policy parameterized by θ, and let

τ i = si,1, xi,1, ri,1, ai,1, . . . , si,T−1, xi,T−1, ri,T−1, ai,T−1, si,T , xi,T , ri,T .

A Monte Carlo estimate ĝ(θ) to ∇θJ(θ) such that ĝ(θ)→ ∇θJ(θ) when N →∞ is given by

ĝ(θ) =
1

N

N∑
i=1

T−1∑
t=1

∇θ log p(ai,t | xi,1:t, ai,1:t−1,θ)

T∑
t′=t+1

ri,t′ ,

and may be used for gradient ascent. Notice that this estimate does not require the hidden states of the
environment. However, in practice, it may require too many trajectories for accuracy. The remainder of this section
presents some alternatives.

Firstly, we will show that introducing a so-called baseline function results in an alternative expression for the
gradient ∇θJ(θ). Concretely, consider the expected value

E

[
T−1∑
t=1

∂

∂θj
log p(At | X1:t, A1:t−1,θ)

[[
T∑

t′=t+1

Rt′

]
−Bθt (X1:t, A1:t−1)

]
| θ

]
=

∂

∂θj
J(θ)− C,

where Bθt is an arbitrary function that may depend on the policy parameters θ and the time step t, and

C = E

[
T−1∑
t=1

∂

∂θj
log p(At | X1:t, A1:t−1,θ)B

θ
t (X1:t, A1:t−1) | θ

]
.

30

By definition,

C =

T−1∑
t=1

∑
x1:t

∑
a1:t−1

∑
at

p(x1:t, a1:t−1, at | θ)
∂

∂θj
log p(at | x1:t, a1:t−1,θ)B

θ
t (x1:t, a1:t−1)

=

T−1∑
t=1

∑
x1:t

∑
a1:t−1

p(x1:t, a1:t−1 | θ)Bθt (x1:t, a1:t−1)
∑
at

p(at | x1:t, a1:t−1,θ)
∂

∂θj
log p(at | x1:t, a1:t−1,θ).

Reversing the likelihood ratio trick and using the fact that ∂
∂θj

1 = 0,

C =

T−1∑
t=1

∑
x1:t

∑
a1:t−1

p(x1:t, a1:t−1 | θ)Bθt (x1:t, a1:t−1)
∂

∂θj

∑
at

p(at | x1:t, a1:t−1,θ) = 0.

Therefore, an alternative expression for the gradient ∇θJ(θ) is given by

∇θJ(θ) = E

[
T−1∑
t=1

∇θ log p(At | X1:t, A1:t−1,θ)

[[
T∑

t′=t+1

Rt′

]
−Bθt (X1:t, A1:t−1)

]
| θ

]
.

A possible choice for baseline function Bθt is an approximation to the (typically unknown) value function V θt
given by

V θt (x
′
1:t, a

′
1:t−1) =

T∑
t′=t+1

E
[
Rt′ | X1:t = x′1:t, A1:t−1 = a′1:t−1,θ

]
.

Because V θt gives the expected return for following a policy parameterized by θ after a particular history of
observations and actions, the corresponding estimate to ∇θJ(θ) intuitively tends to increase the probability of
actions that are followed by surprisingly large returns, and may be more efficient in practice than the alternative
presented so far. Value function approximation for partially observable environments requires extensions to the
methods presented in the previous sections.

Consider once again the partial derivative ∂
∂θj

J(θ) of J with respect to θj at θ given by

∂

∂θj
J(θ) = E

[
T−1∑
t=1

∂

∂θj
log p(At | X1:t, A1:t−1,θ)

T∑
t′=t+1

Rt′ | θ

]
.

By definition,

∂

∂θj
J(θ) =

T−1∑
t=1

∑
x1:t

∑
a1:t

∑
rt+1:T

p(x1:t, a1:t, rt+1:T | θ)
∂

∂θj
log p(at | x1:t, a1:t−1,θ)

T∑
t′=t+1

rt′

=

T−1∑
t=1

∑
x1:t

∑
a1:t

p(x1:t, a1:t | θ)
∂

∂θj
log p(at | x1:t, a1:t−1,θ)

∑
rt+1:T

p(rt+1:T | x1:t, a1:t,θ)
T∑

t′=t+1

rt′

= E

[
T−1∑
t=1

∂

∂θj
log p(At | X1:t, A1:t−1,θ)Q

θ
t (X1:t, A1:t) | θ

]
,

where the so-called action value function Qθt is given by

Qθt (x
′
1:t, a

′
1:t) =

T∑
t′=t+1

E [Rt′ | X1:t = x′1:t, A1:t = a′1:t,θ] .

Intuitively, Qθt also gives the expected return for following the policy parameterized by θ after a particular
history of observations and actions.

Therefore, another expression for the gradient ∇θJ(θ) of the expected return J at θ is given by

∇θJ(θ) = E

[
T−1∑
t=1

∇θ log p(At | X1:t, A1:t−1,θ)Q
θ
t (X1:t, A1:t) | θ

]
.

31

However, using this expression to obtain an estimate to the gradient ∇θJ(θ) typically requires approximating
the unknown action value function Qθt . Such approximation will generally introduce bias (convergence to an
undesired expected value) in the corresponding estimate to ∇θJ(θ). Action value function approximation for
partially observable environments requires extensions to the methods presented in the previous sections.

The advantage function Aθt is defined by Aθt (x1:t, a1:t) = Qθt (x1:t, a1:t) − V θt (x1:t, a1:t−1), for all x1:t and a1:t.
By combining the previous results, yet another expression for the gradient ∇θJ(θ) of the expected return J at θ is
given by

∇θJ(θ) = E

[
T−1∑
t=1

∇θ log p(At | X1:t, A1:t−1,θ)A
θ
t (X1:t, A1:t) | θ

]
.

Using this expression to obtain an estimate to the gradient∇θJ(θ) typically requires approximating the unknown
advantage function Aθt . Such approximation also generally introduces a bias in the corresponding estimate to
∇θJ(θ). However, in practice, such estimate may be more efficient than the alternatives presented so far.

12 Tabular Bayesian Reinforcement Learning*
For an introduction to Bayesian statistics and the probability notation employed in this section, see the machine
learning notes by the same author.

Recall that a finite Markov decision process is defined by a finite set of states S = {1, . . . , |S|}, a finite set of
actions A = {1, . . . , |A|}, and the one-step dynamics model of an environment. For every state s, action a, and
state s′, the one-step dynamics model defines the probability Pass′ of transitioning to state s′ given action a in state
s and the expected reward Rass′ upon transitioning to state s′ given action a in state s.

Consider a finite set of rewards R. Furthermore, suppose that every reward is independent of its corresponding
state given the state and action that precede it. If we let Qas,r denote the probability of reward r given action a in
state s, then Rass′ =

∑
r rQas,r. Therefore, Rass′ can be easily derived given Qas,r for every r.

A history ht = s0, a0, r1, s1, . . . , st−1, at−1, rt, st summarizes an interaction between an agent and an environment
up to time step t. Let H denote an infinite set that contains every history of every length. An adaptive policy
π̃ : H×A → [0, 1] defines the probability π̃(h, a) of every action a given every history h.

The Bayesian reinforcement learning method presented in this section represents its knowledge about an envi-
ronment by a probability distribution over (one-step dynamics) models and uses this knowledge to find an optimal
adaptive policy.

Let θ(s,a) ∈ [0, 1]|S| denote a vector such that θ(s,a)s′ = Pass′ for every state s, action a, and state s′. Furthermore,
let θ denote a vector that concatenates every vector in {θ(s,a) | (s, a) ∈ S ×A}.

Similarly, let µ(s,a) ∈ [0, 1]|R| denote a vector such that µ(s,a)
i(r) = Qas,r for every state s, action a, and reward r,

where i : R → {1, . . . , |R|} maps each reward to a distinct identifier. Finally, let µ denote a vector that concatenates
every vector in {µ(s,a) | (s, a) ∈ S ×A}.

Considering our assumptions, the probability p(ht | θ,µ, π̃) of history ht given the transition parameters θ, the
reward parameters µ, and the adaptive policy π̃ is given by

p(ht | θ,µ, π̃) = p(s0)

t∏
t′=1

p(at′−1 | ht′−1, π̃)p(rt′ | st′−1, at′−1,µ)p(st′ | st′−1, at′−1,θ).

Note that if a history ht+1 = ht, at, rt+1, st+1 extends a history ht by action at, reward rt+1, and state st+1,

p(ht+1 | θ,µ, π̃) = p(ht, at, rt+1, st+1 | θ,µ, π̃) = p(ht | θ,µ, π̃)p(at | ht, π̃)p(rt+1 | st, at,µ)p(st+1 | st, at,θ).

Assuming that transition parameters, reward parameters, and adaptive policy are chosen independently,

p(ht,θ,µ, π̃) = p(θ,µ, π̃)p(ht | θ,µ, π̃) = p(θ)p(µ)p(π̃)p(ht | θ,µ, π̃).

Assuming independence between parameters of distinct pairs of states and actions,

p(θ) =
∏
(s,a)

p(θ(s,a)) p(µ) =
∏
(s,a)

p(µ(s,a)).

32

For every state s and action a, a convenient (conjugate) prior for the transition parameters θ(s,a) is the Dirichlet
joint probability density function. In that case, the prior density p(θ(s,a)) is given by

p(θ(s,a)) = Dirichlet(θ(s,a) | α) = 1

B(α)

∏
s′

(
θ
(s,a)
s′

)αs′−1

for every θ(s,a) in the |S|-dimensional probability simplex, where B is the generalized Beta function. The vector
α ∈ R|S|

>0 contains hyperparameters (pseudo-counts). For instance, we may let αs′ = 1/|S| for every state s′.
Similarly, for every state s and action a, let the prior density p(µ(s,a)) for reward parameters µ(s,a) be given by

p(µ(s,a)) = Dirichlet(µ(s,a) | α′) =
1

B(α′)

∏
r

(
µ
(s,a)
i(r)

)α′
i(r)−1

for every µ(s,a) in the |R|-dimensional probability simplex and hyperparameter vector α′ ∈ R|R|
>0 . For instance, we

may let α′
i(r) = 1/|R| for every reward r.

The corresponding posterior density p(θ,µ | ht, π̃) for model parameters (θ,µ) is given by

p(θ,µ | ht, π̃) = p(ht, π̃)
−1p(θ)p(µ)p(π̃)p(s0)

t∏
t′=1

p(at′−1 | ht′−1, π̃)p(rt′ | st′−1, at′−1,µ)p(st′ | st′−1, at′−1,θ).

By eliminating constants with respect to θ and µ and reorganizing terms,

p(θ,µ | ht, π̃) ∝θ,µ

[
p(θ)

t∏
t′=1

p(st′ | st′−1, at′−1,θ)

][
p(µ)

t∏
t′=1

p(rt′ | st′−1, at′−1,µ)

]
.

The first term on the right side of the proportionality statement above is given by

p(θ)

t∏
t′=1

p(st′ | st′−1, at′−1,θ) =

∏
(s,a)

Dirichlet(θ(s,a) | α)

[t∏
t′=1

θ
(st′−1,at′−1)
st′

]
.

For every state s and action a, let M(s,a) ∈ N|S| denote a vector such that M (s,a)
s′ is the number of times in the

history ht that action a in state s resulted in state s′. The previous equation can then be rewritten as

p(θ)

t∏
t′=1

p(st′ | st′−1, at′−1,θ) =

∏
(s,a)

1

B(α)

∏
s′

(
θ
(s,a)
s′

)αs′−1

∏
(s,a)

∏
s′

[
θ
(s,a)
s′

]M(s,a)

s′

 .
By reorganizing products,

p(θ)

t∏
t′=1

p(st′ | st′−1, at′−1,θ) =

∏
(s,a)

1

B(α)

∏
(s,a)

∏
s′

(
θ
(s,a)
s′

)αs′+M
(s,a)

s′ −1

 .

From the definition of a Dirichlet probability density function,

p(θ)

t∏
t′=1

p(st′ | st′−1, at′−1,θ) =

∏
(s,a)

1

B(α)

∏
(s,a)

Dirichlet(θ(s,a) | α+M(s,a))B(α+M(s,a))

 .
By eliminating constants with respect to θ,

p(θ)

t∏
t′=1

p(st′ | st′−1, at′−1,θ) ∝θ
∏
(s,a)

Dirichlet(θ(s,a) | α+M(s,a)).

33

Analogously,

p(µ)

t∏
t′=1

p(rt′ | st′−1, at′−1,µ) ∝µ
∏
(s,a)

Dirichlet(µ(s,a) | α′ +N(s,a)),

where N(s,a) ∈ N|R| denotes a vector such that N (s,a)
i(r) is the number of times in the history ht that action a in state

s resulted in reward r.
Therefore, the posterior density p(θ,µ | ht, π̃) for model parameters (θ,µ) is given by

p(θ,µ | ht, π̃) ∝θ,µ

∏
(s,a)

Dirichlet(θ(s,a) | α+M(s,a))

∏
(s,a)

Dirichlet(µ(s,a) | α′ +N(s,a))

 .
Because both sides of the proportionality statement above integrated over θ and µ result in one,

p(θ,µ | ht, π̃) =

∏
(s,a)

Dirichlet(θ(s,a) | α+M(s,a))

∏
(s,a)

Dirichlet(µ(s,a) | α′ +N(s,a))

 .
For every θ,µ, ht, and π̃, note that p(θ,µ, π̃ | ht) = p(θ,µ | ht, π̃)p(π̃ | ht) = f(θ,µ, ht)g(π̃, ht) for some fixed

f and g, which implies p(θ,µ, π̃ | ht) = p(θ,µ | ht)p(π̃ | ht). Consequently, if p(π̃ | ht) > 0,

p(θ,µ | ht) =
p(θ,µ, π̃ | ht)
p(π̃ | ht)

= p(θ,µ | ht, π̃).

Therefore, given the history, the model parameters are independent of the adaptive policy.
For every θ,µ, and ht, also note that p(θ,µ | ht) = f(θ, ht)g(µ, ht) for some fixed f and g, which implies

p(θ,µ | ht) = p(θ | ht)p(µ | ht). Consequently, if p(µ | ht) > 0,

p(θ | ht) =
p(θ,µ | ht)
p(µ | ht)

∝θ
∏
(s,a)

Dirichlet(θ(s,a) | α+M(s,a)).

Because both sides of the proportionality statement above integrated over θ clearly result in one,

p(θ | ht) =
∏
(s,a)

Dirichlet(θ(s,a) | α+M(s,a)).

Analogously, the posterior density p(θ(s,a) | ht) is given by

p(θ(s,a) | ht) = Dirichlet(θ(s,a) | α+M(s,a)).

Similarly, the posterior density p(µ(s,a) | ht) is given by

p(µ(s,a) | ht) = Dirichlet(µ(s,a) | α′ +N(s,a)).

The value V π̃(ht) of an adaptive policy π̃ given the history ht is defined by

V π̃(ht) = E

[∞∑
k=0

γkRt+k+1 | ht, π̃

]
,

where γ ∈ [0, 1) is a hyperparameter that controls the importance of future rewards.
Let r∗ = maxR denote the maximum reward. The value V π̃(ht) is upper bounded, since

V π̃(ht) ≤
∞∑
k=0

γkr∗ = r∗
∞∑
k=0

γk =
r∗

1− γ
.

An adaptive policy π̃ is optimal if V π̃(h) ≥ V π̃
′
(h) for every adaptive policy π̃′ and history h. The remainder

of this section is concerned with finding an optimal adaptive policy.

34

By the law of total expectation,

V π̃(ht) =
∑
at

∑
rt+1

∑
st+1

p(at, rt+1, st+1 | ht, π̃)E

[∞∑
k=0

γkRt+k+1 | ht, at, rt+1, st+1, π̃

]
.

By reordering terms and using the fact that p(at | ht, π̃) = π̃(ht, at),

V π̃(ht) =
∑
at

π̃(ht, at)
∑
rt+1

∑
st+1

p(rt+1, st+1 | ht, at, π̃)E

[∞∑
k=0

γkRt+k+1 | ht+1, π̃

]
,

where history ht+1 = ht, at, rt+1, st+1 denotes history ht extended by action at, reward rt+1, and state st+1.
Because the reward rt+1 is part of the history ht+1,

V π̃(ht) =
∑
at

π̃(ht, at)
∑
rt+1

∑
st+1

p(rt+1, st+1 | ht, at, π̃)

[
rt+1 + γE

[∞∑
k=1

γk−1Rt+k+1 | ht+1, π̃

]]
.

By the definition of the value V π̃(ht+1) of an adaptive policy π̃ given the history ht+1,

V π̃(ht) =
∑
at

π̃(ht, at)
∑
rt+1

∑
st+1

p(rt+1, st+1 | ht, at, π̃)
[
rt+1 + γV π̃(ht+1)

]
.

By marginalization, the probability p(rt+1, st+1 | ht, at, π̃) is given by

p(rt+1, st+1 | ht, at, π̃) =
∫
µ

∫
θ

p(rt+1, st+1 | θ,µ, ht, at, π̃)p(θ,µ | at, ht, π̃) dθ dµ.

In what follows, we will examine the two terms inside these integrals.
First, consider the probability p(rt+1, st+1 | θ,µ, ht, at, π̃), which is given by

p(rt+1, st+1 | θ,µ, ht, at, π̃) =
p(rt+1, st+1,θ,µ, ht, at, π̃)

p(θ,µ, ht, at, π̃)
=

p(ht+1,θ,µ, π̃)

p(θ,µ, ht, at, π̃)
=
p(ht+1 | θ,µ, π̃)p(θ,µ, π̃)

p(θ,µ, ht, at, π̃)
,

where history ht+1 = ht, at, rt+1, st+1 extends history ht by action at, reward rt+1, and state st+1.
By the recursive relationship between probabilities of histories,

p(rt+1, st+1 | θ,µ, ht, at, π̃) =
p(ht | θ,µ, π̃)p(at | ht, π̃)p(rt+1 | st, at,µ)p(st+1 | st, at,θ)p(θ,µ, π̃)

p(θ,µ, ht, at, π̃)
.

Note that p(rt+1, st+1 | θ,µ, ht, at, π̃) = f(rt+1,θ,µ, ht, at, π̃)g(st+1,θ,µ, ht, at, π̃) for some fixed f and g,
which implies that p(rt+1, st+1 | θ,µ, ht, at, π̃) = p(rt+1 | θ,µ, ht, at, π̃)p(st+1 | θ,µ, ht, at, π̃). Consequently, if
p(rt+1 | θ,µ, ht, at, π̃) > 0,

p(st+1 | θ,µ, ht, at, π̃) =
p(rt+1, st+1 | θ,µ, ht, at, π̃)
p(rt+1 | θ,µ, ht, at, π̃)

∝st+1
p(st+1 | st, at,θ).

Because both sides of the proportionality statement above summed over st+1 clearly result in one,

p(st+1 | θ,µ, ht, at, π̃) = p(st+1 | st, at,θ).

Analogously,

p(rt+1 | θ,µ, ht, at, π̃) = p(rt+1 | st, at,µ).

Consequently,

p(rt+1, st+1 | θ,µ, ht, at, π̃) = p(rt+1 | st, at,µ)p(st+1 | st, at,θ).

Second, consider the probability p(θ,µ, at | ht, π̃), which is given by

p(θ,µ, at | ht, π̃) =
p(θ,µ, at, ht, π̃)

p(ht, π̃)
= p(ht, π̃)

−1
∑
rt+1

∑
st+1

p(θ,µ, at, rt+1, st+1, ht, π̃).

35

By the recursive relationship between probabilities of histories,

p(θ,µ, at | ht, π̃) = p(ht, π̃)
−1
∑
rt+1

∑
st+1

p(ht | θ,µ, π̃)p(at | ht, π̃)p(rt+1 | st, at,µ)p(st+1 | st, at,θ)p(θ,µ, π̃).

By moving constants outside summations,

p(θ,µ, at | ht, π̃) = p(ht, π̃)
−1p(ht | θ,µ, π̃)p(at | ht, π̃)p(θ,µ, π̃)

∑
rt+1

p(rt+1 | st, at,µ)
∑
st+1

p(st+1 | st, at,θ).

Because each summation clearly results in one,

p(θ,µ, at | ht, π̃) = p(ht, π̃)
−1p(ht | θ,µ, π̃)p(at | ht, π̃)p(θ,µ, π̃).

Note that p(θ,µ, at | ht, π̃) = f(θ,µ, ht, π̃)g(at, ht, π̃) for some fixed f and g, which implies p(θ,µ, at | ht, π̃) =
p(θ,µ | ht, π̃)p(at | ht, π̃). Consequently, if p(at | ht, π̃) > 0 and p(π̃ | ht) > 0,

p(θ,µ | at, ht, π̃) =
p(θ,µ, at | ht, π̃)
p(at | ht, π̃)

= p(θ,µ | ht, π̃) = p(θ,µ | ht) = p(θ | ht)p(µ | ht),

where the last two equalities follow from previous results.
Finally, the previous results can be combined to show that the probability p(rt+1, st+1 | ht, at, π̃) is given by

p(rt+1, st+1 | ht, at, π̃) =
∫
µ

∫
θ

p(rt+1 | st, at,µ)p(st+1 | st, at,θ)p(θ | ht)p(µ | ht) dθ dµ.

By moving constants outside integrals,

p(rt+1, st+1 | ht, at, π̃) =
[∫
µ

p(rt+1 | st, at,µ)p(µ | ht) dµ
] [∫

θ

p(st+1 | st, at,θ)p(θ | ht) dθ
]
.

Note that p(rt+1, st+1 | ht, at, π̃) = f(rt+1, ht, at, π̃)g(st+1, ht, at, π̃) for some fixed f and g, which implies
p(rt+1, st+1 | ht, at, π̃) = p(rt+1 | ht, at, π̃)p(st+1 | ht, at, π̃). Consequently, if p(rt+1 | ht, at, π̃) > 0,

p(st+1 | ht, at, π̃) =
p(rt+1, st+1 | ht, at, π̃)
p(rt+1 | ht, at, π̃)

∝st+1

∫
θ

p(st+1 | st, at,θ)p(θ | ht) dθ.

Note that the result of summing the term on the right of the proportionality statement above over st+1 is∑
st+1

∫
θ

p(st+1 | st, at,θ)p(θ | ht) dθ =

∫
θ

p(θ | ht)
∑
st+1

p(st+1 | st, at,θ) dθ = 1.

Because both sides of the proportionality statement above summed over st+1 clearly result in one,

p(st+1 | ht, at, π̃) =
∫
θ

p(st+1 | st, at,θ)p(θ | ht) dθ.

Analogously,

p(rt+1 | ht, at, π̃) =
∫
µ

p(rt+1 | st, at,µ)p(µ | ht) dµ.

Considering the definition of the transition parameters θ and the law of total expectation,

p(st+1 | ht, at, π̃) =
∫
θ

θ(st,at)st+1
p(θ | ht) dθ =

∫
θ(st,at)

θ(st,at)st+1
p(θ(st,at) | ht) dθ(st,at).

By recalling that the posterior over transition parameters is given by a Dirichlet distribution,

p(st+1 | ht, at, π̃) =
∫
θ(st,at)

θ(st,at)st+1
Dirichlet(θ(st,at) | α+M(st,at)) dθ(st,at).

36

Because the probability p(st+1 | ht, at, π̃) is the expected value of a (jointly-)Dirichlet variable,

p(st+1 | ht, at, π̃) =
αst+1 +M

(st,at)
st+1∑

s′ αs′ +M
(st,at)
s′

,

where M (s,a)
s′ is the number of times in the history ht that action a in state s resulted in state s′.

Analogously,

p(rt+1 | ht, at, π̃) =
α′
i(rt+1)

+N
(st,at)
i(rt+1)∑

r′ α
′
i(r′) +N

(st,at)
i(r′)

,

where i : R → {1, . . . , |R|} maps each reward to a distinct identifier, and N
(s,a)
i(r) is the number of times in the

history ht that action a in state s resulted in reward r.
Therefore, the probability p(rt+1, st+1 | ht, at, π̃) is given by

p(rt+1, st+1 | ht, at, π̃) =

 α′
i(rt+1)

+N
(st,at)
i(rt+1)∑

r′ α
′
i(r′) +N

(st,at)
i(r′)

[αst+1
+M

(st,at)
st+1∑

s′ αs′ +M
(st,at)
s′

]
.

Recall that the value V π̃(ht) of an adaptive policy π̃ given the history ht is

V π̃(ht) =
∑
at

π̃(ht, at)
∑
rt+1

∑
st+1

p(rt+1, st+1 | ht, at, π̃)
[
rt+1 + γV π̃(ht+1)

]
,

where the history ht+1 = ht, at, rt+1, st+1 extends a history ht by action at, reward rt+1, and state st+1. In that
case, let P̄aththt+1

= p(rt+1, st+1 | ht, at, π̃) and R̄aththt+1
= rt+1. Alternatively, if history h′ is incompatible with

history h and action a, let P̄ahh′ = R̄ahh′ = 0. In either case, note that P̄ahh′ is independent of the adaptive policy π̃.
The value V π̃(h) of an adaptive policy π̃ given the history h can then be rewritten as

V π̃(h) =
∑
a

π̃(h, a)
∑
h′

P̄ahh′

[
R̄ahh′ + γV π̃(h′)

]
.

Note that the equation above is the Bellman equation for a policy π̃ of an infinite Markov decision process whose
state space is the set of histories H. Most importantly, the one-step dynamics model of this so-called Bayes-adaptive
Markov decision process is entirely known. Unfortunately, finding an optimal policy for a known infinite Markov
decision process is not generally feasible.

Suppose that V π̃(ht) = 0 for every adaptive policy π̃ and history ht whenever t > T . In that case, policy
evaluation requires computing only a finite number of values. However, because there are |S| (|A||R||S|)t histories
with t time steps, the number of histories with up to T time steps is given by

T∑
t=0

|S| (|A||R||S|)t = |S|

(
1− (|A||R||S|)T+1

1− |A||R||S|

)
.

Therefore, although dynamic programming algorithms could be used to find optimal adaptive policies given a
(time-limited) Bayes-adaptive Markov decision process, the number of states involved is usually prohibitively large.

13 Tabular Bayesian Reinforcement Learning Algorithms*
The Bayesian reinforcement learning methods presented in this section represent their knowledge about an envi-
ronment by a probability distribution over models and use this knowledge to search for adequate actions.

A Bayes-adaptive control algorithm (Alg. 14) employs an iterative procedure that starts with an arbitrary
adaptive policy (Line 1) and searches for a better adaptive policy after each interaction with the environment (Line
5). If this search were able to find an adaptive policy π̃ such that V π̃(ht) ≥ V π̃

′
(ht) for every adaptive policy π̃′

and time step t, then this control algorithm would be optimal. Unfortunately, that is not generally feasible.
As a concrete example of a Bayes-adaptive control algorithm, this section presents Bayes-adaptive recurrent

policy gradients, which is inspired by Bayes-adaptive planning with function approximation [6].

37

Algorithm 14 Bayes-adaptive control algorithm
Input: prior over (one-step dynamics) models, number of interactions T , discount factor γ
1: π̃ ← arbitrary adaptive policy
2: s0 ← initial state given by the environment
3: h0 ← s0
4: for each t ∈ {0, . . . , T − 1} do
5: π̃ ← adaptive policy that potentially improves on π̃ given the prior and the history ht
6: at ← action drawn from the adaptive policy π̃ for the history ht
7: rt+1, st+1 ← reward and state given by the environment for action at
8: ht+1 ← (ht, (at, rt+1, st+1))
9: end for

In order to employ Bayes-adaptive recurrent policy gradients, suppose that the optimal adaptive policy belongs
to a parameterized family of functions {π̃(ψ) | ψ ∈ Ψ}, where Ψ is a set of parameters. In that case, π̃(ψ)(h, a) is
the probability of action a given the history h and the adaptive policy parameters ψ. For instance, the adaptive
policy π̃(ψ) may correspond to a recurrent neural network parameterized by ψ.

Whenever convenient, we let the adaptive policy parameters ψ denote the adaptive policy π̃(ψ). For instance,
the value V ψ(ht) of the adaptive policy (parameters) ψ given the history ht is defined by

V ψ(ht) = E

[∞∑
k=0

γkRt+k+1 | ht,ψ

]
,

where γ ∈ [0, 1) is a hyperparameter that controls the importance of future rewards.
The value V ψH (ht) of the adaptive policy ψ given the history ht for the horizon H is defined by

V ψH (ht) = E

[
H−1∑
k=0

γkRt+k+1 | ht,ψ

]
,

such that limH→∞ V ψH (ht) = V ψ(ht). By the law of total expectation,

V ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht,ψ)E

[
H−1∑
k=0

γkRt+k+1 | ht,θ,µ,ψ

]
dθ dµ.

Because the model parameters are independent of the adaptive policy given the history,

V ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht)E

[
H−1∑
k=0

γkRt+k+1 | ht,θ,µ,ψ

]
dθ dµ.

By letting ht+H = ht, at, rt+1, st+1, . . . , at+H−1, rt+H , st+H denote history ht extended by H time steps,

V ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht)
∑
ht+H

p(ht+H | ht,θ,µ,ψ)
H−1∑
k=0

γkrt+k+1 dθ dµ.

The equation above can also be rewritten as

V ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht)
H−1∑
k=0

γk
∑
ht+H

p(ht+H | ht,θ,µ,ψ)rt+k+1 dθ dµ.

If we assume that V ψH (ht) is differentiable with respect to ψj for all j, it is possible to use gradient-based methods
(such as gradient ascent) to attempt to find an optimal adaptive policy for the horizon H. Using the Leibniz integral
rule, the partial derivative ∂

∂ψj
V ψH (ht) of V ψH (ht) with respect to ψj at ψ is given by

∂

∂ψj
V ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht)
H−1∑
k=0

γk
∑
ht+H

∂

∂ψj
p(ht+H | ht,θ,µ,ψ)rt+k+1 dθ dµ.

38

If we further assume that p(ht+H | ht,θ,µ,ψ) > 0 for every ht+H , ht, θ,µ, and ψ, the so-called likelihood ratio
trick uses the fact that

∂

∂ψj
p(ht+H | ht,θ,µ,ψ) = p(ht+H | ht,θ,µ,ψ)

∂

∂ψj
log p(ht+H | ht,θ,µ,ψ).

By the recursive relationship between probabilities of histories,

p(ht+H | θ,µ,ψ) = p(ht | θ,µ,ψ)
t+H∏
t′=t+1

p(at′−1 | ht′−1,ψ)p(rt′ | st′−1, at′−1,µ)p(st′ | st′−1, at′−1,θ).

Because history ht+H extends history ht, note that p(ht+H , ht | θ,µ,ψ) = p(ht+H | θ,µ,ψ). Furthermore,

p(ht+H | ht,θ,µ,ψ) =
p(ht+H | θ,µ,ψ)
p(ht | θ,µ,ψ)

=

t+H∏
t′=t+1

p(at′−1 | ht′−1,ψ)p(rt′ | st′−1, at′−1,µ)p(st′ | st′−1, at′−1,θ).

By taking the logarithm of both sides,

log p(ht+H | ht,θ,µ,ψ) =
t+H∑
t′=t+1

log p(at′−1 | ht′−1,ψ) + log p(rt′ | st′−1, at′−1,µ) + log p(st′ | st′−1, at′−1,θ).

Because only the action probabilities depend on the adaptive policy parameters,

∂

∂ψj
log p(ht+H | ht,θ,µ,ψ) =

t+H∑
t′=t+1

∂

∂ψj
log p(at′−1 | ht′−1,ψ).

Finally, the partial derivative ∂
∂ψj

V ψH (ht) may be rewritten using the likelihood ratio trick, which gives

∂

∂ψj
V ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht)

H−1∑
k=0

γk
∑
ht+H

p(ht+H | ht,θ,µ,ψ)

t+H∑
t′=t+1

rt+k+1
∂

∂ψj
log p(at′−1 | ht′−1,ψ) dθ dµ.

The expectation over histories on the right side of the equation above can be rewritten such that

∂

∂ψj
V ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht)
H−1∑
k=0

γk
t+H∑
t′=t+1

E
[
Rt+k+1

∂

∂ψj
log p(At′−1 | Ht′−1,ψ) | ht,θ,µ,ψ

]
dθ dµ.

Let E denote one of the terms inside the innermost summation above for which t′ ≥ t+ k + 2. In that case, a
history ht′−1 that extends history ht will contain the reward rt+k+1, which implies

E =
∑
ht′−1

∑
at′−1

p(at′−1, ht′−1 | ht,θ,µ,ψ)rt+k+1
∂

∂ψj
log p(at′−1 | ht′−1,ψ).

The equation above can be rewritten as

E =
∑
ht′−1

∑
at′−1

p(ht′−1 | ht,θ,µ,ψ)p(at′−1 | ht′−1, ht,θ,µ,ψ)rt+k+1
∂

∂ψj
log p(at′−1 | ht′−1,ψ).

Because p(at′−1 | ht′−1, ht,θ,µ,ψ) = p(at′−1 | ht′−1,θ,µ,ψ) = p(at′−1 | ht′−1,ψ),

E =
∑
ht′−1

∑
at′−1

p(ht′−1 | ht,θ,µ,ψ)p(at′−1 | ht′−1,ψ)rt+k+1
∂

∂ψj
log p(at′−1 | ht′−1,ψ).

By reversing the likelihood ratio trick,

E =
∑
ht′−1

∑
at′−1

p(ht′−1 | ht,θ,µ,ψ)rt+k+1
∂

∂ψj
p(at′−1 | ht′−1,ψ).

39

By pushing constants outside the innermost summation and using the fact that ∂
∂ψj

1 = 0,

E =
∑
ht′−1

p(ht′−1 | ht,θ,µ,ψ)rt+k+1
∂

∂ψj

∑
at′−1

p(at′−1 | ht′−1,ψ) = 0.

Therefore, each term E may be discarded from the previous expression for ∂
∂ψj

V ψH (ht), which gives

∂

∂ψj
V ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht)E

[
H−1∑
k=0

γkRt+k+1

t+k+1∑
t′=t+1

∂

∂ψj
log p(At′−1 | Ht′−1,ψ) | ht,θ,µ,ψ

]
dθ dµ.

By reordering the summations, the expression above can be conveniently rewritten as

∂

∂ψj
V ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht)E

[
t+H∑
t′=t+1

∂

∂ψj
log p(At′−1 | Ht′−1,ψ)

H−1∑
k=t′−t−1

γkRt+k+1 | ht,θ,µ,ψ

]
dθ dµ.

Finally, the gradient ∇ψV ψH (ht) with respect to ψ of V ψH (ht) at ψ is given by

∇ψV ψH (ht) =

∫
µ

∫
θ

p(θ,µ | ht)E

[
t+H∑
t′=t+1

∇ψ log p(At′−1 | Ht′−1,ψ)

H−1∑
k=t′−t−1

γkRt+k+1 | ht,θ,µ,ψ

]
dθ dµ.

This result has a subtle intuitive interpretation. In gradient ascent, positive expected outcomes across plausible
models contribute towards making the probability of a decision higher, while negative expected outcomes across
plausible models contribute towards making the probability of a decision lower.

For a given history ht, consider a sequence
((
θ(i),µ(i)

))N
i=1

obtained by sampling model parameters such that(
θ(i),µ(i)

)
∼ p(· | ht) for every i. For each i, consider also a sequence

(
h
(i,j)
t+H

)M
j=1

obtained by sampling histories

such that h(i,j)t+H ∼ p(· | ht,θ(i),µ(i),ψ) for every j, and let h(i,j)t+H = ht, a
(i,j)
t , r

(i,j)
t+1 , s

(i,j)
t+1 , . . . , a

(i,j)
t+H−1, r

(i,j)
t+H , s

(i,j)
t+H . A

corresponding Monte Carlo estimate of the gradient ∇ψV ψH (ht) with respect to ψ of V ψH (ht) at ψ is given by

1

NM

N∑
i=1

M∑
j=1

t+H∑
t′=t+1

∇ψ log p(a
(i,j)
t′−1 | h

(i,j)
t′−1,ψ)

H−1∑
k=t′−t−1

γkr
(i,j)
t+k+1.

Bayes-adaptive recurrent policy gradients combines such an estimate with stochastic gradient ascent to search
for a better adaptive policy after each interaction with an environment (Alg. 15).

Although the Monte Carlo estimate of the gradient ∇ψV ψH (ht) presented above is unbiased, the corresponding
estimator may have high variance. A so-called baseline function may be employed in an attempt to reduce this
variance by using the fact that the gradient ∇ψV ψH (ht) with respect to ψ of V ψH (ht) at ψ is given by

∇ψV ψH (ht) =

∫
µ

∫
θ
p(θ,µ | ht)E

 t+H∑
t′=t+1

∇ψ log p(At′−1 | Ht′−1,ψ)

 H−1∑
k=t′−t−1

γkRt+k+1

−B(ht,θ,µ,ψ)(Ht′−1)

 | ht,θ,µ,ψ

 dθ dµ,

for any choice of baseline function B(ht,θ,µ,ψ) : H → R that maps histories to real numbers and optionally depends
on ht,θ,µ and ψ. In order to show this, note that the expression on the right side may be written as

∇ψV ψH (ht)−
∫
µ

∫
θ

p(θ,µ | ht)
t+H∑
t′=t+1

E
[
∇ψ log p(At′−1 | Ht′−1,ψ)B

(ht,θ,µ,ψ)(Ht′−1) | ht,θ,µ,ψ
]
dθ dµ

based on a previously available expression for the gradient ∇ψV ψH (ht).
Let E denote the j-element of each term inside the summation in the expression above such that

E = E
[
∂

∂ψj
log p(At′−1 | Ht′−1,ψ)B

(ht,θ,µ,ψ)(Ht′−1) | ht,θ,µ,ψ
]
.

40

Algorithm 15 Bayes-adaptive recurrent policy gradients
Input: prior over (one-step dynamics) models, number of interactions T , search horizon H, number of models to

be drawn N , number of histories to be drawn M , learning rate η, discount factor γ
1: ψ ← arbitrary adaptive policy parameters
2: s0 ← initial state given by the environment
3: h0 ← s0
4: for each t ∈ {0, . . . , T − 1} do
5: for each i ∈ {1, . . . , N} do
6: θ(i),µ(i) ← model drawn from the posterior p(· | ht)
7: for each j ∈ {1, . . . ,M} do
8: h

(i,j)
t+H ← history that extends ht drawn from p(· | ht,θ(i),µ(i),ψ)

9: ψ ← ψ + η
∑t+H
t′=t+1∇ψ log p(a

(i,j)
t′−1 | h

(i,j)
t′−1,ψ)

∑H−1
k=t′−t−1 γ

kr
(i,j)
t+k+1

10: end for
11: end for
12: at ← action drawn from the adaptive policy π̃(ψ) for the history ht
13: rt+1, st+1 ← reward and state given by the environment for action at
14: ht+1 ← (ht, (at, rt+1, st+1))
15: end for

By making the expectation explicit,

E =
∑
ht′−1

∑
at′−1

p(at′−1, ht′−1 | ht,θ,µ,ψ)
∂

∂ψj
log p(at′−1 | ht′−1,ψ)B

(ht,θ,µ,ψ)(ht′−1).

By factoring the joint probability mass function,

E =
∑
ht′−1

∑
at′−1

p(ht′−1 | ht,θ,µ,ψ)p(at′−1 | ht′−1, ht,θ,µ,ψ)
∂

∂ψj
log p(at′−1 | ht′−1,ψ)B

(ht,θ,µ,ψ)(ht′−1).

Because p(at′−1 | ht′−1, ht,θ,µ,ψ) = p(at′−1 | ht′−1,θ,µ,ψ) = p(at′−1 | ht′−1,ψ),

E =
∑
ht′−1

∑
at′−1

p(ht′−1 | ht,θ,µ,ψ)p(at′−1 | ht′−1,ψ)
∂

∂ψj
log p(at′−1 | ht′−1,ψ)B

(ht,θ,µ,ψ)(ht′−1).

By reversing the likelihood ratio trick,

E =
∑
ht′−1

∑
at′−1

p(ht′−1 | ht,θ,µ,ψ)
∂

∂ψj
p(at′−1 | ht′−1,ψ)B

(ht,θ,µ,ψ)(ht′−1).

By pushing constants outside the innermost summation and using the fact that ∂
∂ψj

1 = 0,

E =
∑
ht′−1

p(ht′−1 | ht,θ,µ,ψ)B(ht,θ,µ,ψ)(ht′−1)
∂

∂ψj

∑
at′−1

p(at′−1 | ht′−1,ψ) = 0,

which shows that the expression subtracted from the gradient ∇ψV ψH (ht) is equal to zero.
A typical choice of baseline function approximates the value of a history for the remaining horizon such that

B(ht,θ,µ,ψ)(ht′−1) ≈ E

[
H−1∑

k=t′−t−1

γkRt+k+1 | ht′−1,θ,µ,ψ

]
.

If such a baseline is adopted for gradient ascent, outperforming the expected outcome across plausible mod-
els contributes towards making the probability of a decision higher, while underperforming the expected outcome
across plausible models contributes towards making the probability of a decision lower. Unfortunately, it is gen-
erally difficult to approximate the desired value, and even a perfect approximation would not guarantee that the
corresponding estimator would have a reduced variance.

41

The posterior sampling algorithm is a heuristic alternative to Bayes-adaptive control algorithms (Alg. 16). This
algorithm starts by drawing a model from the posterior. A dynamic programming algorithm (such as policy iteration
or value iteration) is then used to find an optimal policy for this model. Finally, this policy is used to interact with
the environment for a fixed number of time steps H, and the entire process repeats. Intuitively, increased certainty
leads to decreased exploration. This heuristic has good asymptotic performance in episodic settings [7].

Algorithm 16 Posterior sampling control algorithm
Input: prior over (one-step dynamics) models, number of interactions T , commitment time H, discount factor γ
1: s0 ← initial state given by the environment
2: h0 ← s0
3: for each t ∈ {0, . . . , T − 1} do
4: if H divides t then
5: θ,µ← model drawn from the posterior p(· | ht)
6: P,R ← one-step dynamics functions corresponding to model θ,µ
7: π ← optimal policy for the one-step dynamics functions P and R and discount factor γ
8: end if
9: at ← π(st)

10: rt+1, st+1 ← reward and state given by the environment for action at
11: ht+1 ← (ht, (at, rt+1, st+1))
12: end for

The posterior predictive algorithm is another heuristic alternative to Bayes-adaptive control algorithms (Alg.
17). This algorithm starts by using a dynamic programming algorithm (such as policy iteration or value iteration)
to find an optimal policy for the so-called expected Markov decision process. This policy is then used to interact
with the environment for a fixed number of time steps H, and the entire process repeats.

Algorithm 17 Posterior predictive control algorithm
Input: prior over (one-step dynamics) models, number of interactions T , commitment time H, discount factor γ
1: s0 ← initial state given by the environment
2: h0 ← s0
3: for each t ∈ {0, . . . , T − 1} do
4: if H divides t then
5: P,R ← one-step dynamics functions of the expected Markov decision process given the history ht
6: π ← optimal policy for the one-step dynamics functions P and R and discount factor γ
7: end if
8: at ← π(st)
9: rt+1, st+1 ← reward and state given by the environment for action at

10: ht+1 ← (ht, (at, rt+1, st+1))
11: end for

The one-step dynamics functions P and R of the expected Markov decision process given the history ht are
defined by

Pass′ =
αs′ +M

(s,a)
s′∑

s′′ αs′′ +M
(s,a)
s′′

,

where M (s,a)
s′ is the number of times in the history ht that action a in state s resulted in state s′, and

Rass′ =
∑
r

r

 α′
i(r) +N

(s,a)
i(r)∑

r′ α
′
i(r′) +N

(s,a)
i(r′)

 ,
where N (s,a)

i(r) is the number of times in the history ht that action a in state s resulted in reward r.
The survey by Ghavamzadeh et al. [8] covers additional tabular Bayesian reinforcement learning algorithms.

License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License bnc.

42

References
[1] Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction. MIT Press, 1998.

[2] Peters, J. and Schaal, S. Policy gradient methods for robotics. International Conference on Intelligent Robots
and Systems, 2006.

[3] Schulman, J. and Abbeel, P. Deep Reinforcement Learning, Available at http://rll.berkeley.edu/
deeprlcourse, 2016.

[4] Silver, D. Reinforcement learning, Available at http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.
html, 2016.

[5] Wierstra, D., Förster, A., Peters, J., Schmidhuber, J. Recurrent policy gradients. Logic Journal of IGPL, 2010.

[6] Guez, A. Sample-based Search Methods for Bayes-Adaptive Planning, PhD thesis, University College London,
2015

[7] Osband, I. Deep exploration via randomized value functions, PhD thesis, Stanford University, 2016.

[8] Ghavamzadeh, M., Mannor, S., Pineau, J. and Tamar, A. Bayesian reinforcement learning: A survey. Founda-
tions and Trends in Machine Learning, 8(5-6), pp.359-483, 2015.

43

http://rll.berkeley.edu/deeprlcourse
http://rll.berkeley.edu/deeprlcourse
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

	Introduction
	Evaluative Feedback
	The Reinforcement Learning Problem
	Dynamic Programming
	Appendix: convergence of iterative policy evaluation

	Monte Carlo Methods
	Temporal-Difference Learning
	Eligibility Traces
	Generalization and Function Approximation
	Planning and Learning
	Policy Gradient Methods *
	Recurrent Policy Gradient Methods *
	Tabular Bayesian Reinforcement Learning*
	Tabular Bayesian Reinforcement Learning Algorithms*

