Notes on Measure-Theoretic Probability

Paulo Eduardo Rauber
2022

1 Measure spaces

A set S contains s if s € S. A set S includes F if F C S.
An algebra ¥y on a set S is a set of subsets of S such that

o S ey,

o If FF € Xy, then F°¢ € ¥y, where F* =S\ F,

o If F/G € 3y, then FUG € X.
Consequently, if ¥y is an algebra on S,

o )Xy,

o If F1G € Xy, then FNG € .

A trivial algebra on S is given by {0, S}.
A o-algebra ¥ on S is an algebra on S such that

U Foex

neN

for any sequence (F,, € ¥ | n € N), which also implies

ﬂmez

neN

A measurable space (S,) is a pair composed of a set S and a o-algebra ¥ on S. An element of ¥ is called a
Y-measurable subset of S.

Let C be a set of subsets of S. The o-algebra o(C) generated by C is the smallest o-algebra ¥ on S such that
C C X. The o-algebra o(C) is the intersection of all the o-algebras on S that include C. Note that the set P(S) of
all subsets of S is a g-algebra on S that includes any set of subsets C.

The Borel B(R) o-algebra is the o-algebra on R generated by the set of open sets of real numbers.

Let m(R) = {(—o0,z] | x € R} be the set that contains every interval that contains every real number smaller
or equal to every real number z € R. We will now show that the o-algebra generated by 7(R) is o(7w(R)) = B(R).

First, recall that (—oo,z] = (,cn+(—00,2 + n~'). Because B(R) is a o-algebra on R that contains every
(=00, +n~1), we have (—oo,z] € B(R). Because B(R) is a o-algebra on R that includes 7(R) and o(7(R)) is the
smallest o-algebra on R that includes 7(R), we have o(7(R)) C B(R).

Second, recall that every open set of real numbers is a countable union of open intervals. Because o(m(R)) is a
o-algebra on R, if it contains every open interval, then it contains every open set of real numbers. This would also
imply that B(R) C o(n(R)), since o(m(R)) is a o-algebra on R and B(R) is the the smallest o-algebra on R that
contains every open set of real numbers. In order to show that o(m(R)) contains every open interval, first note that
(a,u] = (—oo,u]N(—00,a)® € o(w(R)) for any u > a and then note that (a,b) = U,en+ (a,b—en™1] for e = (b—a)/2.

Consider an algebra ¥ on a set S. A function ug : X9 — [0,00] is called additive if uo(f)) = 0 and, for any
F,G € Xg such that F NG = 0,

10(F UG) = pio(F) + 10(G).

A function pg : o — [0, 00] is called countably additive if uo(@) = 0 and, for any sequence (F,, € ¥o | n € N)

such that F,, N F,, = 0 for n # m,
Ho (U Fn) = ZMO(Fn)

neN neN
whenever |,y Fn € ¥o. This last requirement is always met when X is a o-algebra.
Let (S,X¥) be a measurable space. A countably additive function p : ¥ — [0, 00] is called a measure on (S, ).
The triple (S, %, i) is called a measure space, which has the following properties:



o If u(S) < oo and A, B € 3, then u(AU B) = u(A) + u(B) — u(AN B),
o If A, BeX, then u(AUB) < u(A) + u(B),

o 1 (Unen Fr) <X en 1(Fr) for any sequence (F, € ¥ |n € N).

A measure p on the measurable space (5, Y) is called finite if ;1(S) < co. A measure p on the measurable space
(S,%) is called o-finite if there is a sequence (S, € ¥ | n € N) such that u(S,) < oo and UpenSy, = S.

A measure p on the measurable space (S, Y) is called a probability measure if u(S) = 1. The triple (S, %, ) is
then called a probability triple. A set F' € ¥ is called p-null if u(F) = 0. If a statement is false only for elements
of a p-null set F' € 3, then the statement is said to be true almost everywhere.

A 7m-system Z on S is a set of subsets of S such that if I;,I € Z, then I1 NI € Z. Let ¥ = o(Z) be the o-algebra
generated by a m-system Z. If ;11 and po are measures on the measurable space (S, £) such that p1(S) = p2(5) < 00
and pq (1) = po(I) for any I € Z, then py (F') = po(F) for any F' € ¥. Therefore, if two probability measures agree
on a m-system, then they agree on the o-algebra generated by that m-system.

Carathéodory’s extension theorem states that if 3¢ is an algebra on S and ¥ = ¢(3) is the o-algebra generated
by ¥p and g : g — [0, 00] is a countably additive function, then there exists a measure p on the measurable space
(S, %) such that pu(F) = puo(F) for any F € Xg. If 119(S) < oo, then p is unique, since an algebra is a w-system.

Let Xy be the algebra on the set S = (0,1] that contains every F such that

F =
k

(ak, br],
=1
wherer e Nand 0 < a1 <b1 <...<a, <b.<1.
Let 1o : o — [0, 1] denote the countably additive function given by

s

po(F) = (b — ax).

k=1

Let B((0,1]) = 0(Z0) be the o-algebra generated by ¥y. The unique measure p : B((0,1]) — [0,1] on the
measurable space ((0,1],B8((0,1])) that agrees with po on the algebra Xy is called the Lebesgue measure Leb
on ((0,1],B((0,1])). The o-finite Lebesgue measure Leb on the measurable space (R, B(R)) is similarly defined.
Intuitively, a Lebesgue measure Leb assigns lenghts.

Let a, 1T a denote that a sequence of real numbers (a, | n € N) is such that a, < a,41 and a = lim,_, o0 ay.
Similarly, let a,, | a denote that a sequence of real numbers (a,, | n € N) is such that a,,11 < a,, and a = lim,, o0 ay,.

Let A, T A denote that a sequence of sets (A, | n € N) is such that A, C A,11 and A = UpenA,. Similarly,
let A, | A denote that a sequence of sets (A, | n € N) is such that A,,+1 C A, and A = NyenAp.

Consider the measure space (S, %, ). For a sequence (F,, € ¥ | n € N), the monotone-convergence property of
measure guarantees that if F;, 1 F', then p(F,) 1 p(F). Similarly, for a sequence (G,, € ¥ | n € N), if G, | G and
u(Gy) < oo for some k, then u(G,) | u(G).

2 Events

Consider a probability triple (Q, F,P). An element w €  is called an outcome. The set ) is called an outcome
space. A set of outcomes F' € F is called an event. The probability measure P : F — [0, 1] is defined on a o-algebra
F on the outcome space 2.

A probability P(F") assigns a degree of belief to the statement that the outcome w € 2 of an experiment belongs
to the event F' € F. For instance, a probability P(F') = 1 indicates that w € F' almost surely, while a probability
P(F) = 0 indicates that w ¢ F almost surely. In general, a statement about an outcome is said to be true almost
surely if P(F') = 1, where F' € F is the event that contains every outcome w € € for which the statement is true.

As an example, consider an experiment where a coin is tossed twice. Let H = 0 represent heads and T = 1
represent tails. The outcome space 2 may be defined as Q = {(H, H), (H,T),(T,H),(T,T)}. The o-algebra F on
the outcome space {2 may be defined as the set of all subsets of €2, which is denoted by F = P(£2). The event F
where at least one head is observed is then given by F = {(H,H), (H,T), (T, H)}.

More interestingly, consider an experiment where a coin is tossed infinitely often. The outcome space €2 may be
defined as the set of infinite binary sequences 2 = {H,T}". In order to at least assign probabilities to every event
F={weQ|w,=W} where n € Nand W € {H,T}, the o-algebra F on the outcome space {2 may be generated
asF=c({{weQ|w, =W} |neNWe{HT}}.



Consider a sequence of events (F,, € F |n € N). If P(F,) =1 for every n € N, then P(N,enFy) = 1.

The infimum inf,, z,, of a sequence of real numbers (z,, € R | n € N) is the largest r € [—00, 0o] such that r < x,,
for every n € N. The supremum sup,, x,, of a sequence of real numbers (z,, € R | n € N) is the smallest r € [—o0, o0]
such that r > x,, for every n € N.

The limit inferior of a sequence of real numbers (z,, € R | n € N) is defined by

liminf x,, = sup inf z, = lim inf x,.
n—o00 m n>m m—oo n>m

Note that the sequence (inf, >, 2, | m € N) is non-decreasing. Let z € [—00,00]. If 2z < liminf, o x5, then
z < xp, for all sufficiently large n € N. If z > liminf, _, ., z,, then z > z,, for infinitely many n € N.
The limit superior of a sequence of real numbers (z,, € R | n € N) is defined by

limsup x,, = inf sup z,, = lim sup x,.
n—00 M n>m m—=00n>m

Note that the sequence (sup,,>,, Tn | m € N) is non-increasing. Let z € [~o0, oc]. If 2 > limsup,,_, ., p, then
z > x,, for all sufficiently large n € N. If z < limsup,,_, . n, then z < z,, for infinitely many n € N.
For any sequence (z, € R | n € N), the limit inferior and the limit superior are related by the fact that

—liminfz, = lim — inf 2, = lim sup —x, = limsup —x,.
n—00 m—o0  n>m M—00 > n—s00

A sequence of real numbers (z, € R | n € N) is said to converge in [—o0, o0] if and only if

liminf x, = limsupz, = lim z,.
n—oo n—oo n— oo

The limit inferior of a sequence of sets (E, | n € N) is defined by
lim inf £, = U ﬂ E,.
meNn>m

Let F,, = ﬂn>m E,. Note that F,, C F,,11. Furthermore, w € liminf, .. F, if and only if w € E,, for all
sufficiently large n € N.
The limit superior of a sequence of sets (E,, | n € N) is defined by

limsup F,, = ﬂ U E,.

n—roo meNn>m

Let F, = U,>,, En- Note that F,, D F,, ;. Furthermore, w € limsup,,_,. F, if and only if w € E, for
infinitely many n € N.
For any sequence of sets (E, C 2| n € N), the limit inferior and the limit superior are related by the fact that

C
<lim inf En) = lim sup ES

n—oo n—00
Consider a measurable space (€2, F). The indicator function Iy : @ — {0,1} of an event F' € F is defined by

1, fweF
]]: — b )
rw) {07 ifwe F.

For any outcome w € Q and sequence of events (E, € F | n € N),

Dimint, o B, (W) = liminflg, (w),
n— 00

Hlim SUP,, o0 En (w) = lim sup I[En (w) .
n—00

Consider a probability triple (Q, F,P) and a sequence (E,, € F | n € N). The reverse Fatou Lemma states that

P (lim sup En> > limsup P(E,).

n—oo n—oo



We will now show this lemma. Let F,,, = J,,~,,, Fn such that F,, O F,,;1. By definition, F,,, | limsup,,_,., E,,
which implies P(F},,) | P (limsup,,_, ., E,). Because A C (BUA) implies P(4) < P(BUA) for any events A, B € F,

P(Fpn)=P| |J En| = sup P(E,).

n>m n>m

By taking the limit of both sides of the equation above when m — oo,

lim P(F,,)="P (hm sup En> > lim sup P(E,) = limsupP(E,).
m—00 n—00

M—=0 p>m n—00

Consider a probability triple (2, F,P) and a sequence (F,, € F | n € N). The Fatou Lemma for sets states that

P (lim inf En> < liminf P(E,).

n—oo n—roo

We will now show this lemma. Let F,,, =(),>,, En such that F,,, C F,,;1. By definition, F,,, T liminf,, o Ep,
which implies P(F,) 1 P(liminf, . E,). Because (AN B) C B implies P(AN B) < P(B) for any events A, B € F,

P(Fn) =P | (] Es | < inf P(E,).
n>m -

By taking the limit of both sides of the equation above when m — oo,

lim P(F,,) :P(liminfEn) < lim inf P(E,) = liminf P(E,).

m—00 n—00 m—o0 n>m n—00

Consider a probability triple (€2, F,P) and a sequence of events (E, € F | n € N) such that > > P(E,) < cc.
The first Borel-Cantelli Lemma states that

P <lim sup En> =0.

n—oo

We will now show this lemma. Let F,,, = Un>m E,, such that F,, D Fp,41. By definition, F,, | limsup,,_, ., En,
which implies P(F},) | P (limsup,,_, ., En). Because P(AU B) < P(A) + P(B) for any events A, B € F,

P(Fn)=P( |J En| <> PE).

n>m n>m

By taking the limit of both sides of the equation above when m — oo,

. o - _
im P (Fy) P(llﬂsolipEn)_ %@NEP(E,L) 0,

where the last equality comes from the fact that, for any € > 0, there is an N € N such that, for all m —1 > N,

e> > P(E,) - 2 P(E,)| = > P(E,).
n=0 n=0 n>m

3 Random variables
Consider a measurable space (S,¥) and a function h : S — R. The function A~ is defined as
h'(A) ={s € S| h(s) € A}

for any A C R. The function h is called ¥-measurable if h=1(A) € ¥ for every A € B(R). In an extended definition,
a function h : S — [—00, 0] is called Y-measurable if h=1(A) € ¥ for every A € B([—00,00]). A B(R)-measurable
function h : R — R is said to be Borel.



The set of ¥-measurable functions on S is denoted by m3. The set of non-negative >-measurable functions on
S is denoted by (mX)T. The set of bounded X-measurable functions on S is denoted by bX.
Consider a function h : S — R. For any set A C R,

h~1(A%) = {s € S | h(s) € A°} = {s € S | h(s) € A}* = (h"L(A))".

Consider a function h : S — R. For any sequence of sets (A4, CR|n € N),

ht (U An> ={seS|h(s)e | J A} =J{seS|h(s) e A} =] h ' (An).

neN neN neN neN

Similarly,

h1<ﬂ An> ={seS|hs)e A} =[{s€S|h(s) € A} = [ h " (An).

neN neN neN neN

Consider a measurable space (S,%) and a function h : S — R. The set £ = {B € B(R) | h"1(B) € &} is a
o-algebra on R. First, note that h"1(R) = {s € S | h(s) € R} = S and S € . Therefore, R € £. Consider an
element B € £. In that case, h~!(B) € ¥, which implies (h=}(B))¢ = h=1(B¢) € X. Therefore, B¢ € £. Finally,
consider a sequence (B,, € £ | n € N). In that case, h™1(B,) € ¥ for every n € N, which implies U,h~1(B,) € X.
Therefore, h~1(U,B,) € ¥ and U, B,, € £.

Consider a measurable space (S,X), a function h : S — R, and a set C of subsets of R. If ¢(C) = B(R) and
h=1(C) € ¥ for every C € C, then h is Y-measurable. First, note that the set £ = {B € B(R) | h~}(B) € £} is
a o-algebra on R. Because C C &, £ C B(R), and B(R) is the smallest o-algebra that includes C, we know that
& = B(R), which implies that h=1(B) € ¥ for every B € B(R).

If a function h : R — R is continuous, then it is Borel. First, consider the measurable space (R, B(R)) and let C
be the set of open sets of real numbers. Recall that B(R) = o(C). Second, recall that a function h is continuous if
h=1(A) € C is an open set for every open set A € C. Using the previous result, h=1(B) € B(R) for every B € B(R).

Consider a measurable space (S,%) and a function h : S — R. For any ¢ € R, define

{h<ec}=h"Y(—00,c]) = {s€S|h(s) <c}.

If {h < ¢} € X for every ¢ € R, then h is Y-measurable. First, let C = {(—o0,z] | € R} be the set that
contains every interval that contains every real number smaller or equal to every real number x € R. Recall that
B(R) = ¢(C). By assumption, h=1(C) € ¥ for every C € C, and so h~! is Y-measurable. Note that analogous
results apply for {h > ¢}, {h < ¢}, and {h > c}.

Consider a measurable space (S,%). Let h : S — R, h; : S — R, and hy : S — R be Y-measurable functions
and let A € R be a constant. In that case, hy + hs is a Y-measurable function, hihs is a X-measurable function,
and Ah is a Y-measurable function. We will now show the first of these statements. Based on the previous result,
if {h1+he >c} ={s €S| hi(s)+ ha(s) > c} € X for every ¢ € R, then hy + hy is X-measurable. Recall that
hi(s) + ha(s) > c if and only if there is a rational ¢ € Q such that hi(s) > g > ¢ — ha(s). Therefore,

{h1+h2>c}={s€S|hi(s) >qand ¢ > c— ha(s) for some ¢ € Q} = U{s€S|h1(3)>qandq>c—h2(s)},
qeQ

which is a countable union of elements of ¥ given by

{hi+hy > c} = U{sES|h1(s)>q}ﬂ{seS\q>c—h2(s)}: U{h1>q}ﬁ{h2>c—q}.

qeQ qeQ

Consider a measurable space (S, X) and a ¥-measurable function h : S — R. Consider also the measurable space
(R,B(R)) and a B(R)-measurable function f: R — R. For all s € S, let (f o h)(s) = f(h(s)). For any A C R,

(foh)TH(A)={s€S|(foh)(s) € A} ={s € S| f(h(s)) € A}.
Note that f~1(A) C R for any A C R, since f~1(A) = {r e R| f(r) € A}. Therefore,

(h o fA)(A) =h 1 (fTH(A) ={s € S| h(s) € fT(A)} = {s € S| f(h(s)) € A} = (f o h)"'(A),



where we used the fact that f(h(s)) € A if and only if h(s) € f~1(A), for all s € S and A C R. Furthermore, since
f71(A) € B(R) for any A € B(R) and h™1(f~1(A)) € X for any f~1(A) € B(R), the function foh is X-measurable.

Consider the measurable spaces (S1,%1) and (Sa,32). A function h : S; — Ss is called 1 /Ys-measurable
if h=1(A) € X for every A € Y. Therefore, a function on a measurable space (S,Y) is X-measurable if it is
¥ /B(R)-measurable.

Consider a measurable space (S5, %) and a sequence of ¥/B([—o0, 00])-measurable functions (h, | n € N).

For any s € S, the function inf, h, : S — [—00, 00] is given by

(i{llf hn) (s) = i%f hin(8).

We will now show that inf,, h,, is ¥/B(]—o0, c0])-measurable. Note that if {inf, h, > ¢} € ¥ for every ¢ € R,
then inf,, h, is ¥/B(]—o00, o0])-measurable. For every ¢ € R,

{infh, > c} ={s € S|infh,(s) > c} ={se€ S| hy(s) >cforall n e N},
n n
where we used the fact that inf,, h,(s) > ¢ if and only if h,,(s) > ¢ for all n € N, for all s € S and ¢ € R. Therefore,

{infh, > c} = (V{5 €S| hn(s) =} = [){hn > c},

neN neN

which is a countable intersection of elements of .
For any s € S, the function sup,, hy, : S — [—00, ] is given by

(50070 ) (9 = 0010,

We will now show that sup,, h,, is X/B([—00, oc])-measurable. Note that if {sup,, h, < ¢} € X for every ¢ € R,
then sup,, h,, is ¥/B([—00, 00])-measurable. For every ¢ € R,

{suph, <c} ={se€ S|suphy(s) <c}={s€S|hy(s) <cforalneN},

where we used the fact that sup,, h,(s) < cif and only if h,,(s) < ¢ for all n € N, for all s € S and ¢ € R. Therefore,
{suph,, <c} = ﬂ{s €S| hp(s) <c}= ﬂ{hn <c},
" neN neN

which is a countable intersection of elements of X.
For any s € S, the function liminf,, ;o hy, 1 S — [—00,00] is given by

(lim inf hn) (s) = liminf h,(s).

n—oo n—oo
We will now show that liminf, . hy, is 3/B([—00, 00])-measurable. Each function in the sequence (L, =

inf, >, hy | n € N) is £/B([—00, 00])-measurable, which implies that sup,, L, is £/B([—00, 0o])-measurable. Also,

(lim inf hn) (s) = liminf hy,(s) = sup inf hy(s) = sup ( inf hr> (5) = sup Lu(s) = (stTle Ln> (s).

n—00 n— 00 n > n

For any s € S, the function limsup,,_, . by : S — [—00,00] is given by

n— oo n— oo

<lim sup hn> (s) = limsup h,,(s).

We will now show that limsup,,_, . b, is X/B([—00, o0])-measurable. Each function in the sequence (L,, =
sup,>, b, | n € N) is ¥/B([—00, co])-measurable, which implies that inf, L, is ¥/B([—00, oo])-measurable. Also,

<lim sup hn> (s) = limsup Ay, (s) = inf sup hy(s) = inf <sup hT> (s) = inf Ln(s) = (i%f Ln> (s).

n—00 n—00 nor>n n \r>n



Consider the set F' = {s € S | lim,— o0 hp(s) exists in R}. Recall that lim,, o A, (s) exists in R if and only if

—oo < liminf hy(s) = limsup by (s) < co.

n—00 n—00

Therefore, F' € X, since F' is an intersection of elements of X:

F ={se S|liminf h,(s) > —co}N{s € S |limsuph,(s) <o} N{se S| (hmsuph - hmmfh ) (s) = 0}.
n—00 n—00 n—00 00
Consider a measurable space (€2, F). An F-measurable function X :  — R is a random variable. By definition,
for any B € B(R), X }(B) € F.
The indicator function Ip : Q@ — {0,1} of any event F' € F is a random variable. The function I is defined by

1, ifweF
]I — b) )
r () {07 ifwée F.

Recall that if {w € Q | Irp(w) < ¢} € F for every ¢ € R, then I is F-measurable. For every ¢ < 1, we have
{weQ|lpw)<c}={weQ|w¢gF}=Fe° For every ¢ > 1, we have {w € Q| [p(w) < c} = Q.

More interestingly, once again consider an experiment where a coin is tossed infinitely often. Let H = 0
represent heads and 7' = 1 represent tails. The outcome space ) may be defined as the set of infinite binary
sequences 2 = {H, T}". Let Fow ={w € Q| w, = W} be the set of infinite binary sequences whose n-th element
is W. The o-algebra F on the outcome space 2 may be generated as F = o({F,, w | n € N, W € {H,T}}). Note
that I, ,, is a random variable, since F, y € F. Therefore, for any n € N*, the function A,, y given by

ATLW _< 1ZHF1W> w :i;HFi,W(W)

is also a random variable. For a given sequence w € Q, A, v (w) is the fraction of the first n tosses resulting in W.
For a given p € [0,1], consider the set Ay = {w € Q | lim,, oo Ap w(w) = p}. Clearly,

Aw ={w € Q| liminf A, w(w) = p} N {w € Q| limsup A, w (w) = p},
n—o0

n—oo

which can be rewritten as

n—

Aw = (lim iolcl)f Anyw) B {phH N <li7£ILsogp An_W> - {p}).

Note that Ay € F, since both the limit inferior and the limit superior of the sequence of F-measurable functions
(A, w | n € NT) are F-measurable functions. Therefore, a probability triple (€, F,P) would define the probability
P(Aw) that the fraction of tosses with result W tends to a given p € [0, 1].

Consider a function X :  — R. The o-algebra o(X) on  is defined as 0(X) = c({X ~%(B) | B € B(R)}). Note
that if X is a random variable on a measurable space (€2, F), then o(X) C F.

Consider a set of functions {Y, | v € C} where Y, : Q@ — R. The o-algebra oc({Y, | v € C}) is defined by

o({Y, |7 €CH) = o({Y;(B) | v €C, B € BR)}).

Note that if Y, : @ — R is a random variable on a measurable space (€2, F) for every v, then o({Y, | y € C}) C F.

Consider a measurable space (£, F) and a random variable Y : € — R. For a set £ of subsets of R, let
Y1 (&) ={Y~YE)| E € &}. By definition, o(Y) = (Y"1 (B(R))). We will now show that ¢(Y) = Y ~}(B(R)).

By definition, Y "1(B(R)) = {Y~}(B) | B € B(R)}. Because R € B(R), Y }(R) € Y }(B(R)), where Y "}(R) =
Q. Consider an element Y ~}(B) € Y~}(B(R)). Because B¢ € B(R), Y }(B¢) € Y }(B(R)), where Y ~1(B¢) =
(Y~Y(B))c. Finally, consider a sequence (Y ~"*(B,) € Y Y(B(R)) | n € N). Because U, B, € B(R), Y~}(U,B,) €
Y~1(B(R)), where Y 1(U,B,) = U,Y Y(B,). Therefore, Y 1(B(R)) is a o-algebra on . Because o(Y) is the
smallest o-algebra on 2 that includes Y ~1(B(R)), we know that o(Y) = Y ~}(B(R)).

Furthermore, consider the m-system 7(R) = {(—o0,z] | # € R} and let 7(Y) = Y ! (n(R)). We will now show
that o(Y) = o(n(Y)).

By definition, o (7 ( ) =o({Y
since o(Y) = o({Y ~X(B) |
Therefore, o(Y) C o(n(Y)).

(— ,33]) | (—o0,z] € T(R)}). Clearly, 7(R) C B(R) implies o(7(Y)) C o(Y),
€ B(R)}). Because {Y < 2} € o(n(Y)) for every x € R, Y is o(n(Y))-measurable.



IfY:Q— R, then Z:Q — R is a o(Y)-measurable function if and only if there is a Borel function f : R — R
such that Z = foY.

If Y1,Y5,...,Y, are functions from Q to R, then a function Z : Q@ — R is o({Y1, Ys,..., Y, })-measurable if and
only if there is a Borel function f : R™ — R such that Z(w) = f(Y1(w), Yo(w),...,Y,(w)) for every w € Q.

Consider a probability triple (2, F,P) and a random variable X :  — R. For any B € B(R), X }(B) € o(X),
o(X) C F,and P(X1(B)) € [0,1]. For any B € B(R), this allows defining the law Lx : B(R) — [0,1] of X as

Lx(B) =P(X~!(B)).
The law Lx is a probability measure on the measurable space (R, B(R)). First, note that
Lx(R) =P(XT'(R)) =P({w € 2| X(w) €R}) =P(Q) =1,
Lx(0) =P(X7'(0) =P({we Q| X(w) € 0}) =P(0) = 0.
(

Second, consider a sequence of sets (B,, € B(R) | n € N) such that B, N B,, = 0 for n # m and note that

Lx (U B > =P ( ( ) ( (Bn)> = ZP(Xil(Bn)) = Z ‘CX(BTL)
neN neN neN neN neN

where we used the fact that X 1(B,) N X~ “YB,NB,)=X"Y0) =0 for n #m.
The (cumulative) distribution function F X R — [O 1] of the random variable X is defined by

Fx(c) = Lx((=00,¢]) = P(X ' ((—00,d])) = P({w € Q| X(w) < c}) =P({X <c}).

Recall that the o-algebra generated by 7(R) = {(—o0,z] | z € R} is o(7(R)) = B(R). Consider a probability
measure p on the measurable space (R,B(R)) such that u((—o0,c]) = Fx(c) = Lx((—o0,¢]) for every ¢ € R.
Because p and Lx agree on the m-system 7(R), we have y = Lx. Therefore, Fx fully determines the law Lx of X.

Consider a random variable X : Q — R carried by a probability triple (©, F,P) and the distribution function
Fx:R— [0, ].]

If a < b, then Fx(a) < Fx(b). Clearly, {X < a} C {X < b}, which implies P({X < a}) <P({X <b}).

We will now show that lim,_, o Fx(x) = 0. Recall that f : R — R is a function such that lim,_, o f(z) =L
for some L € R if and only if lim, . f(x,) = L for all non-increasing sequences (z, € R | n € N) such that
lim,, oo T, = —00.

Consider a non-increasing sequence (z, € R | n € N) such that lim, _, , = —oo and the sequence of sets
(A, = (=00, z,] | n € N). Because A, | 0, Lx(Ay) | 0. Therefore, lim,,_, o Lx((—00,zy,]) = 0, which implies

mgr_noo Fx(z) = wgr_noo Lx((—o0,z]) =0.

We will now show that lim,_, . Fx(z) = 1. Recall that f : R — R is a function such that lim, , f(z) = L
for some L € R if and only if lim,_,« f(x,) = L for all non-decreasing sequences (z, € R | n € N) such that
lim,, o0 T, = 400.

Consider a non-decreasing sequence (z, € R | n € N) such that lim,,_,o, ,, = +00 and the sequence of sets
(A, = (=00, z,] | n € N). Because A,, TR, Lx(A,) 1 1. Therefore, lim, oo Lx((—00,2,]) = 1, which implies

mhﬁrr;o Fx(z) = Il;rgoﬁx((—m,x]) =1.

We will now show that Fx is right-continuous. Recall that f : R — R is right continuous if and only if
limy,—, 0 f(zn) = f(z) for every x € R and every non-increasing sequence (z,, € R | n € N) such that lim, o z, =
and x, > z for every n € N.

Consider € R and a non-increasing sequence (x, € R | n € N) such that lim,, o z, = = and =, > « for
every n € N. Consider also the sequence of sets (4, = (—oo,x,] | n € N). Because A, | (—o0,z], Lx((—o0,x,]) |
Lx((—00,x]). Therefore, lim, o Lx((—00,z,]) = Lx ((—00,x]), which implies

h_}m Fx(zy,) = 11_>m Lx((—00,2,]) = Lx((—00,z]) = Fx(x).

Consider a right-continuous function F' : R — [0,1] such that if a < b, then F(a) < F(b); lim,—, o F(z) = 0;
and lim,_, o F'(z) = 1. We will show that there is a unique probability measure £ on the measurable space (R, B(R)
such that £((—o0,z]) = F(x) for every z € R.



Consider the probability triple ((0,1),B8((0,1)),Leb) and a function X~ : (0,1) — R given by
X (w)=imnf{z e R| F(2) > w}.

In words, X~ (w) is the infimum z € R such that F(z) reaches w € (0,1).

First, note that w < F(c) if and only if X~ (w) < ¢ for every ¢ € R. Clearly, if w < F(c), then X~ (w) < ¢
Now suppose X~ (w) < c¢. Because F' is non-decreasing, F'(X~ (w)) < F(c). Because F is also right-continuous,
F(X~(w)) > w. Therefore, w < F(c). This also implies that X~ is a random variable since, for every ¢ € R,

{XT<c}={we(0,]) | X (w)<c}={we(0,1) |w<F(e)} = (0, F(c)].
For every ¢ € R, the distribution function Fx- on the probability triple ((0,1),B((0,1)),Leb) is given by
Fx-(c) = Lx-((=00,¢]) = Leb({X ™ < ¢}) = Leb((0, F(c)]) = F(c).

Finally, recall that the distribution function F'x- fully determines the law Lx- of X, which is the desired
unique probability measure on the measurable space (R, B(R)) such that Lx- ((—oo,z]) = F(x) for every z € R.
The monotone-class theorem states that if

e 7{ is a set of bounded functions from a set S into R,
e 7{ is a vector space over R,
e The constant function 1 is an element of H,

e If (f, € H| n € N) is a sequence of non-negative functions in A such that f, 1 f, where f is a bounded
function on S, then f € H,

e H contains the indicator function of every set in some 7-system Z,

then H contains every bounded o (Z)-measurable function on S.

4 Independence

Consider a probability triple (2, F,P).
The sub-c-algebras G1,Gs, ... of F are called independent if, for every choice of distinct indices 41, 9, . .., 1, and
events G;,,G,,, . ..,G;, such that G;, € G;, for every i,

k=1 k=1

The random variables X, X5, ... are called independent if the o-algebras ¢(X1),o(X3),... are independent.

The events E1, Es, . .. are called independent if the o-algebras £1, &, . . . are independent, where &, = {0, Ey, Ef, Q}.
We have already shown that each indicator function Ig, is £-measurable. Since ]I;Ji({l}) = Ej, we know that
Ey € o(1g,), which implies &, = o(Ig, ). Therefore, the events Ey, Ea, ... are called independent if and only if the
random variables Iz, ,Ig,, ... are independent.

The events Fi, Es, ... are independent if and only if, for every choice of distinct indices i1, o, . . ., in,

ig (ﬁ Eik> - ﬁIP’(EZ-k).
k=1 k=1

If Xy, X5,... are independent random variables, then the events {X; < 21}, {Xs < @2},... are independent for
every r1,Ts,... € R, since X, }((—o0, x,]) € 0(X,,) for every n € N*.

Suppose that G and H are sub-o-algebras of F. Furthermore, let Z and J be m-systems such that o(Z) = G
and o(J)=H. U PINJ)=PI)P(J) for every I € T and J € J, we say that Z and J are independent. We will
show that G and H are independent if and only if Z and J are independent.

Suppose that G and H are independent. In that case, P(GNH) = P(G)P(H) for every G € G and H € H. Since
ZCGand J CH,Z and J are independent.

in



Suppose that Z and J are independent. For every I € Z and H € H, let u;(H) = P(I N H) and n;(H) =
P(I)P(H). Clearly, p;(0) = 0 = nr(0). Also, u;(Q) = P(I) = nr(Q). Finally, if (H, € H | n € N) is a sequence of
events such that H, N H,, = () for n # m,

L1 (UHn> =P <m (UH,L)) =P (U(IﬂHn)> = EH:P(mHn) = ;M(Hn),

n n

0 (U H) =P(I)P (U Hn> =P(I)) P(H,) =Y P(P(H,) =Y ni(H,).

Considered together, these results imply that u; and 7y are finite measures on (2, H). By assumption, pr(J) =
P(INJ) = P(DHP(J) = ni(J) for every I € 7 and J € J. Therefore, u; and n; agree on the m-system J,
which implies that they agree on the o-algebra o(7) = H. In other words, for every I € Z and H € H, we have
P(10 H) = pur(H) = ny(H) = P(I)P(H).

For every H € H and G € G, let p/y(G) = P(H N G) and 0 (G) = P(H)P(G). Analogously, u/y and nj are
finite measures on (€2,G). From our previous result, for every I € 7 and H € H, we have P(I N H) = py(I) =
Ny (I) = P(I)P(H). Therefore, p; and 7 agree on the m-system Z, which implies that they agree on the o-algebra
0(Z) = G. In other words, for every G € G and H € H, we have P(GN H) = py(G) = 0y (G) = P(G)P(H).

Consider the random variables X and Y on the probability triple (2, F,P). For every A € B(R) and B €
B(R) such that P(Y~1(B)) > 0, let P(X~1(A) | Y=}(B)) = P(X"}(A) NnY~Y(B))/P(Y~YB)). If X and Y are
independent, then P(X~1(A4) | Y ~}(B)) = P(X*(4)), since X 1(A) € o(X) and Y ~}(B) € o(Y).

In what follows, we will employ a common abuse of notation. Consider the random variables X and Y on the
probability triple (2, F,P). For every x € R, we will let P(X < z) denote P({X < z}). Furthermore, for every
z,y € R, we will let P(X < 2,V < y) denote P({X < 2} N{Y < y}). We will employ analogous notation when
there are more random variables and different predicates.

Consider the random variables X and Y on the probability triple (92, F,P). Suppose that, for every z,y € R,
P(X <z,Y <y) =P(X < 2)P(Y <y). We will now show that X and Y are independent.

Recall that m(R) = {(—o0,z] | z € R} and m(X) = {X"}((—o0,2]) | (—o0,2] € 7(R)} = {{X <z} |z € R}.
Note that 7(X) is a m-system on Q: for any z1,z2 € R, if {X < a;} € n(X) and {X < 3} € n(X), then {X <
21} N{X <29} ={w e Q| X(w) <27 and X(w) <z} = {w € Q| X(w) < min(x,z2)} = {X < min(z1,2z2)}.
By assumption, P{X <z} N{Y <y}) = P{X < z})P{Y < y}) for any {X <z} € n(X) and {Y <y} € n(Y).
By definition, the m-systems 7(X) and 7 (Y) are independent. Therefore, o(w(X)) and o(w(Y)) are independent.
Based on a previous result, we know that o(7(X)) = o(X) and o(7(Y)) = o(Y).

In general, the random variables X1, X5, ..., X,, are independent if and only if, for every xy,xo,...,2, € R,

P(X; <x1,Xo <o,..., X, <) =P (ﬂ{Xk < xk}) = HP(Xk < ap).
k=1 k=1

Consider a probability triple (2, F,P) and a sequence of independent events (F,, € F | n € N) such that
> JP(E,) = . The second Borel-Cantelli Lemma states that

n=0

P <lim sup En> =1.

n— 00

Because the events are independent, for any m,r € N such that m < r,

Pl () Ei|l= ] P@E)= ] -PE).

m<n<r m<n<r mn<r

Let e denote Euler’s number. For any x > 0, recall that 1 — z < e™*. Therefore,

Pl () Br)< I e =e Znens P00,

m<n<r m<n<r

Because both sides of the inequation above are non-increasing with respect to r, we may take the limit of both
sides when r — oo and use the fact that > ° P(E,) = co to conclude that

. c _ c < 1 _ngngrﬂ»(E"): )
e 0w =r(ne) < e :
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Using the relationship between the limit superior and the limit inferior,

P((limsupEn)c) :P(hgio%fE,?) PN E| <SP NE]| =0

n—00
m n>m m n>m

A valid distribution function F' : R — [0, 1] is a right-continuous function such that if a < b, then F(a) < F(b);
lim,_, o F(z) = 0; and lim,_,o, F(z) = 1. For any sequence of valid distribution functions (F,, | n € N), it is
possible to show that there is a sequence of independent random variables (X,, | n € N) on the probability triple
([0, 1], B([0, 1]), Leb) such that F), is the distribution function of X,,.

Let (X,, | n € N) be a sequence of independent random variables on the probability triple (Q, F,P). If P(X,, <
xz) = F(z) for every n € N, x € R, and a distribution function F : R — [0, 1], then the random variables are
considered independent and identically distributed.

As an application of the Borel-Cantelli lemmas, consider a sequence (X,, | n € NT) of independent random
variables on the probability triple (2, F,P). Suppose that each random variable X,, is exponentially distributed
with rate 1 such that P(X,, > z,,) =1 —-P(X,, < z,) = e ?" for every z,, > 0. If 2,, = alogn for some a > 0, then

1
]P)(Xn > alogn) = e_O‘IOgn — (elogn)_a - =
na
For some « > 0, consider the sequence of independent events ({X,, > alogn} € F |n € NT) and recall that
f:]P’(Xn > alogn) = f: 1o
n=1 ne

n=1

if and only if a > 1. Using the Borel-Cantelli lemmas,

0, ifa>1,
1, ifa<l.

P <lim sup {X,, > alog n}) = {
n—oo

Recall that w € limsup,, ,., {X, > alogn} if and only if X,,(w) > alogn for infinitely many n € N.

Furthermore, consider the random variable limsup,,_, . X, /logn. It is also possible to show that

P { limsup =1)=P(weQ|limsup C) =1 =1.
n— oo 1Ogn n—00 10gn

For any set C, a set (or sequence) of random variables Y = (Y, | v € C) on a probability triple (2, F,P) is called
a stochastic process parameterized by C.

Consider a measurable space (£2, F) and a function X : Q — C, where C' C N. We will show that if {X =¢} € F
for every ¢ € C, then X is F-measurable. For any B € B(R), let A = BN C and note that

X' B)={weQ|Xw) eBl={weQ|X(w)€eBand X(w) €cC}=X"HBnNC)=X"1(A).

Furthermore, note that

Xy = x (U {a}) _Uxap = U X —a.

a€A a€A a€EA

Because A C C, we have {X = a} € F for every a € A. Because F is a o-algebra, we have X ~1(A) € F.
Therefore, for every B € B(R), we have X ~1(B) € F.

Consider a set £ C N. For every i,j € E, let P be a stochastic matrix whose (4, j)-th element is given by
pi,j > 0 and suppose that >, p;r = 1. Let pu be a probability measure on the measurable space (E,P(E)),
where P(FE) is the set of all subsets of F, and let p; denote p({i}) for every i € E. A time-homogeneous Markov
chain Z = (Z, | n € N) on E with initial distribution p and 1-step transition matrix P is a stochastic process
parameterized by N such that, for every n € N and 49, i1,...,9, € F,

n
P(Zo =0, Z1 = i1,y Zn = in) = HigDig,iv - - - Pin_1,in = Mig Hpik_l,ik'
k=1

11



We will now show that a probability triple (€2, F,P) carrying the aforementioned stochastic process Z exists.

First, for any set of valid distribution functions {F,, | n € N}, recall that there is a set of independent random
variables {X,, | n € N} on a certain probability triple (2, F,P) such that F, is the distribution function of X,.
Using this result, for every i,j € Eand n € Nt let Zy : Q@ — E and Y; ,, : @ — E be independent random variables
on a probability triple (2, F,P) such that P(Zy = i) = p; and P(Y; ,, = j) = pi ;-

For every w € Q and n € N*, let Z,(w) = Yz, ,(w)n(w). Using induction, we will show that the function
Zyn : 2 — E is a random variable for every n € N. We already know that Zj is a random variable. Suppose that
Zpn—1 is a random variable. We will show that {Z,, = i,} € F for every i,, € E. By definition,

{Zn=in}={weQ| Zp(w) =in} ={w e Q| Yz, _(nw) =i} = U {we| Z,_1(w) =iand Y; ,(w) =i, },
iCE
which implies
{Zn=in} = J{Zn1 =i} N {Vin =in}.
i€E

Because Z,,_; and Y; ,, are random variables for every i € E, {Z, = i,} € F, as we wanted to show.
Using induction, we will now show that, for every n € N and ig,41,...,i, € E,

ﬂ{Zkflk}f{Zo—Zo}ﬂ ﬂ{sz Lk =ik}

k=0

The statement above is true when n = 0, so suppose it is true for some n — 1 € N. Using a previous result,

{2k =ir} = (ﬂ{zk ik}> N{Z, =in} = (ﬂ{zk ik}> N (U{Zn_1 =i} N {Yi, in}> .
k=0 k=0 k=0

icE

By distributing the intersection over the union,

Nz =it = (ﬂ {2, = Z'k}) N{Zn-1 =it N {Yin =in}.

k=0 i€E \k=0

Because {Z,,_1 = in_1} N {Zn_1 =i} = 0 whenever i # i,_1,

{2 =ir} = (ﬂ {2, = ik}> Y, im =in} ={Zo =i0} N ﬂ{ i1k = ik}
k=0 k=0

where the last equation follows from the inductive hypothesis.
The event above is the intersection of events from the o-algebras of independent random variables, which implies

n
P(Zy =0, Zy = iv, .., Zn = in) = (ﬂ{%—%}) = P(Zy = i) H Y, l,k—m—umﬂp%
k=0 k=1

k=1

Consider a time-homogeneous Markov chain Z = (Z,, | n € N) on F with initial distribution p and 1-step
transition matrix P. Consider also a finite sequence of elements of E given by I = ig,41,...%,. We say that the
sequence I appears in outcome w € Q at time ¢ if Z;,(w) = i for every k < n. We will now show how several
interesting events related to the appearance of the sequence I may be defined.

The event M; composed of outcomes where the sequence I appears at time t is given by

n n

My = (V{Zisr =ir} = [ {w € Q| Zipu(w) = ix}.

k=0 k=0

The event S; composed of outcomes where the sequence I appears at least once at or after time ¢ is given by

St = U Mt/.

>t
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The event L; ,,, composed of outcomes where the sequence I appears at least m times up to time ¢ is given by

m

Lt,m = U Mlka
Uiyl k=1

where [, ..., is a finite sequence of distinct elements of E such that [ <t for every k < m.
The event L,, composed of outcomes where I appears at least m times is given by L ,, when ¢ = co.
The event E composed of outcomes where the sequence I appears infinitely many times is given by

E = limsup M;.

t—o0

5 Integration

Consider a measure space (9, %, 11). The integral with respect to p of a ¥-measurable function f : S — R is denoted

by u(f)-
For any set A € ¥, the integral with respect to p of the indicator function I4 : S — {0,1} is defined as

n(lLa) = p(A).

A simple function is a ¥-measurable function f : S — [0, 0] that can be written as
m
F(s5) = axlla,(s)
k=1

for every s € S, for some fixed aq,as,...,a, € [0,00] and Ay, As,..., A, € X. Intuitively, when Aj, A, ..., A
partition S, each set Ay is assigned a value ay.
The integral with respect to p of the simple function f : S — [0, 00] as written above is defined as

u(f) = Z arp(Ag).
k=1

It is possible to show that the right side of the equation above is equivalent for every choice of sets and constants used
to write the simple function f. Therefore, the integral u(f) with respect to u of a simple function f is well-defined.
Intuitively, when A, As, ..., A, partition S, the integral with respect to u accumulates the measure p(Ay) of each
set Ay multiplied by the value aj assigned to it.

If f: S —[0,00] and g : S — [0, 0] are simple functions, then

e [+ g is asimple function and u(f + g) = u(f) + p(g),

e if ¢ > 0, then c¢f is a simple function and p(cf) = cu(f),

o if u(f #9)=n({s €S| f(s)#g(s)}) =0, then u(f) = n(g),

o if f < g such that f(s) < g(s) for every s € S, then u(f) < u(g),

e if h = min(f, g) such that h(s) = min(f(s), g(s)) for every s € S, then h is a simple function,
e if h = max(f,g) such that h(s) = max(f(s), g(s)) for every s € S, then h is a simple function.

The integral with respect to p of a ¥-measurable function f : S — [0, 00| is defined as

w(f) = sup{u(h) | h is simple and h < f}.

Consider a Y-measurable function f : S — [0,00]. We will now show that if u(f) = 0, then u({f > 0}) = 0.
Because the measure p is non-negative, this is equivalent to showing that if u({f > 0}) > 0, then u(f) > 0.
For every n € Nt let A, = {f >n"1} ={s €S| f(s) >n"1} and note that

{(f>0t={seS[f(s)>0}= |J{seS|fis)>n""}= ] An

neNt neN+t
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For every s € S and n € NT_ if f(s) > n~1, then f(s) > (n+1)~!'. Therefore, 4, C A,.; and A, T {f > 0}.
Furthermore, the monotone-convergence property of measure guarantees that w(A4,) 1t p({f > 0}).
Suppose that u({f > 0}) > 0. In that case, there is an n € N such that

p(Igpon-—1y) = p({f >n7"}) = p(An) > 0.

For such an n € N*, consider now the simple function g = n~'I;y~,-1} given by

9(s) = n " Mipono1y(s) = {Z fvg z Z:I

The fact that f > g implies that p(f) > ©(g) even if f is not simple. Therefore,

w(f) = p(g) = pn psp-1y) =n" u(lpsn-1y) >0,

where the last inequality follows from the fact that n=! > 0.

Let f, T f denote that a sequence of functions (f, : S — R | n € N) is such that f,(s) T f(s) for every s € S.
Similarly, let f, | f denote that a sequence of functions (f, : S — R | n € N) is such that f,(s) | f(s) for every
ses.

The monotone-convergence theorem states that if (f, : S — [0,00] | n € N) is a sequence of Y-measurable
functions such that f,, T f, then u(f,) T p(f).

Before showing how the integral with respect to u of a given Y-measurable function is the limit of a sequence of
integrals with respect to p of simple functions, it is convenient to introduce staircase functions.

Let oy, : [0,00] — [0,n] denote the n-th staircase function given by a,,(x) = min(n, |2"z|/2") for every n € N
and x € [0,00]. Intuitively, the n-th staircase function partitions its domain into a sequence of intervals of length
1/2™. The value assigned to the first interval is zero, and the value of each following interval is 1/2” plus the value of
the previous interval, with values truncated at n. Furthermore, let h : [0, 00] — [0, 00] denote the identity function
given by h(z) = z for every x € [0, 00]. We will now show that a,, 1 h.

We will start by showing that min(n, [2"x]/2") = an(r) < ape1(z) = min(n + 1, [27Tz] /27, for every
n € N and z € [0,00]. When z = oo, we have ap,(z) = n < n+1 = apyi1(z). When z < oo, the fact that
n < n+1 implies that we only need to show that [2"xz|/2" < |2"T1x|/2"+1. Note that |2"z| < 2"z, which implies
2|2"z] < 2"z, By the monotonicity of the floor function, [2]2"x || < [2"*1z|. Because the floor of an integer is
itself an integer, 2|2"x| < [2"*1z|. Dividing both sides of the previous inequation by 2! completes the proof.

In order to show that a,, 1 h, it remains to show that, for every x € [0, 00],

nh_)n;o an(z) = .
The case where z = oo is trivial, since a,(x) = n. When z < oo, note that 2"x > |2"z| implies z > |2"x]|/2",
and so n > x implies n > |2"z|/2™. Therefore, for every sufficiently large n € N, we know that «,(z) = |2"x]| /2"
when < co. It remains to show that lim,, . |2"2|/2™ = . By noting that 2"z — 1 < [2"z] < 2"z and dividing
each term by 2",
1 2%x—1 _|2%z] 2"
= < <

r— — = -
271 2"7, - 2” - 2n

=X.

Using the squeeze theorem with n — oo completes the proof that a, T h.
Consider a Y-measurable function f :.S — [0,00]. For every n € N, consider f, : S — [0,7n] such that

Fa(s) = an(f(9)) = D arlis,=an} (),
k=1

where ay,...,a, € [0,n] are the (distinct) elements of the (finite) image of the function f,. Because f is %-
measurable and «,, is B([0, co])-measurable, we know that f, = «a, o f is X-measurable, which implies that f,
is also simple. For every s € S, we have f(s) € [0,00] and (ay, o f)(s) T f(s). Therefore, f, T f. From the
monotone-convergence theorem, p(f,) T u(f). Therefore, the integral with respect to u of a given X-measurable
function f is the limit of a sequence of integrals with respect to p of simple functions (f, : S — [0,n] | n € N).

Let f:S — [0,00] and g : S — [0, 00] be X-measurable functions. We will show that if u({f # ¢g}) = 0, then
u(f) = p(g). Recall that we already have the analogous result for simple functions.
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For any n € N, let f,, = o, o f and g, = o, © g, where «, is the n-th staircase function. Note that

{fn# gn} ={s € S| fuls) # gn(s)} S{s € 5| f(s) #9(s)} ={f # g},

which implies p({fn # gn}) < u({f # g}) = 0. Because f,, and g, are simple functions such that u({f, # gn}) =0,
we know that p(f,) = p(gn). From the monotone-convergence theorem, p(f,) 1 1(f) and p(gn) 1T 1(g), so

p(f) = Tim p(fn) = Tim pu(gn) = p(g)-

Consider a 3-measurable function f : S — [0,00] and a sequence of Y-measurable functions (f, : S — [0,00] |
n € N) such that f,,(s) 1 f(s) for every s € S\ N for some p-null set N C .S. We will show that u(f,) T u(f).

Consider the ¥-measurable function fIg\n such that (fIg\n)(s) = f(s)Is\n(s) for every s € S. Clearly,
{fIs\n # f} € N. Therefore, u({fIs\n # [}) < p(N) = 0 and pu(fIs\n) = p(f).

Analogously, consider the ¥-measurable function f,Is\y such that (fr.ls\n)(s) = fn(s)Ig\n(s) for every s € S
and n € N. Clearly, {f.ls\n # fn} € N. Therefore, u({fuls\n # fn}) < u(N) =0 and pu(frlls\n) = p(fn)-

Note that (fnIs\n)(s) T (fIs\n)(s), whether s € N or s € S\ N. Therefore, u(f.ls\n) T (fIs\n), which
implies p(fn) T p(f)-

Consider a sequence of ¥-measurable functions (fy, : S — [0,00] | n € N). The Fatou lemma states that

p (limin £,) < iminf p(f,).

n— oo

We will now show this lemma. For any m € N, consider the function g,,, = inf,,>,, f, such that

liminf f, = lim inf f, = hm Gm -
n— 00 m—oon>m

Because ¢;41 > gm for every m € N, we have that g, 1 liminf,, . f,. Because g,, : S — [0,00] is also
Y-measurable for every m € N, the monotone-convergence theorem guarantees that 1(g,,) T p(liminf, o fr).

For any n > m, note that g,, < f, and p(gm) < p(fn), which also implies p(gp,) < inf, >, p(fn). By taking
the limit of both sides of the previous inequation when m — oo,

1 <liminffn> = hm wlgm) < lim inf p(f,) = hmlnfu(fn)

n—00 m—oo n>m

Consider a ¥-measurable function f: S — [0,00] and a constant ¢ > 0. We will now show that pu(cf) = cu(f).
Recall that we already have the analogous result for simple functions.

For any n € N, let f, = a,, o f, where «, is the n-th staircase function. Because f, T f, we know that cf, T cf.
Because cf,, is Y-measurable for every n € N, the monotone-convergence theorem guarantees that p(cf,) T p(cf).
Because pu(cfrn) = cpu(fn), we have cu(fn) T p(cf). Because cu(fn) 1 ep(f), we have p(cf) = cu(f).

Consider a ¥-measurable function f : S — [0,00] and a ¥-measurable function g : S — [0,00]. We will now
show that u(f + g) = u(f) + u(g). Recall that we already have the analogous result for simple functions.

For any n € N, let f,, = a, o f and g, = a,, o g, where «,, is the n-th staircase function. Because f,, T f and
gn T g, we know that f, + g, T f +g. Because f, + g, is X-measurable for every n € N, the monotone-convergence
theorem guarantees that u(fn +gn) T u(f + g). Because pu(fn + gn) T p(f) + p(g), we have pu(f +g) = p(f) + n(g).

Consider a sequence of Y-measurable functions (f,, : S — [0,00] | n € N) such that f,, < g for every n € N and
some Y-measurable function g : S — [0, 0o] such that 1(g) < co. The reverse Fatou lemma states that

n— oo n—oo

I <1im sup fn) > limsup pu(fn)-

We will now show this lemma. For every n € N, consider the function h,, = g — f,. Because g and f, are
Y-measurable and f,, < g, we know that h,, : S — [0, 00] is X-measurable. From the Fatou lemma,

I (liminf(g - fn)> <liminf u(g — fn).

n—o0

By using the fact that u(g) = u(g — fn) + p(fn) and moving g and u(g) outside the corresponding limits,

I (g + lim inf _fn) < p(g) + liminf —p(f).
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By using the relationship between limit inferior and limit superior,

I (g — limsup fn> < pu(g) — limsup p(fn).

n—oo n—oo

By using the fact that u(g) = u(g — limsup,,_,  fn) + p(limsup,,_, . fn),

u(g) — <1im sup fn) < u(g) — limsup pu(fn).-

n— oo n—oo

The proof is completed by reorganizing terms in the inequation above.
For a Y-measurable function f: S — R, the X-measurable function f* : S — [0, 00] is given by

f(s), if f(s) >0,

fT(s) = max(f(s),0) = {O, if f(s) <0.

For a ¥-measurable function f : S — R, the X-measurable function f~ : S — [0, 00] is given by
0, if f(s) >0,
—f(s), if f(s) <0.
Therefore, for a ¥-measurable function f : S — R, whether f(s) > 0 or f(s) <0,
F(s)=F*(s) = f(s).
Furthermore, whether f(s) > 0 or f(s) <0,
[F(s)l = f7(s)+ 7 (s).

In other words, f = fT — f~ and |f| = f* + f~.

A function f: S — R is p-integrable if it is Y-measurable and u(|f|) = u(f™ + f7) = u(f7) + pu(f~) < oo.

The set of all p-integrable functions in the measure space (S,%, u) is denoted by £1(S, %, 1). The set of all
non-negative p-integrable functions in the measure space (S, %, p) is denoted by £1(S, 3, u)*.

The integral u(f) with respect to p of a p-integrable function f : .S — R is defined as

w(f) = p(f) —p(f).

Alternatively, the integral u(f) with respect to p of a p-integrable function f : .S — R is denoted by

[~ (s) = max(—f(s),0) = {

[ sdn= [ s(s)ntas) = uh).
s s
If a function f:S — R is p-integrable, then pu(fT) < co and u(f~) < oco. By the triangle inequality,

() = () + (=u(FDI < O+ 1= w(F = () + u(f7) = ullfD).

Consider a p-integrable function f : S — R. Because —f : S — R is X-measurable and u(|— f|) = u(|f]) < oo, we
know that — f is y-integrable. We will now show that pu(—f) = —u(f). Forevery s € S, (—f)*(s) = max(—f(s),0) =
f7(s) and (—f) (s) = max(f(s),0) = fT(s). Therefore,

p(=f) = p(=)) = w((=f)7) = =(u((=)7) = u((=H)") = =(u(f ") = u(f7)) = —p(f).

Consider a p-integrable function f : S — R and a constant ¢ € R. Because cf : S — R is ¥-measurable and
w(lef) = p(elf]) = leju(|f]) < oo, we know that cf is p-integrable. We will now show that u(cf) = cu(f).
Because f = fT — f~, we know that c¢f = ¢f™ — cf~. Furthermore, (cf) = (c¢f)™ — (c¢f)~. Therefore,

()T =(cf)"=cf" —cf.
By rearranging negative terms,

(ehHt +ef™ =(cf)” +eft.
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We will now consider the case where ¢ > 0. By the linearity of the integral of non-negative functions,
p((ef)7) + ulef™) = nl(ef)) + plef ).
By rearranging terms,
p((ef)7) = u((ef)™) = ulef ™) — plef ).
Because cf is p-integrable and by the linearity of the integral of non-negative functions,
plef) = en(f7) —ep(f) = c(u(f ") = u(f 7)) = en(f).

When ¢ <0, note that u(cf) = p(—=|c|f) = |c|u(=f) = —[c[u(f) = cu(f).

Consider a p-integrable function f : S — R and a p-integrable function g : S — R. Because f+g¢g: S — R is
Y-measurable and |f + g| < |f| + |g| implies u(|f + g|) < u(|f]) + p(lg]) < oo, we know that f + g is p-integrable.
We will now show that u(f +g) = u(f) + u(g).

We know that f+g=(fT — f7)+ (g7 — g7). Furthermore, (f +g) = (f + 9)* — (f + g)~. Therefore,

(f+9t =+ =0T =)+ —9).
By rearranging negative terms,
(f+9)"+f +g =(f+9 +f +g"
By the linearity of the integral of non-negative functions,
w((f+9)F) +p(f7) +ulg™) = ul(f +9)7) + u(fF) + p(g™).
By rearranging terms,
w((f+9)7) = u((f +9)7) = (u(f7) = ulf7) + (ulg") — ulg™))
Because f + g is p-integrable,
u(f +9) = n(f) + nig)-

Let f: S —- Rand g : S — R be p-integrable functions. We will now show that if u({f # g}) = 0, then
u(f) = p(g). Recall that we already have the analogous result for non-negative Y-measurable functions.
First, note that if f7(s) # g7 (s) or f~(s) # g~ (s) for some s € S, then f(s) # g(s). Therefore,

{seS[fH () #g" (NU{seS[f(s)#g (9} S{s€S][f(s) #9(s)},

so that u({f™ # g%}) + u({f~ # g7 }) < p({f # g}). Because u({f # g}) = 0, we know that u({f* # g*}) =0
and pu({f~ # g~ }) = 0. Because f*,f ,g", and g~ are non-negative Y-measurable functions, we know that

u(f*) = pu(g™) and u(f~) = p(g™). Therefore,
p(f) = nlf*) —u(f7) = pwlg") —plg™) = ulg).
The integral with respect to pu of a p-integrable function f : .S — R over the set A € ¥ is defined as
u(f; A) = u(fLa).

Because fI4 is X-measurable and |fT4| < |f] implies p(|fI4]) < u(|f]) < oo, we know that fI4 is p-integrable.
Alternatively, the integral u(f; A) with respect to u of f over the set A € ¥ is denoted by

/A fdp = /A F(5)ulds) = p(f; A).

Consider a sequence of real numbers (z,, | n € N) and the measure space (N, P(N), u), where pu({n}) = 1 for
every n € N. Furthermore, consider a function f : N — R such that f(n) = z,. We will now show that f is
p-integrable if and only if )" |x,| < co. Also, if f is p-integrable, then pu(f) =5, xp.
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Suppose that f(n) > 0 for every n € N. For every k € N, consider the function f; : N — [0, 0o] given by

k .

Z ) f(n), ifn<k,
i) i=0 Dl (m) {0, ifn>k.
Clearly, if £k — oo, then f; — f. Because fj is a simple function,

k

k k
() = S F@uiy) = 3 F0) = 3 o
1=0 =0

i=0
Because fi < fry1, we have fi T f. By the monotone-convergence theorem, p(fx) 1 p(f). Therefore,

= lim sz an

k—o0
Now suppose f(n) € R for every n € N. Based on our previous result,

p(f1) = p(fH) +p(f7) = max(z,,0) + max(—zy, 0 len\

n

By definition, f is integrable if and only if u(|f|) = 3, |#n| < 0o, in which case

w(f) =p(f) - Zmax T, 0) — max(—xz,,0 Za:n

Consider a sequence of Y-measurable functions (f, : S — R | n € N) and a X-measurable function f: S — R
such that lim, ,o f, = f. Furthermore, suppose there is a p-integrable non-negative function g € £1(S, %, u)™
that dominates this sequence of functions such that |f,| < g for every n € N. The dominated convergence theorem
states that f is p-integrable and lim,, o p(fn) = p(f). We will now show this theorem.

Because g is p-integrable and non-negative, u(g) = u(|g|) < co. Because |f,,| < g for every n € N, we know that
w(|ful) < u(g) < oo, which implies that f,, is u-integrable. Because the function |- | is continuous, we know that
limy, o0 | fn] = | f], which implies |f| < g. Because u(]f]) < p(g) < oo, we know that f is u-integrable.

Because |f,| < g and |f] < g, we know that |f,| + |f| < 2¢. By the triangle inequality,

[fn = fI=1fa+ (O < |ful + 1] < 29.

Because |f, — f] : S — [0, 00] is a X-measurable function and |f,, — f| < 2g for every n € N, where 2¢g : S — [0, o0]
is a Y-measurable function such that p(2g) = 2u(g) < oo, the reverse Fatou lemma states that

0 (nmsupm f|) > timsup (17 )

n—oo

Since the function |- | is continuous, we know that lim,,_,~ | fn — f| = 0, where 0 is the zero function. Therefore,

limsup |f, — f| = liminf|f, — f| = lim [f, - f| = 0.
n—oo n— oo

n—oo

By taking the integral with respect to p of these non-negative functions,

p (s = 1) = (st 15— 1) = (s 1o = 11) = 0) <.

n—oo

Because f, — f is p-integrable for every n € N and |u(f — f)| < u(|fa — f]),

0> limsup (| fus — f1) > limsup [u(f, — f)| > liminf |u(f, — )] > 0.
n—oo n—o00 n—oo

Because the limit superior and limit inferior in the inequation above must be equal to zero, we know that
lim,, oo |(fr — f)| = 0, which implies lim,, oo u(fr, — f) = 0. By the linearity of the integral with respect to p,

lim p(fn) = p(f)-

n—oo
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Consider a sequence of u-integrable non-negative functions (f, : S — [0,00] | n € N) and a p-integrable non-
negative function f : .S — [0, 00] such that lim, . fn = f (almost everywhere). Scheffé’s lemma for non-negative
functions states that

Jim p(|fn = fI) = 0'if and only if lim p(fn) = u(f)-

We will now show this lemma. First, suppose lim, o0 p(|fn — f|) = 0. Since 0 < |u(fn, — f)| < p(|fu — 1),
the squeeze theorem implies that lim, . |¢(frn — f)| = 0, which also implies that lim,_, . pu(fn — f) = 0. By the
linearity of the integral with respect to i, we conclude that lim,, o p(fn) = p(f)-

Now suppose lim,,_, oo p(fn) = u(f) and consider the function (f, — f)~ : S — [0, 00| given by

f(s)_fn(3)7 if f(s) >fn(5)7

(fr = £)7(3) = max(—(fo = £)().0) = max((f = F)(s).0) = (f = ) (5) = {O e o

Note that (f, — f)~ < f for every n € N. Because lim,,_, fr, = f, we know that for every s € S and € > 0 there
is an N € N such that n > N guarantees that |f(s) — f,(s)| < e. Note that, for every n > N, if f(s) > f.(s), then
[(fn— )7 (8)| = 1f(s) = fuls)| < e If f(s) < fu(s), then |(fn, — f)7(s)] = 0 < e. Therefore, for every s € S and
€ > 0, there is an N € N such that n > N guarantees that |(f, — f)~(s)| < e. By definition, lim, o (fn — f)~ =0,
where 0 denotes the zero function.

Consider the sequence of ¥-measurable functions ((f, — f)~ : S — R | n € N) and the X-measurable function
0: S — R such that lim,— o (f, — f)~ = 0. Furthermore, consider the p-integrable non-negative function f €
LY(S, %, u)* such that |(f, — )| = (fu — f)~ < f for every n € N. By the dominated convergence theorem, we

know that lim,_,co pu((fn, — f)~) = p(0) = 0.
For every n € N, recall that (f, — f)* = (fn — f) + (fn — f)~. By the linearity of the integral with respect to u,

lim ju((fo — £)) = B p(F) = p() + pl(fu— )7) = p(f) = p(F) + lim p((fo— f)7) = 0.

n—oo n—oo

For every n € N, recall that |f, — f| = (fn — f)T + (fn — f). By the linearity of the integral with respect to u,
Tim i fo = ) = Tim p((Fu = ) + (0 = £)7) = 0.

Consider a sequence of p-integrable functions (f, : S — R | n € N) and a p-integrable function f : S — R such
that lim,, o fr = f (almost everywhere). Scheffé’s lemma states that

Jim p(|fn = fI) = 0if and only if lim_ p(|fal) = p(lf])-
We will now show this lemma. First, suppose lim,, o p(|fn — f|) = 0. By the triangle inequality,

[ful = 1(fa = O+ FI < U fu = FIH IS

Because the integral with respect to p is non-decreasing and linear,

1wl fn = F1) = w(l fal) = n(1£1),
ulf = f1) 2 1 f1) = u(l fnl)-

Because (| fn — f[) > a and p(|fn — f]) > —a for a = p(|fnl|) — p(lf]),

w(lfn = f1) = [l fnl) — (D] = 0. (1)

By the squeeze theorem, lim,, o |p(|fn|) — p(|f])] = 0, which implies lim, o0 (| fn]) — p(]f]) = 0. By the
linearity of the integral with respect to u, we conclude that lim, o u(|fn|) = (| f])-
Now suppose lim,, oo pt(] fn]) = p(]f]). Because the function g : R — R given by g(z) = max(x, 0) is continuous,

lim f.7(s) = lim max(fa(s),0) = max(f(s),0) = f*(s),

i fi () = Tim max(—fa(s),0) = max(~ f(s),0) = £~ (s).
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Because (f,;f : S — [0,00] | n € N) and (f,, : S — [0,00] | n € N) are sequences of X-measurable functions, the
Fatou lemma guarantees that

u(rty = p (tim £F) = (iminf £) < liminf p(f),

n(f7)=n (lggo f;) =p (ligg{gf fn‘) < liminf u(f,,)-
Consider the integrals u(f,7) and u(f, ) written as
p(fo) = ulf) + p(fy) = nlfa),
plf) = nlfy) + n(f) = w(f)-

By taking the limit superior of both sides,

limsup p(f,7) = limsup (u(f,7) + p(fy) — w(f))

limsup p(f;7) = limsup (u(£;) + p(£7) = w(f)) -

By the subadditivity of the limit superior,

limsup p(f;7) < limsup (u(f7) + p(fy)) + limsup —pu(f;)

n—00 n—00 n—00
limsup u(f,) < limsup (u(fy) + p(f;)) + limsup —p(f;5).
n—oo n—oo n—oo

From our assumption that lim,, . u(|fn|) = (] f1),
limsup (u(f,) + u(fy)) = limsup (u(f,) + p(f,)) = limsup u(|fal) = lim pu(|fa]) = n(lf]).
n—oo n—oo n—o00 n—o00
Therefore, by the relationship between the limit inferior and the limit superior,

limsup u(fF) < p(lf]) ~ minf p(f;),

n— oo

limsup () < pu(| 1) — im inf (7).

n—oo

By non-decreasing the right sides of the previous inequations using our previous result,
timsup a(£) < (lf1) = u(f7) = p(F5) + u(f7) = wlF7) = ()
timsup u(f, ) < u(f1) = n(f7) = n(f ) +p(f7) — p(f7) = w(f7).

n—oo

By noting that the limit superior is at least as large as the limit inferior and combining the previous results,

p(f*) < liminf p(f,") < limsup p(f,") < u(f"),

n—0o0

p(f7) <liminfu(f,7) <limsup p(fy) < p(f7).

n—oo

Because the previous inequations imply that the limits must match,

lim u(f) = p(f"),

n—oo
Jim p(fy) = p(f7)

Because (f;f : S — [0,00] | n € N) and (f,, : S — [0,00] | n € N) are sequences of u-integrable non-
negative functions and f* : S — [0,00] and f~ : S — [0,00] are p-integrable non-negative functions such that
lim, oo fi7 = fT and lim,, o f,; = f~, Scheffé’s lemma for non-negative functions guarantees that

lim p(|f = f*]) =0,

n—oo
0.

i u(f, — 1)

n—oo
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By the triangle inequality,
[fn = FI =10 = F0) = =N =1 =)+ = IS =+ =L
Because the integral with respect to p is non-negative for non-negative functions, non-decreasing, and linear,

0 < pllfo = fD) < pllfd = FTD +pllf = 7D

By the squeeze theorem, and as we wanted to show,
lim (| f, — f[) = 0.
n—oo

Consider the measure space (S,X, ). For a set A € X, consider the triple (A, X4, pa) such that ¥4 = {B € X |
B C A} and pa(B) = pu(B) for every B € ¥ 4. We will now show that (4,34, 14) is a measure space restricted to
A.

First, we will show that X 4 is a o-algebra on A. Because A € ¥ and A C A, we have A € ¥ 4. If B € X 4, then
BeX and AN B¢ € X. Because AN B C A, we have A\ B € ¥ 4. For any sequence (B,, € ¥4 | n € N), the fact
that B,, € ¥ guarantees that U, B,, € ¥. Because B,, C A for every n € N, we know that U, B,, C A, which implies
UnBp € 3 4.

Second, we will show that the non-negative function py : ¥4 — [0,00] is a measure on the measurable space
(A,X4). Because ) € ¥ and 0 € X4, we know that pa(0) = p(0) = 0. For any sequence (B, € ¥4 | n € N) such
that B, N B,, = 0 for every n # m, we know that U, B,, € ¥ and U, B,, € ¥4 and

o (Lnj Bn) y (Lnj Bn> SDOVLRED SPREN

Consider the measure space (S, %, u) and a Y-measurable function f : S — R. Consider also the measure space
(A, X4, pa) restricted to A € 3 and the function f|4 : A — R restricted to A given by f|a(a) = f(a) for every
a € A. The function f|, is ¥ 4-measurable because, for every B € B(R),

(fla)7'(B)={ac A| fla) e B} ={s € S| f(s) e Byn A= fH(B)NA.

Consider the measure space (S, %, 1), a X-measurable function f: S — R, and a set A € . We will now show
that f|a is pa-integrable if and only if f14 is p-integrable, in which case pa(fla) = pn(fIa) = p(f; A).

First, suppose f = Ip for some set B € ¥. Clearly, u(fla) = pu(Ipla) = u(lpna) = (BN A) and pa(fla) =
na(Ilpla) = pallpna) = pa(BNA). Because BN A C A, we have pa(BNA) = u(B N A), which implies
pa(fla) = p(fLa). Because u(|fLal) = u(fla) = pa(fla) = pa(|f]al), we know that f|a is pa-integrable if and
only if fI4 is p-integrable.

Next, suppose f is a simple function that can be written as f = Y_7" | axla, for some fixed a1, as, ..., an € [0, ]
and Ay, A, ..., A, € 3. In that case, the integral with respect to p of the function fI4 is given by

w(fla) = p (Z akHAkHA> =p (Z akHAkﬂA> = Z%M(Ak NA).
k=1

k=1 k=1

Furthermore, the integral of the function f|4 with respect to u4 is given by

pa(fla) = pa ((Z akHAk> > = pa <Z akﬂAmA> = appa(lagna) = Y arpa(Ax N A).
k=1 A

k=1 k=1 k=1

Because Ay, N A C A for every k < m, we have pa(Ar N A) = p(Ag N A), which implies pa(fla) = p(fILa).
Because p(|fTa]) = u(fla) = pa(fla) = pa(lflal), we know that f|a is pa-integrable if and only if fI4 is
p-integrable.

Next, suppose f is non-negative. For any n € N, let f,, = a0 f, where «,, is the n-th staircase function. Because
(fnla | n € N) is a sequence of ¥-measurable functions such that f,I4 T fI4, we know that u(f,I4) T u(fI4).
Because (fn]|a | n € N) is a sequence of 3 4-measurable functions such that f,|a 1T f|a, we know that pa(fn|a) T
1a(fla). For every n € N, the fact that f, is a simple function implies p(f,I4) = pa(fnla). Therefore, pa(fnla) T

p(fla), and p(folla) T pa(fla), and p(fIa) = pa(fla). Because pu(|flal) = p(fla) = pa(fla) = pa(|flal), we
know that f|4 is pa-integrable if and only if fI4 is u-integrable.
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Finally, suppose f : S — R. By definition,
p(fLal) = u((FLa) ) + u((fLa)7) = u(f TTa) + p(f " La) = pa(f|a) + pa(f 7 a) = pa((fla)7) + pa((fla)”) = u(lf]a)-
Therefore, f|4 is pua-integrable if and only if fI4 is p-integrable. In that case,
p(fIa) = p((fLa)*) = u((f1a)7) = u(fFLa) = p(F7La) = pa(f¥[a) = pa(f~1a) = pa((F1a)7) = pa((fla)7) = p(fla).
Consider a Y-measurable function f : S — [0, 0] and the function (fz) : £ — [0, o] defined by
(fu)(A) = u(f; A) = p(f1a) = pa(fla)-

We will now show that (fu) is a measure on (S, Y). Clearly, (fu)(0) = u(fIy) = p(0) = 0.
Consider a sequence (B, € X | n € N) such that B, N B, = 0 for n # m. First, suppose f is a simple function

that can be written as f = > -, agla, for some fixed ay,as, ..., an € [0,00] and A;, Ao, ..., Ay, € . In that case,
m m m
(fu)(UnBp) = u(flu, B,) = 1 (Z akﬂAkﬂuan) = (Z akﬂAkrw(uan)) = (Z akﬂunmmBn)) :
k=1 k=1 k=1

By the definition of integral with respect to p of a simple function and countable additivity,
(f,u)(Un n Zak,u Un AkﬂB Zakzu AkﬂB Zzakﬂ(AkﬂBn).
k=1 n n k=1

By the definition of integral with respect to p of a simple function,

(f1)(UnBnp) Zu (Z arlans, ) = ZH <Z akHAk]IBn,> = ZH(fHBn) = Z(fﬂ)(Bn)~
n k=1 n n

Now suppose f is non-negative. For any n € N, let f,, = «a;, o f, where «,, is the n-th staircase function. For
every set B € X, we know that (f,Ig : S — [0,00] | n € N) is a sequence of ¥-measurable functions such that
fnle T flp, which implies that u(f,1g) T w(fIg). Therefore,

(F)(U;By) = (S, ;) = lim plfuluys,) = lim 3 pulfals) = 3 lim plfalls,) = D u(fls;) = 3 (f1)(B)).

Consider a X-measurable function f : S — [0, c0] and the measure space (5,3, (fu)). By definition, the integral
with respect to (fu) of a X-measurable function h : S — R over the set A is given by

(fu)(hlLa) = (fu)(h; A) = (h(f1))(A)-

We will now show that (fu)(hla) = p(fhla).
First, suppose h = [ for some set B € X. In that case, the integral with respect to (fu) of h over the set A is
given by

(fr)(hla) = (fp)(Ipla) = (fu)(Ipna) = (fu)(BNA) = u(flpna) = p(fIela) = p(fhla).

Next, suppose h is a simple function that can be written as h = Z?ﬂ axla, for some fixed ay, ag, ..., an € [0,]
and A, Ay, ..., Ay € X, In that case, the integral with respect to (fu) of h over the set A is given by
(fu)(hla) = (Z aUIAJA) = (fu) (Z ak]IAmA> =Y ar(fu) (AN A) = apu(flagna)-
k=1 k=1 —

By the linearity of the integral with respect to p,

(fu)(hla) = <Z akf]IAmA> =L (fHA Z akHAk> = p(fhla).

k=1 k=1

Next, suppose h is non-negative. For any n € N, let h,, = «, o h, where «,, is the n-th staircase function.
Because (hplg @ S — [0,00] | n € N) is a sequence of Y-measurable functions such that h,I4 1 hl4, we know
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that (fu)(hnla) T (fp)(Rla). Furthermore, because (fh,la : S — [0,00] | n € N) is a sequence of YX-measurable
functions such that fh,l4 1 fhla, we know that pu(fh,la) T 1(fhl4). Therefore, the integral with respect to (fu)
of h over the set A is given by

(fr)(hla) = lim (fp)(hnla) = lm pu(fhola) = p(fhla).

Finally, suppose h : S — R. By definition,

(f)(IhLal) = (f)((hLa) ") + (f)((h1a) ™) = (fp) (R Ta) + (fp) (R Ta) = p(fhT 1) + p(fh71a)

By the linearity of the integral with respect to p,

(fr)(IhLal) = p(fRh¥La + fRLa) = p(fLa(h" +h7)) = u(f1|La) = (| fhLa).

Therefore, hl4 is (fu)-integrable if and only if fhl4 is p-integrable. In that case,

(fu)(hLa) = (f)((R1a)T) = (f)((RLa)7) = (fu) (B Ta) — (fu) (7 1a) = p(fRTTa) — pu(fh71a)

By the linearity of the integral with respect to u,

(fu)(hla) = p(fRY 14 = fRT1A) = p(fTa(hT = h7)) = p(fhla).

Therefore, by considering integrals over the set S, if f : S — [0,00] and h : S — R are Y-measurable functions,
then h is (fu)-measurable if and only if fh is y-measurable, in which case (fu)(h) = p(fh).

Consider a measure space (S,%, i), a X-measurable function f : S — [0,00], and the measure A = (fu) on
(S,X). We say that A has density f relative to u, which is denoted by dA/du = f.

For every A € %, if u(A) = 0, we will now show that A(A) = (fu)(A) = pu(fIa) = 0. The fact that {fI4 #0} C A
implies p({fIa # 0}) < p(A) = 0. Because fI14 and 0 are Y-measurable functions such that p({fI4 # 0}) =0, we
know that u(fI4) = u(0) = 0.

If 1 and A are o-finite measures on (5,%) such that if y(A4) = 0 then A(A) = 0 for every A € 3, the Radon-
Nykodym theorem states that A = (fu) for some ¥-measurable function f: S — [0, c0].

6 Expectation

Consider a probability triple (2, F,P). The expectation E(X) of a P-integrable random variable X : O — R is
defined as the integral of X with respect to the probability measure P. Therefore,

]E(X):IP’(X):/QXdIE”:/QX(w)IP(dw).

The expectation E(X) of a non-negative random variable X : Q — [0, 00] is also defined as the integral of X
with respect to the probability measure P.
Consider a sequence of random variables (X,, : 2 — R | n € N) and a random variable X :  — R such that

P ( lim X, = X) =P ({w € Q| lim X,(w) = X(w)}) =1

n—oo
The integration results discussed in the previous section can be restated as follows:
e By the monotone-convergence theorem, if X,, > 0 and X,, < X,,1; for every n € N, then E(X,,) 1 E(X).
e By the Fatou lemma, if X,, > 0 for every n € N, then E (X)) < liminf,, o E[X,].

e By the dominated convergence theorem, if there is a P-integrable non-negative function Y : Q@ — [0, co] such
that |X,,| <Y for every n € N, then X is P-integrable and lim,_,. E(X,,) = E(X).

e By Scheffé’s lemma, if X and X, are P-integrable for every n € N, then lim,,_, o E(|X,, — X|) = 0 if and only
if limy, o E(| X, ]) = E(|X]).
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As a special case of the dominated convergence theorem, the bounded convergence theorem guarantees that if
there is a K € [0,00) such that |X,,| < K for every n € N, then lim,,_, . E(|X,, — X|) = 0. Note that the simple
function Y = K is P-integrable, since P(|Y|) = P(Y) = P(KIg) = KP(2) = K. Therefore, X is P-integrable and
limy,—, 00 E(X,) = E(X). The dominated convergence theorem also guarantees that lim, ., E(]X,, — X|) = 0.

The expectation E(X; F') of the P-integrable random variable X :  — R over the set F' € F is defined as

E(X;F) = E(XIp) = P(X; F) = P(XIF) :/ XdP = / X (w)P(dw).

Consider a random variable Z : Q@ — R and a B(R)-measurable non-negative function g : R — [0, o] such that
a < b implies g(a) < g(b). Recall that the function g(Z) : @ — [0, 00| defined by g(Z) = g o Z is also a random
variable. For every ¢ € R, Markov’s inequality states that

E(9(2)) = g(c)P(Z = ¢),

since g(Z) > 9(Z)liz>cy > 9(c){z>c) implies E(9(Z)) > E(g(c)lz>c}) = 9(c)P(Z > ).

Consider a non-negative random variable Z : 2 — [0, oo] and let g(¢) = max(c, 0). For ¢ > 0, Markov’s inequality
implies that E(Z) > cP(Z > ¢).

Consider a random variable Z : Q — R and let g(c) = € for some 6 > 0. Markov’s inequality implies that
E(e??) > ePP(Z > ¢).

Consider a non-negative random variable X : Q@ — [0,00]. If E(X) < oo, then P(X < oo) = 1. Note that
oollfx—o0} < X, such that coP(X = co) <E(X). Therefore, P(X = 0o) > 0 implies E[X] = oo.

Consider a sequence (Z,, : Q@ — [0,00] | n € N) of non-negative random variables. We will now show that

E (2}; Zk> - %:E(Zk).

For any n € N, let Y,, = Y7, Z, such that E(Y,) = > }_E(Z;). Cleatly, ¥,, > 0, Y, < Y,11, and
lim, 00 Y, = > Zi. Therefore, Y, 1>, Zi. By the monotone-convergence theorem, E(Y,,) T E(}_, Zx).

Consider a sequence (Z, : Q — [0,00] | n € N) of non-negative random variables such that )", E(Z;) < oc.
We will now show that }°, Z; < oo almost surely and lim, o Z, = 0 almost surely, where 0 denotes the zero
function. Because E(}_, Z) < oo, we know that P(}°, Z, < co) = 1. Because the n-th term test implies that
{21 Zk < oo} C {limy 00 Z, = 0}, we know that 1 =P(>, Zi < 00) < P(limy, 00 Zp = 0).

Consider a sequence of events (F,, € F | n € N) such that > P(F,) < oco. Let (Ir, | n € N) be the
corresponding sequence of indicator functions. Because E(Ip,) = P(Fj), we know that > E(Ip,) < oo, which
implies ), I, < oo almost surely. Because ) I, (w) is the number of times that the outcome w € Q belongs to
an event in the sequence, we know that the outcome w almost surely belongs to a finite number of events in the
sequence, which implies that P (limsup,,_, . F,,) = 0. This is the Borel-Cantelli lemma.

A function ¢ : R — R is convex if A¢(z)+ (1 —N)p(y) > p(Ax+(1—N)y), for every z € R, y € R, and A € [0,1]. If
¢ : R — R is convex, it is also continuous and therefore B(R)-measurable. Important examples of convex functions
include = + |z|, x + 22, and z +— €* for 6 € R.

If  : R — R is a convex function, for every z € R there is a function g : R — R given by g(z) = az + b for every
2z € R and some a € R and b € R such that g(z) = ¢(z) and g(z) < ¢(x) for every x € R. In other words, for every
point in the domain of a convex function, there is a linear function that never surpasses the convex function such
that the value of the linear function at that point matches the value of the convex function at that point.

Consider a random variable X : © — R such that E(X) < oo and a convex function ¢ : R — R. Jensen’s
inequality states that E(¢(X)) > ¢(E(X)). We will now show this inequality.

Consider a function g : R — R such that g(E(X)) = ¢(E(X)) and g(z) = ax + b < ¢(z) for every x € R and
some a,b € R. Clearly g(X) =go X < ¢ o X = ¢(X). Therefore,

E(¢(X)) = E(9(X)) = E[aX +b] = aE(X) + b = g(E(X)) = ¢(E(X)).

For every p € [1,00), the set LP(Q, F,P) contains exactly each random variable X :  — R such that E(|X|?) <
oc. If X € LP(Q, F,P), the p-norm || X, of the random variable X is given by || X, = E(|X[?)'/?.

For every p € [1,00) and r € [1,00) such that p < r, we will now show that if Y € L"(Q, F,P) then YV €
£r(Q, F,P) and ||Y|, < ||[Y|l,. For every n € N, consider the function X,, = min(|Y'|,n)?. Clearly, 0 < X,, < nP,
so 0 < E(|X,|) = E(X,) < nP. Consider also the convex function ¢ : R — R given by ¢(2) = |2|"/? such that
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H(Xy) = | X" = X3P Clearly, 0 < X1/P = min(|Y],n)" < n", so 0 < ]E(|X,C/p|) = E(Xg/p) < n". Using
Jensen’s inequality,

E(X;/7) = E((X,)) > $(E(Xn)) = [E(Xn)["/? = E(X,)"/?.

Because X5/ > 0 and X./? 1 |Y'|", the monotone-convergence theorem guarantees that E(Xﬁ/ PY1E(|Y]"). Because
X, >0 and X,, 1|Y|?, the monotone-convergence theorem guarantees that E(X,,) T E(]Y|?). By taking the limit
of both sides of the previous inequation,

v
E(Y]") = lim E(X/) > lim B(X,)"” = (lim E(X,))" =E(V]?)"”.

n—oo n—oo
By taking the r-th root of both sides of the previous inequation,
oo > E(|Y[)V" > E(|Y[7)!/7.

For every p € [1, 00), we will now show that £P(§2, F,P) is a vector space over the field R. First, recall that the set
of all functions from €2 to R is a vector space over the field R when scalar multiplication and addition are performed
pointwise. Because such set includes £P(Q), F,P), it is sufficient to show that L£P(Q2, F,P) is non-empty and closed
under scalar multiplication and addition. Because 0 : & — R is a random variable and E(|0|") = E(0) = 0, we
know that 0 € LP(Q, F,P). If X € £P(Q, F,P) and ¢ € R, then ¢X : @ — R is a random variable and E(|cX|P) =
E(|c|?|X|P) = |c|PE(]X|?), we know that ¢X € LP(Q, F,P). Finally, if X € LP(Q,F,P) and Y € LP(Q, F,P), then

(X + Y7 < ([X]+[Y])? < @max(|X], [Y])P < 2°([X]7 +[Y]7),
which implies X +Y € £P(Q, F,P) since
E([X +Y[P) <EQP(XP + [Y]7)) = 2"E(|X]") + 2"E(|Y|") < oo

Consider the random variables X € £2(Q,F,P) and Y € £%(Q, F,P). The Schwarz inequality states that
XY € £LY(Q, F,P) and E(JXY|) < || X||2]|Y||2- We will now show this inequality.

First, consider the case where || X||2 # 0 and ||Y]|2 # 0. Let Z = |X|/||X]|l2 and W = |Y|/||Y||2. Clearly,
E(Z%) =E(|X|*)/||IX||3 = 1. Analogously, E(W?) = 1. Because (Z — W)? > 0, we know that

0<E((Z-W)*) =E(Z%) +E(W?) —E(2ZW) =2 -E(2ZW).
Because the previous inequation implies that E(ZW) < 1,
1> E(ZW) = E(X|IY|/IX211Y ]l2) = E(XY])/[I X |[2]]Y ||2-
Using the fact that X € £2(Q, F,P) and Y € L3(Q, F,P),
E(IXY]) < [ X]|2[[Y]l2 < oo

Finally, consider the case where || X || = E(X?)'/2 = 0, which will prove analogous to the case where ||Y ||z = 0.
Because X? is a non-negative random variable, the fact that E(X?) = 0 implies that P(X? > 0) = P(X # 0) = 0.
Therefore, P(X = 0) = 1. Because {X = 0} C {XY = 0}, we know that P(X = 0) < P(XY = 0), which implies
P(XY =0) = P(|XY| =0) = 1. Because {|XY| = 0} happens almost surely, we know that E(|XY]|) = E(0) = 0.
Therefore, XY € £1(Q, F,P) and 0 = E(|XY]) < || X|2]|Y]]2 = 0.

Consider the random variables X € £2(Q, F,P) and Y € L£23(Q, F,P). Because £2(2, F,P) is a vector space
over R, we know that X +Y € £2(Q, F,P). We will now show that | X + Y2 < [| X|]2 + [|Y]]2.

Since | X + Y| < |X| + |Y], we know that | X +Y|? < (|X|+ |V ])? = |X|? 4+ 2|X||Y]| + |Y|?. Therefore,

E(IX +Y[?) <E(IX[*) + 2E(IX]|Y]) + E(|Y]*) = E(|X[*) + 2E(| XY ]) + E([Y ).
Using the Schwarz inequality,
E(IX +Y*) <E(XP) + 21X 2Vl + E(Y ) = (1X]l2 + [Y]2)?
By taking the square root of both sides,
IX + Y2 = E(X + Y[*)'/2 < [ X[l2 + [[Y]|2.
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Consider the random variables X € £2(Q, F,P) and Y € £%(Q,F,P). Recall that X € £}(Q,F,P) and
Y € LY, F,P). Let ux = E(X) and py = E(Y). Because (X — px) € £L2(Q, F,P) and (Y — uy) € L2(Q, F,P),
we know that (X — ux)(Y — py) € LY(Q, F,P). The covariance Cov(X,Y) between X and Y is defined by

Cov(X,Y) =E((X — px)(Y — py)) = E(XY) = E(Xpy) —E(Yux) + E(uxpy) = E(XY) = pxpy.
Consider the random variable X € £2(2, F,P). The variance Var(X) of X is defined by
Var(X) = Cov(X, X) = E((X — jix)?) = B(X?) — .

Consider the random variables U € £2(Q, F,P) and V € £2(Q, F,P). The inner product (U, V') between U and
V is given by (U, V) = E(UV). If |U||2 # 0 and |V||2 # 0, the cosine of the angle 6 between U and V is defined as

U, V)

cosf = ————,
1U2lIV]]2

Because (U, V)| = |E(UV)| <E(UV|) < ||U||2]|]V]]2, we know that |cosé] < 1.
Consider the random variables U, V, W, Z € L2(Q2, F,P). Note the following properties of the inner product:
o (U,U) =EU?) = ||Ul3.
V) = E(UV) = E(VU) = (V,U).
aU, V) = E(aUV) = aE(UV) = a(U, V), for any a € R.

U,aV) =E(UaV) = aE(UV) = a(U, V), for any a € R.
U+V,W)=E(U + V)W) =EUW + VW) = (U,W) + (V,IW).
UV+W)=EUV+W))=EUV +UW) = (U,V)+ (UW).

U+V W+ 2Z)y=({UW+Z)+ (VW +Z)=(UW)+(U,2Z)+ (V,IW)+(V, Z).

Consider the random variables X € £2(Q, F,P) and Y € £2(Q, F,P). Let ux = E(X) and py = E(Y). The
correlation p between X and Y is defined as the cosine of the angle between X — pux and Y — py, which is given by

U,
(
(
(
(
°(

o= <X—,ux,Y—,LLy> _ COV(X,Y)
[X = pxll2]Y — pyll2 Var(X) Var(Y)

Consider the random variables U € £2(Q, F,P) and V € £%(Q, F,P). Because U +V € L%(Q, F,P),
|0+ VIE = B(U + VI2) = B((U + V)?) = E(U?) + 2B(UV) + E(V?) = [U]3 + |V[3 + 2(U, V).
When (U, V) = 0, we say that U and V are orthogonal, which is denoted by U L V. In that case,
I+ VIZ=1U13 + V.
Consider the random variables X € £2(Q, F,P) and Y € £?(Q, F,P). Note that X +Y € £2(Q, F,P) and
Var(X + V) =E(X +YV)?) —E(X +Y)? = E(X? + 2XY + Y?) — (E(X)? + 2E(X)E(Y) + E(Y)?).
By the linearity of expectation and reorganizing terms,
Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y).

Therefore, if Cov(X,Y) =0, then Var(X +Y) = Var(X) + Var(Y).
More generally, if X1,...,X,, € L2(Q,F,P), then

ar <iXk> ZVar Xk) —1—22 Z Cov(X;, X;).
k=1

=1 j=i+1
Consider the random variables U € £2(Q, F,P) and V € £%(Q, F,P). The parallelogram law states that
IU+ VI3 + 11U = VI3 =2|UlI3 +2|V3.
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We will now show this law. Using the relationship between the inner product and the 2-norm,
U+ VIE+|U-VI5={U+V,U+V)+({U-V,U-V).
By the bilinearity of the inner product,
IU+VIE+ U= VI3 =(U.U) + (U V) + (V,U) + (V,V) + (U, U) + (U, =V) + (=V,U) + (=V, V).
By cancelling terms,
IU+ VI3 + 11U = VI3 =2U,U) + 2V.V) = 2||U |5 + 2| VI5.
For some p € [1,00), consider a sequence of random variables (X,, € LP(Q, F,P) | n € N) such that

lim sup I X, — Xsllp =0.

k—o0 r,s>
We will now show that there is a random variable X € £P(€, F,P) such that
Jim X, X[, = 0.

By definition, for every e > 0 there is an N € N such that £ > N implies sup, ;. [| X, — X, < €. Therefore,
there is a sequence (k, € N | n € N) such that k11 >k, and sup, >, || X, — Xl < 1/2" for every n € N.
For every n € N, the monotonicity of the norm implies that
E(1 Xk, = Xk, |) = | Xk

n41 nt1 an”l < Han+1 - an”l) < 27

Because | Xy, , — X}, | is a non-negative random variable for every n € N,

ZE(len+1 - X )= (Z | Xkr — an|> < 27 < 00.

n

Because the expectation above is finite,

P <Z | Xksr — Xio| < oo> =1.

n

Suppose ), | Xk, (W) — Xk, (w)| < oo for some w € Q. For every € > 0, the Cauchy test guarantees that there
is an N € N such that j > ¢ > N implies

- Z | Xk, (W) = Xi, (W)] < e

n=t

Z |an+1 (w) - Xk, (W)l

n=1

Furthermore, for every j > i,

| 3 x-S

n=t+1

| Xk, (w) = X, (w)] = |Xk_7(w)in(w)+ > X (w) = Y X, (w

n=t+1 n=i+1

By shifting indices and using the triangle inequality, for j > i > N,

Zan+1 = X, (

For j =i > N, note that [Xy, (w) — X, (w)| = 0 < e. Therefore, for every € > 0 there is an N € N such that
j > N and i > N implies | Xy, (w) — Xp, (w)| < ¢, such that (X, (w) | n € N) is a Cauchy sequence of real numbers.

Because every Cauchy sequence of real numbers converges to a real number, consider the random variable
X = limsup,, , ., Xk, such that lim, . X, (w) = limsup,, , . Xk, (w) = X (w).

| X, (W) — X, (w)] = < Z | Xk s (W) — X, ()| <€
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Since {>_,, [ Xk, — Xk, | < oo} C {lim, o0 Xp, = X},

P (nll)ngo an - X) 2 P (Z |Xk7n+1 - an| < OO) =1

Suppose lim,, o0 Xi, (w) = X (w) for some w € Q. For every r € N,

n

lim X (w) — X, (w) "o lim | X, (w) — X (w)|P = | X (w) — X, (w)]P.

n— 00 ’ n— 00

Because {lim;,, oo Xi, = X} C {limy, 00 | Xk, — Xr|P = |X — X,|P} for every r € N,
IP’( lim | Xy, — X, [P = |X — XT\P) > IP( lim X, = X) ~1.
n—oo n—oo
Because | X, — X,|P > 0 for every n € N, by the Fatou lemma,
E(|X — X, ]P) <liminf E(| X}, — X,.|7).
n—oo
For any ¢t € N, suppose r > k; and recall that k,, > k; whenever n > ¢. In that case,

1
E( Xk, = X:l?) = |1 Xe, = X[} < 5.

For any € > 0, choose t € N such that 1/27 < e. In that case, for any r > k;,

1
_Xx.|P imi _X.|P) < —
E(X — X,J?) < Iminf E( Xy, — X, 7)< o <
Because LP (2, F,P) is a vector space over the field R, the fact that (X —X,.) € LP(Q, F,P) and X, € LP(Q, F,P)
implies that X € £P(Q, F,P). The previous inequality also shows that

: _ Py — |3 — o
TILIEOE(\X X[P) Tlggo [X — X.||5 = 0.
A vector space K C LP(Q, F,P) is said to be complete if for every sequence (V,, € K | n € N) such that

lim sup [[V; — Vill, = 0

k—o0 r,s>k
there is a V' € K such that
lim |V, — V]|, =0.
n— oo

We will now show that if the vector space K C £2(Q, F,P) is complete, then for every X € £2(£2, F,P) there is
a so-called version Y € K of the orthogonal projection of X onto K such that || X —Y||s = inf{|| X —W|2 | W € K}
and X —Y L Z for every Z € K. Furthermore, if Y and Y are versions of the orthogonal projection of X onto K,
then P(Y =Y) = 1.

For some X € £2(Q, F,P), let A =inf{||X — W]l | W € K}. First, we will show that it is possible to choose a
sequence (Y, € K | n € N) such that lim,_,o [|X — Ya|l2 = A. Recall that for every € > 0 there is a W € K such
that || X — W2 < A+ e€. Choose Y,, such that || X — Y, || < A+ n%_l For every € > 0, there is an N € N such that
n > N implies that || X — Y, |l2 < A + €, which is equivalent to |||X — Y, |2 — Al < e since A < || X — Y, 2.

Let U = X—%(YT—FYS) and V = %(YT—YS) such that U +V = X — Y, and U — V = X —Y,. Because
U L%, F,P)and V € L2(Q, F,P), the parallelogram law guarantees that

2 2

1 1
1% = Yol 1K - v =2 - g+ )| w2 Gn -
2 2
Therefore,
1 2 1 1 1 2
2500 - va| =2 (300~ ¥ 505 - V) = IX = YalB X - Yl -2 X - g0 4 72
2 2
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Using properties of the inner product and reorganizing terms,

1 2
I¥: - il =20 - Vol + 20X - %3 - 4 x - S 4 v

2

Because (Y, +Y;)/2 € K, we know that [| X — (Y, + YS)/2||§ > AZ?. Therefore,
1Y, = Yall3 < 20X = Va3 + 21X - Y, I3 - 44%.

For every € > 0, since lim,_, | X — Y,||3 = A?, there is a k such that n > k implies ||| X — Y, ||5 — A?| < &,
which is equivalent to || X — Y,[|3 < £ + A2, Therefore, whenever r,s > Fk,

1Y, — Va2 < 21X — Ya|2 + 2| X — Y,[|2 — 4A2 < 2 G +A2) +2 (2 +A2) CAA? =,

which implies

lim sup ||Y, — Ys|2 =0.

k—o0 r,s>k
Because K is complete, there is an Y € K such that

lim ||V, — Y|l = 0.
n— o0

Let U=X —Y,and V =Y, — Y such that U + V = X — Y. Because U € L2(Q), F,P) and V € L3(Q, F,P),
A<|IX =Yl < |X = Yall2 + Yo = Y2

Using the squeeze theorem when n — oo shows that | X — Y2 = A =inf{||X - W]z | W € £}.
Forsome Z € Kandt € R,let U = X —Y and V = —tZ such that U+V = X Y —tZ. Because U € L2(Q, F,P)
and V € £%(Q, F,P) and considering the bilinearity of the inner product,

IX =Y —tZ|l3 = |1X = Y|3 + || - tZ|3 + 2(X =Y, ~tZ) = | X = Y3+ || Z]]3 - 2t(X - Y, Z).
Because (Y +tZ) € K, we know that | X — Y3 < |[|X — (Y + tZ)||3. Therefore, for every Z € K and t € R,
2218 > 200X ~ Y, 7).

We will now show that the previous inequation can only be true for every Z € KL and t e Rif (X — Y, Z) =0
for every Z € K, which implies X — Y 1 Z for every Z € K.

In order to find a contradiction, suppose that (X — Y, Z) # 0 for some Z € K. Because (X —Y) € £L2(Q, F,P)
and Z € L2(Q, F,P), the Schwarz inequality implies that

X = Y21 Z]ls = E(|(X = Y)Z]) > [E(X - Y)Z)| > 0.

Clearly, [E((X—Y)Z)| = 0 when || Z||2 = 0, which implies E((X —Y)Z) = (X -V, Z) = 0. Therefore, we can suppose

that ||Z||2 > 0. If (X =Y, Z) > 0, then choose a t € R such that 0 < ¢t < 2(X —Y,Z)/||Z]]3. If (X —Y,Z) <0, then

choose a t € R such that 2(X —Y, Z)/||Z||3 < t < 0. In either case, t2||Z||3 < 2¢(X —Y, Z), which is a contradiction.
Suppose that Y and Y are versions of the orthogonal projection of X onto K. Because (37 -Y) ek,

(X-Y,Y -Y)=(X-Y,Y -Y)=0.

By the bilinearity of the inner product,

(X, V) 4+ (VY -Y) (X, =Y) = (Y, YV - Y)= (VY -Y)— (Y, Y - V)= (Y -V, Y - Y) =0

Because (Y —Y,Y —Y) = E((Y —Y)?) = 0 and (Y — Y)? is a non-negative random variable, we know that
P((Y —Y)? # 0) = 0, which implies that P(Y = Y) = 1.

Consider a probability triple (Q, F,P) and a random variable X : Q@ — R. Recall that (R, B(R),Ax) is also a
probability triple, where Ax : B(R) — [0, 1] is the law of X given by Ax(B) = P(X~!(B)) for every B € B(R). We
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will now show that if o : R — R is a Borel function, then (ho X) € £1(Q, F,P) if and only if h € L1 (R, B(R), Ax).
Furthermore, in that case,

/(hoX) dIP’:]P’(hoX):AX(h):/hdAX.
Q R

First, suppose h = I for some B € B(R). For every w € Q,

1, if X(w) € B,
holX =1Ip(X =Ty-1 =
(o X)) = T5(X () = Tx-1(p)(®) {07 Xy en
Therefore, P(ho X) = P(Iy-1(p)) = P(X1(B)) = Ax(B) = Ax(Ig) = Ax(h) < co. Because h is B(R)-measurable
and (h o X) is F-measurable, this step is complete.

Next, suppose h is a simple function that can be written as h = Z;f:l aylla, for some fixed a1, ag, ..., an € [0, 0]
and Ay, As, ..., Ay € B(R). For every w €

(ho X)(w) = ZakﬂAk (X (w)) = Z arlx-1a,)(w).
k=1 k=1

Therefore, P(h o X) = ZZ]:I ak]P)(Xil(Ak)) = Zznzl akAX (Ak) = AX (Z;cnzl ak]IAk) = AX (h) Because h is
B(R)-measurable and (h o X) is F-measurable, this step is complete since Ax (h) < oo if and only if P(ho X) < oco.

Next, suppose h is a non-negative Borel function. For any n € N, consider the simple function h,, = a,, oh, where
ayp, is the n-th staircase function. Because h,, 1 h, the monotone-convergence theorem implies that Ax (h,,) T Ax(h).
Similarly, consider the simple function a0 (hoX) = (a,0h)oX = h,0X. Because (h,0X) 1 (hoX), the monotone-
convergence theorem implies that P(h,0X) 1 P(hoX). Because our previous result implies that P(h,0X) = Ax (hy),
the limit when n — co shows that P(ho X) = Ax(h). Because h is B(R)-measurable and (h o X) is F-measurable,
this step is complete since Ax(h) < oo if and only if P(ho X) < co.

Finally, suppose h is a Borel function. Recall that h = h™ — h™, where h* and h™ are non-negative Borel
functions. Therefore, if either P(|h o X|) < oo or Ax(|h]) < oo, then

P(hoX) =P((hoX)") —P((hoX)") =P(h 0 X) — P(h™ 0 X) = Ax(h*) — Ax(h™) = Ax(h) < oo,

where the second equality follows from associativity. Because h is B(R)-measurable and (h o X) is F-measurable,
this completes the proof, since P(|h o X|) = Ax(|h|) = oo implies (ho X) ¢ L1(Q, F,P) and h ¢ L} (R, B(R), Ax).

Consider a probability triple (2, F,P). A random variable X : Q@ — R has a probability density function fx if
fx : R —[0,00] is a Borel function such that the law Ax of X is given by

Ax(B) = P(X~'(B)) = Leb(fx; B) = Leb(fxIp) = /B fx dLeb,

for every B € B(R), where Leb is the Lebesgue measure on the measurable space (R, B(R)).

In that case, since (R, B(R),Leb) is a measure space and fx : R — [0, 00] is B(R)-measurable, recall that the
measure (fx Leb) on the measurable space (R, B(R)) is given by (fx Leb)(B) = Leb(fx; B) for every B € B(R),
so that Ax = (fx Leb). Therefore, using the terminology introduced in the previous section, the law Ax of X has
density fx relative to the Lebesgue measure Leb, which is denoted by

dAx
dLeb

=[x

Consider a random variable X : Q@ — R that has a probability density function fx : R — [0, 00]. Furthermore,
consider a Borel function gx : R — [0, 00] such that Leb({fx # gx}) = 0. Because these two functions are non-
negative and Leb({fxIp # gxIp}) = 0, we know that Leb(fxIp) = Leb(gxIp), which implies that the random
variable X also has a probability density function gx.

Consider a measure space (S,%, i), a X-measurable function f : S — [0,00], and the measure A = (fu) on
(S,%). Recall that we say that A has density f relative to u, which is denoted by d\/du = f. We will now show
that if h : S — R is a Y-measurable function, then h € £1(S, %, )\) if and only if hf € £1(S, 3, u). Furthermore, in
that case,

/hdA:A(h):u(hf):/hf dp.
S S
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First, note that if h is X-measurable then A f is also YX-measurable.

Next, let h =14 for some A € ¥. In that case, u(hf) = p(laf) = pn(f; A) = AMA) = A(Ia) = A(h). This step is
complete since u(|hf|) < oo if and only if A(|h]) < co.

Next, suppose h is a simple function that can be written as h = Y ;" | axla, for some fixed a1, as, ..., an, € [0, ]
and Ay, A, ..., A, € X, By the linearity of the integral and considering the previous step,

= U <Z ak]IAkf> = Zaku(]IAk ZakA ]IAk = (Z ak]IAk> - )‘ )
k=1 k=1

This step is complete since u(|hf]) < oo if and only if A(|h]) < co.

Next, suppose h is a non-negative Y-measurable function. For any n € N, consider the simple function h, =
an o h, where v, is the n-th staircase function. Because h,, 1 h, the monotone-convergence theorem implies that
A(hy) T A(h). Similarly, because h,f 1 hf, the monotone-convergence theorem implies that wp(h,f) T p(hf).
Because our previous result implies that A(h,) = u(h,f), the limit when n — oo shows that p(hf) = A(h). This
step is complete since p(|hf]) < oo if and only if A(|h]) < co.

Finally, suppose h : S — R is a Y-measurable function. Recall that h = ht — h~, where h™ and h~ are
non-negative Y-measurable functions. If either A(|h|) < oo or p(|hf]) < oo, then

p(hf) = u((h* =h7)f) = p(h* f) = u(h™ f) = A(RT) = A(h7) = A(h) < oo.

Since A(|h|) = u(|hf|) = oo implies h ¢ L1(S, X, \) and hf ¢ L1(S, %, i), the proof is complete.

Consider a probability triple (2, F,P) and a random variable X : Q — R with a probability density function
fx : R — [0,00]. Recall that the law Ax = (fx Leb) of X has density fx relative to Leb, which is denoted by
dAx/dLeb = fx. If h : R — R is a Borel function, the fact that (R, B(R),Leb) is a measure space implies that
h € LY(R,B(R), Ax) if and only if hfx € L}(R, B(R),Leb). Furthermore, in that case,

/h dAX = Ax(h) = Leb(th) = / th dLeb.
R R

Consider a measure space (S, 3, ). For every p € [1,00), the set LP(S, X, 1) contains exactly each Y-measurable
function f : S — R such that p(|f|P) < co. If f € LP(S,X, n), the p-norm | f||, of the function f is given by
1Flly = 7).

Suppose that p > 1 and p~! + ¢~! = 1. Furthermore, suppose f,g € LP(S,%,u) and h € L4(S, 3, ). Holder’s
inequality states that fh € £1(S,%,u) and u(|fh]) < [|fllpllhll;- Minkowski’s inequality states that || f + g, <
Il fllp + llgllp- We will now show these inequalities.

First, note that fh € £1(S,%, ) and u(|fhl) < | fl,Ihll, if and only if [£]|A] € £1(S,%,u) and (| f]|A]) <
1 f1lpll1R]llq- Therefore, we only need to consider the case where f and h are non-negative. In that case, if u(f?) = 0,
then 0 = u({f? > 0}) = u({f # 0}) > p({fh # 0}) and u(fh) = 0, so that Holder’s inequality is trivial.

Consider the case where f and h are non-negative and 0 < u(f?) < oo. Let P: ¥ — [0, 1] be given by

py = L)W ) (1Y ()
n(f7) u(f7) n(f7) (f7) n(f7)

The function P is a probability measure on (S, Y). Clearly, P(S) =1 and P()) = 0. Because (fPu) is a measure
n (S, %), for any sequence (4, € ¥ | n € N) such that A, N A, =0 for n # m,

(Pi)Undn) _ Sulfm)An) = (Pi)(A)
(UA> i RIS aD O

n

Note that the probability measure P has density f?/u(f?) relative to u, so that dP/du = fP/u(fP). Therefore,
if v: S — R is a Y-measurable function, then v € £1(S, X, P) if and only if vf?/u(fP) € L1(S, 3, u). In that case,

vfP ) / vfP
v dP =P(v = dp
for e = (Gi5) = L tm
Consider the Y-measurable function u : S — [0, 00] given by

uls) = S i f(s) >0
0, if f(s) =
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By inspecting the pointwise definition of u f?,

B uf? N p(uf?)  p(hf)
Blu) = <u(f”)> Cou(fr) ()’

Similarly, by inspecting the pointwise definition of u?f? and using the fact that ¢(p — 1) = p,

]P:(uq) = < ul fP > _ H (uqu) _ ‘LL(th{f>0}) '
pu(fP) p(f?) u(f?)

Suppose P(u) = oco. In that case, P(u) = P(ullf,<13y) +P(ulf,>13) = co. The fact that P(ullf,<1y) < P(Iy<1y) =
P({u < 1}) < 1 implies that P(ul,>13) = co. Consequently, P(u?) > P(u?l{,>1}) > P(ulf,>13) = 0o, so that
P(u?) > P(u)?. In contrast, suppose P(u) < oo. Consider the convex function ¢ : R — R given by ¢(z) = |z|%.
Jensen’s inequality also guarantees that P(u?) > P(u)?. Therefore,

P y50y) _ pu(hf)’
u(fP) 7 op(fP)e
By multiplying both sides of the previous inequality by u(f?)?,

O o) AL — oy 7)1 )"

Because pu(h?) > p(hfs0y),
p(Au(fP)1= > p(hf)?.
From the definition of norm and using the fact that p(¢ — 1) = ¢,
IRIIEIf1IE = m(hf)?,

which completes the proof of Holder’s inequality.
In order to show Minkowski’s inequality, recall that |f + g| < |f| + |g|. Therefore,

[f+glP =1f +gllf + 9Pt <IFIf+ 9P~ +1gllf + 9P
By integrating both sides of the previous inequality with respect to p and employing Holder’s inequality,
u(lf +gl?) < ulFILF 9P + pdgllf + g~ < UFIILE + 9P g + gllplILf + [P g
Note that ||| f + g[P~[lq = p(|lf + 9P~ = u(|f + g[")'/9 < oo because g(p — 1) = p. Therefore,
w(1f +91) < (W fllp + lgllp) (1 f + gl
By dividing both sides of the previous inequality by u(|f + g[P)'/? and using the fact that p~' =1 — ¢,

1F + gl = u(lf +gl")'? < 1 fllp + lgllp-

7 Strong law

Consider a probability triple (£2, F,P), a random variable X € £1(2, F,P) and a random variable Y € £}(Q, F,P).
We will now show that if X and Y are independent, then XY € £1(Q, F,P) and E(XY) = E(X)E(Y).
First, suppose that X and Y are non-negative and let «, denote the n-th staircase function. For any n €

N, consider the simple function X,, = a, 0o X = ZZ:I:1 ar,la,, , where ay,...,an,, € [0,n] are distinct and
Ai,..., Ay, € F partition 2. Similarly, consider the simple function Y,, = a, 0Y = Zz?’:l bky]IBkU7 where

bi,...,bm, €[0,n] are distinct and By, ..., By, € F partition Q. In that case,

E(X,) =E (i akI]IA,%> = i ar, P(Ag,),

ky=1 ky=1
E(Y,)=E Z b, lp,, | = Z bi, P(By, ).
ky=1 ky=1
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Because X,, T X, the monotone-convergence theorem guarantees that E(X,,) 1 E(X). Similarly, because Y,, 1Y,
the monotone-convergence theorem guarantees that E(Y,) 1 E(Y). Because E(X) < oo and E(Y) < oo, we also
know that E(X,,)E(Y;) T E(X)E(Y). By distributing terms and using the fact that I, Ip, =1la,, nB5,, .

E(X,Y,) =E <Z akm]IAkz> oI, || =E[ YD akbelanm, | = D D ak,bi,P(Ak, N By,).
ky=1 ky=1 ke=1k,=1 kr=1k,=1

Recall that if f: R — R is a Borel function and Z : Q2 — R is a random variable, then
a(foZ)={(fo2) " (B) | BeBR)}={Z""(f"1(B))| Be BR)} C{Z '(4) | A€ BR)} = o(2).

Recall that X and Y are independent if and only if P(AN B) = P(A)P(B) for every A € 0(X) and B € o(Y).
Therefore, X,, and Y,, are also independent. Because Ay, = X, '({ax,}), we know that A, € o(X,). Because
By, =Y, '({by,}), we know that By, € o(Y,). Therefore,

m y

kz=1

ko=1 k=1 ky=1

Since X,, 1+ X and Y,, 1Y imply X,,Y,, T XY, the monotone-convergence theorem guarantees that E(X,Y,,) 1
E(XY). Since E(X,.Y,) = E(X,)E(Y,,), taking the limit when n — oo shows that E(XY) = E(X)E(Y) < oo,
which completes the proof when X and Y are non-negative.

Finally, let X = X+ — X~ where X € £}(Q, F,P) and X~ € L}(Q, F,P) are non-negative. Analogously, let
Y =Y+ — Y. Because the absolute value function is Borel, we know that XY € £1(Q, F,P). Therefore,

EXY)=E((Xt—-X")YT-Y ) =EX'Y")-EX'Y ) -EX Y")+EX Y").
Since X and Y are independent, each pair of variables inside an expectation above is independent. Therefore,
E(XY)=EX"E(Y ") -EXEY ") - EXEQY ) +E(X)EY ") = (E(X) - EX))(EY ") -E(Y 7)),

which completes the proof.

Consider the random variables X € £2(Q, F,P) and Y € £2(Q, F,P). If X and Y are independent, the previous
result guarantees that Cov(X,Y) = 0 and Var(X +Y) = Var(X) + Var(Y).

Consider a probability triple (Q,F,P), a random variable X :  — R, and the random variables Y7,...,Y,,
where n € NT. Suppose that X,Yi,...,Y,, are independent. We will now show that if f : R® — R is a Borel
function and Z : Q — R is a random variable given by Z(w) = f(Y1(w),...,Y,(w)), then X and Z are independent.

First, recall that a previous result establishes that Z is o({Y7,...,Y,})-measurable, so that

o(2) Co({v,.... Y ) =o({Y,X(B) |ie{l,....n},BEBR)}) =0 (U a(n)> .

i=1

Therefore, if 0(X) and o({Y7,...,Y,}) are independent, then X and Z are independent.
Counsider the set Z = {N"4; | (A1,...,4,) €oc(Y1) x- - x0o(Y,)}. f Be€ T and C € Z, then B =N, 4; and
C =N, A}, where A; € o(V;) and A} € 0(Y;) for every i € {1,...,n}. Because

BNC = (ﬁAz> N (ﬁA;> :ﬁ(AimAi)

and (A; N A}) € o(Y;) for every i € {1,...,n}, we know that (BN C) € Z. Therefore, 7 is a m-system on {2.
Let J = o(X) and note that J is also a m-system on 2. Consider a set (N7, 4;) € Z, where A; € o(Y;) for
every i € {1,...,n}, and a set B € J. Since X,Y7,...,Y,, are independent,

p ((ﬂ Al) . B) - (H M) p(B) = P (ﬂ Al) b(B),

which implies that Z and J are independent. Because o(Z) and o(J) are then independent from a previous result
and o(J) = o(X), the proof will be complete if o(Z) = o({Y1,...,Y,}), which we will now show.
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Note that Q € o(Y;) for every ¢ € {1,...,n}, which implies o(Y;) C Z for every ¢ € {1,...,n}. Therefore,
U 1o(Y;) CZ and o(Uy0(V3)) = o({Y1,...,Ya}) Co(Z).

Consider a set (N;_;4;) € Z, where A; € o(Y;) for every i € {1,...,n}. Clearly, A; € U?_,0(Y;). Because
o(Uj_1o(Y)) = o({Y1,...,Y,}) is a o-algebra, we know that (N}_;4;) € o({Y1,...,Y,}), which implies Z C
o({Yy,...,.Y,}) and 0(Z) Co({Y1,..., Yo }).

Consider a probability triple (Q, F,P) and a sequence of independent random variables (Xj : Q@ — R | k € NT).
Furthermore, suppose E(X;) = 0 and E(X}!) < K for some K € [0,00), for every k € N*. The strong law of large
numbers for a finite fourth moment guarantees that

e
P(Jinéon;X’“O) =1.

We will now prove this law. Consider the random variable S,, = 22:1 Xj. From the multinomial theorem,

A - ! 4! LN
s-(Yw) - Xt
k=1 t=1

(K1 kon)eIS™

where II(,”) ={(k1,...,kn) | ks €{0,...,p} for every i € {1,...,n} and ), k; = p}. By the linearity of expectation,

E(S%) = Z kl (H ka>

(k1,.eorkin)eI{™

From the restrictions imposed on (ky,...,k,) € I( ") , the expectation E (H?:l th‘) can be written as either
E(X}), E(X?X;), E(X?X7), E(X?X;X}), or IEI(XZ-XijXl)7 where 4,7, k,1 € {1,...,n} are distinct indices.

Consider the expectation E(X?X;). Because X; and X; are independent, X} and X; are independent. By the
monotonicity of the norm, X2 € £1(Q, F,P) and X; € £1(Q, F,P). Therefore, E(X}X;) = E(X})E(X;) = 0.

Consider the expectation IE(X?Xij). Because X?Z, X, X, are independent, XZZX]- and X} are independent. By
the monotonicity of the norm, X2 € £1(Q, F,P), X; € £L}(Q, F,P), and X;, € £ (Q, F,P). Due to independence,
X2X,; € LY(Q,F,P). Therefore, E(X2X;X}) = E(X?X;)E(X}) = 0.

Consider the expectation E(X;X;X;X;). Because X;, X, Xy, X, are independent, X;X;X; and X; are in-
dependent. By the monotonicity of the norm, X;, X;, Xy, X; € £'(Q,F,P). Because X; and X; are inde-
pendent, X;X; € L(Q,F,P). Because X;X; and Xj are independent, X;X;X; € L(Q,F,P). Therefore,
E(X;X,; Xt X)) = E(X; X; X,)E(X;) = 0.

These observations allow rewriting the expectation E(S2) as

ZIE (X} +6Z Z E(X?X?).

=1 j=i+1

For every k € N, recall that || X||2 = E(X?)Y/2 < E(X})Y/* = || X |la. Therefore, E(X?) < E(X})1/2 < K1/2.
For every i # j, X? and X5 2 are independent and X? , X5 2 € £Y(Q, F,P) by the monotonicity of the norm. Therefore,

2v2\ __ 2 2 4\1/2 4\1/2
E(X7X}) = E(X])E(X]) < E(X})'*E(X))Y? < K.
Consequently,
n n—1 n
SHSY K+6) > K=nK+3n(n—1)K =K(3n> - 2n) < 3Kn”.
i=1 =1 j=i+1

Because E(S2/n%) < 3K/n? for every n € NT,
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Because the summation on the right of the inequality above converges to a real number when k& — oo,
54
SR (g < co.
n
n
Since S2/n* is a non-negative random variable for every n € N*, a previous result guarantees that

S Sy I
P( lim —4:0 =P lm —=0)=P hme Xy=0] =1

Consider a probability triple (Q, F,P) and a sequence of independent random variables (X : Q@ — R | k € NT).
Furthermore, suppose E(X) = p and E(X}}) < K for some p € R and K € [0, 00), for every k € N*. As a corollary,
the strong law of large numbers for a finite fourth moment guarantees that

N
P (nh_{rgonZXk = u) =1.
k=1
We will now show this corollary. For every k € NT, let Y, = X, — u. By the monotonicity of the norm,
Xy € LY(Q,F,P), so that E(Yy) = E(X) —u = 0. Furthermore, (Y} : © — R | k € NT) is a sequence of independent
random variables, since () C o(Xy). Using Minkowski’s inequality and the fact that X, € £*(Q, F,P),
00 > [ Xilla + |pl = [ Xella + | = plalla = [ Xk = plalla = [[ Xk — plla = [[Yell4:
Therefore, E(Y}}) < K’ for some K’ € [0,00). Using the strong law of large numbers for a finite fourth moment,
Pl I 1nY—O—IE” li 1nX— =1
Jim 2 Vim0 =P Jim 0> X )=
k=1 k=1
Consider a random variable X € £2(£2, F,P) and let u = E(X). For ¢ > 0, Chebyshev’s inequality states that
Var(X) = E(X — uf?) > *P(X — i > o),

where the inequality above is a consequence of Markov’s inequality.

As an application of Chebyshev’s inequality, consider the probability triple (2, F,P) and a sequence of inde-
pendent and identically distributed random variables (X}, : @ — {0,1} | k € NT). Let p = E(X}) = E(I{x,=1}) =
P(X), =1). Since X7 = Xy, Xj € L2(Q, F,P) and Var(Xy) = E(X?) — E(X},)? = p — p?, so that Var(Xy) < 1/4.

Let S, = > _; Xi. so that E(S,) = >, _; E(X}) = np. Due to independence,

S S - 2 2 n
= = = —_— = _ < —.
Var (S,,) = Var (; Xk> ;Vfir(Xk) ;p p=n(p—p°) < 1

For any Y € £2(Q,F,P) and a € R, Var(aY) = E((aY)?) — E(aY)? = a®E(Y?) — a®E(Y)? = a® Var(Y).
Therefore, E(S,,/n) = p and Var(S,,/n) < 1/4n. Using Chebyshev’s inequality, for any ¢ > 0,

1 — 1
= —pl>6) < .
f(|(5) +|22) < v

Consider a measurable space (S, X1) and a measurable space (S3,¥2). Let S = S x S2. Consider also the functions
p1:S — 51 and p S — Sy given by p1(s1,s2) = s1 and pa(s1, s2) = 2. For By € ¥1 and Bs € X5, let

8 Product measure

p1 H(B1) = {(s1,82) € S| p1(s1,82) € B1} = {(s1,82) € S| s1 € B1} = By x S,
py ' (B2) = {(s1,82) € S| pa(s1,82) € Bo} = {(s1,82) € S | s2 € B2} = S; x Bo.

For i € {1,2}, let A; = {p;*(B;) | B; € ¥;}. We will now show that 4; is a o-algebra on S. First, note
that pi_l(Sl-) = S and S; € ¥;. Therefore, S € A;. Consider an element pi_l(Bi) € A;. Note that Bf € ¥; and
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p; H(BS) = p; H(B;)°. Therefore, p; *(B;)° € A;. Finally, consider a sequence of sets (p; '(B; ;) € A; | j € N). Note
that U;B; ; € ¥; and p; ' (U;B; ;) = U;p; (B ;). Therefore, U;p; ' (B, ;) € A;.
Considering the previous result, let o(p;1) and o(p2) denote the o-algebras on S given by

o(p1) = A1 = {p (B1) | B1 € $1} = {B1 x S2 | Bi € &1},
o(p2) = Ay = {py " (B2) | By € $o} = {S1 X By | By € 5}

The product ¥ between the o-algebras ¥ and 3 is a g-algebra on S denoted by 31 x s but defined by

Y =31 x X =0({p1,p2}) = a(a(p1) Ua(p2)),

which should not be confused with the Cartesian product between ¥; and Xs.
Consider the set Z = {By x By | B; € ¥ and By € ¥5}. For any B; € ¥ and By € %5, note that

Bl X BQ = (Bl N Sl) X (52 nBz) = (Bl X SQ) N (Sl X BQ)

Suppose By X By € 7 and B} x B € Z. In that case, (By x By) N (B} x B}) = (B1 N B}) x (B2 N B}). Because
(B1 N Bj) € X1 and (By N B)) € Xy, this implies that Z is a w-system on S.

We will now show that o(Z) = ¥. For any By x By € Z, we know that By x By € ¥ because (B; X S2) € o(p1)
and (S7 x Bg) € o(p1). Since X is a g-algebra, o(Z) C X. For any B; € ¥ and By € 33, we know that By x So € T
and Sy x By € Z. Therefore, o(p1) Uo(pz) € Z. Because o(Z) is a o-algebra, ¥ C o(Z).

Consider a measurable space (S1,%;) and a measurable space (S2,Y3). Furthermore, consider the measurable
space (S5,%), where S = S1 x Sy and ¥ = ¥; X Yo, Let H denote a set that contains exactly each bounded
Y-measurable function f : S — R for which there is a ¥s-measurable function f,, : S2 — R and a ¥;-measurable
function fs, : S1 — R such that f(s1,82) = fs;(s2) = fs,(s1) for every s; € Sp and s9 € S3. We will now show that
‘H contains every bounded Y-measurable function on S, so that H = bX.

Note that the set of bounded Y-measurable functions b¥ is a vector space over the field R when scalar multi-
plication and addition are performed pointwise, Because H C bX, showing that H is a vector space only requires
showing that H is non-empty and closed under scalar multiplication and addition. For every s; € S; and s; € So,
let f =1g, fs, =1s,, and fs, = Ig,, so that that Ig(s1,s2) = Is,(s2) = Is,(s1) = 1. Clearly, f € H. Now suppose
f €M and a € R. Note that af € bX. For every s; € S; and sy € Ss, also note that afs, is Xo-measurable, afs, is
Y;-measurable, and (af)(s1, 82) = (afs,)(s2) = (afs,)(s1). Therefore, af € H. Finally, suppose that g, h € H. Note
that g + h € bX. For every s; € S1 and sy € So, note that gs, + hs, is Yo-measurable, g5, + hs, is 3i-measurable,
and (g + h)(517 82) - (gsl + hsl)(SQ) - (952 + hsz)(sl)' Therefore, g + h € H.

Suppose (fn, € H | n € N) is a sequence of non-negative functions in H such that f,, 1 f, where f : S — [0, 00) is
a bounded function. Note that f € bX, since f is the limit of a sequence of (bounded) ¥-measurable functions. For
every s; € S1 and sy € S, note that fs, = lim, o fn,s, 15 Xo-measurable, f,, = lim, o fr s, is X1-measurable,
and f(s1,82) = fs,(s2) = fs,(s1). Therefore, f € H.

Consider the m-system Z = {B; X Bs | By € ¥ and By € X3} and the indicator function f = I, «p, of a set
By x By € Z. Note that f is a bounded ¥-measurable function, since By x By € X. For every s; € S; and sp € So,
note that fs, =g, (s1)lp, is Yo-measurable, fs, =1Ip,(s2)lp, is Xi-measurable, and f(s1, $2) = fs, (52) = fs,(51).
Therefore, f € H. Since o(Z) = X, the monotone-class theorem completes the proof.

Consider a measure space (51,21, 41), a measure space (Sa, 3o, o), and the measurable space (S,Y), where
S =51 xS and ¥ = ¥; x ¥g. Furthermore, suppose p1 and po are finite measures.

For any bounded Y-measurable function f :S — R, let I{ 157 — R and Ig : S — R be given by

f51: S1,82)H2(AS2) = s1\S2)12(as2) = U2\ Js;, )
A()Lj( Jpiz(ds2) Lf(mw) o)

I (s2) = g f(s1,82)p1(ds1) = : fso(s1)p1(ds1) = pa(fs,),

where fs, : So — R is a Yo-measurable function, fs, : S; — R is a Xj-measurable function, and f(s1,s2) =
fsi(s2) = fs,(s1), for every s; € Sy and sy € Sa. Note that pa(|fs,|) < oo because g is finite and |fs,| € b3s.
Similarly, p1(|fs,|) < 0o because pq is finite and |fs,| € b;. Therefore, I{ and IJ are bounded.

Let H denote a set that contains exactly each function f € b¥ such that Ilf € b¥; and 12f € b¥y and

hy = f811«91: 582232:25-
mméﬁ<mw> LI(MM) s (1)
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We will now show that H contains every bounded Y-measurable function on S, so that H = bX.

Because H C b, showing that H is a vector space only requires showing that  is non-empty and closed under
scalar multiplication and addition. For every s; € S; and s3 € Sy, let f =1Ig, fs, = Ls,, and fs, = Ig,, so that
I (s1) = pa(ls,) = pa(S2)ls, (s1) and IS (s2) = pi(ls,) = p1(S1)Is,(s2). Because Sy € By, we have I/ € b¥;.
Similarly, because Sy € Y5, we have Ig € bYs. In that case, f € H, since

i (1) = / 113(S2)s, (51)pin (ds1) = pa (S1)paa(S2) = / 113 (1), (52)p2 (ds2) = pn(I).
S So

Now suppose that f € H and a € R. Note that af € bX. For every s; € S; and sy € S, note that
I{ (s1) = pa(afs,) = apa(fs,) = al{ (s1) and I37 (s2) = pa(afs,) = apa(fs,) = alf(sz). Clearly, I} € bY; and
137 € b¥,. Therefore, af € H, since the fact that i (I]) = pa(I]) implies

in(17) = [ atf (sa)pn(asn) = (1) = ana(tf) = | at (sahualds) = na(is).
S Sa

Finally, suppose that g, h € H. Note that g + h € bX. For every s; € 51 and s3 € Sy, note that Ilg+h(sl)

p2(Gsy Fhsy) = H2(gor)Fpa(hs,) = I (s1)+11 (1) and I§ " (52) = i1 (9s+hs) = p1(9ss)Fin (hy) = I (52)+15 (s2).
Clearly, IY™" € b¥; and I§*" € bX,. Therefore, g + h € H, since uy (I¥) = po(19) and iy (I}) = pao(12) imply

/S (17 (s1) + I} (s1)] pa(dsy) = pa(If) + pa (1Y) = pa(I3) + pa(13) = /S (13 (s2) + I3 (s2)] pa(ds2).

Suppose (f, € H | n € N) is a sequence of non-negative functions in H such that f,, 1 f, where f : S — [0, 00)
is a bounded function. Note that f € bX, since f is the limit of a sequence of (bounded) X-measurable functions.
For every s; € S; and sy € Sy, note that f,, 5, T fs, and f, 5, T fs,, so that the monotone-convergence theorem

imphes tha‘t #Q(fn,th) T :UQ(fS1) and :ul(fn,sz) T lLLl(fs2). Thereforea
I (s1) = p2(fi) = Hm ps(fs,) = lim I} (s1),
I (s2) = pu(fie) = Hm pn(fs,) = lim I (so).

Because I{ is the limit of (bounded) ¥;-measurable functions, I{ € bX;. Similarly, because Ig is the limit of
(bounded) ¥s-measurable functions, I{ € bY,. Furthermore, I{” T I{ and IQf" T IQf, since fp4+1 > fp implies

I (s1) = po(farisr) = pa(frsy) = I (51),
' (s9) = 1 (faties) = 11 (frs) = 47 (52).

Therefore, f € H, since the monotone-convergence theorem implies that
ANEEERE fny 7 fny _ f
pa(li) = lim pa (") = lm po(I5") = pa(lz).

Consider the m-system Z = {B; X By | By € ¥ and By € Yo} and the indicator function f = Ip, x5, of a
set By X By € Z. Note that f is a bounded Y-measurable function, since B; X By € Y. For every s; € S; and
s9 € Sy, note that I7 (s1) = pa(Ip, (s1)Ip,) = I, (s1)p2(Bs) and I (s5) = p1 (I, (s2)Ip,) = Ip, (s2)p1(By). Clearly,
I{ € bX; and I; € bXs. Therefore, f € H, since

() = p1 (p2(Ba)lp,) = 1 (B1)pa(Ba) = po (1 (B1)lg,) = pa(13).

Because 0(Z) = X, the monotone-class theorem completes the proof.
Consider a measure space (S1,%1, 1), a measure space (Sa, X9, i2), and the measurable space (S,%), where
S =51 x S5 and ¥ = 3y x Xp. Furthermore, suppose p; and ps are finite measures. For any F € 3, define p(F) by

= Py = 1 (s1) 1 (dsy) = 2HF82282=25F-
u(F)—mul)—/SlIl( Jyoa (ds) /sf (52)p12(ds2) = 1o (I3F)

We will now show that p is a measure on (S, Y). The measure p is called the product measure of p; and ps and
denoted by p = p1 X p2. The measure space (5,3, ) is denoted by (S, %, ) = (S1, 1, 1) X (S2, B, p2).
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Consider the m-system Z = {By X By | By € ¥; and By € X5}, the indicator function f = Ip,xp, of a set
B1 x By € Z, and recall that ,ul(I{) = p1(B1)pe(Bs) = ug(lg). Therefore, u(0) = pq(0)ua(0) = 0.

Consider a sequence (F;,, € ¥ | n € N) such that F,, N F,,, = () for n # m. Furthermore, consider the sequence of
non-negative (bounded) ¥-measurable functions (f, : S — {0,1} | n € N) given by

n
fo=lyg_ =) In,.
k=0

Let f =1y, r, so that f, T f. Because f is a bounded function,
0 <ij Fk) = (1) = T}i_ggom(ff") = T}ergouz(fg'L) = pa(If).

By the linearity of the integral with respect to o,
n

n
I{n( /S Z]IFk Sl,SQ)MQ(dSQ) /S ]IFk(31752 ,LLQ dSQ ZIFk
2 k=0

2 k=0 k=0

By the linearity of the integral with respect to 1,

<UFk> = hm i ( If = hﬁm (s1)p1(dsy) = hm Z/ (s1)p1(dsy) = Zu(Fk),
n o0 Sl k

Slko

which completes the proof that x is a measure on (S, ¥). The measure 4 is also finite since p(S1x.52) = 11(S1) u2(S2).
Notably, p is the unique measure on (S,3) such that u(B; X Bg) = u1(B1)ua(Bs) for every By € ¥; and
By € 3, since 7 is a w-system on S such that o(Z) = ¥ and p is a finite measure on (5, X).
We will now show that if f:.S — R is a bounded Y-measurable function, then

= hy = f81 S1) = 582282:25~
u(f)m(Il)/SlIl( Ju(dsy) /SQI( Jpia(ds2) = ia(I])

Let H denote a set that contains exactly each function f € b¥ such that u(f) = ,ul(I{c) = fi2 (I{)

Consider the m-system Z = {B; x By | By € ¥; and By € 3s}. Suppose that f = Ip,«p, is the indicator
function of a set By x By € Z. In that case, u(f) = u(By x Bs) = p1(I7) = pa(I1), so that f € #. In particular,
Ig € H, since S; X Sy € .

Because H C bY and H is non-empty, showing that # is a vector space only requires showing that  is closed
under scalar multiplication and addition.

Suppose that f € H and a € R. Note that af € bY and af € /Jl(S Y, 1), so that u(af) = ap(f). Because
feH, wehave p(af) = py(all) = p(I87) and p(af) = po(ald) = pa(I59), so that af € H.

Now suppose that g,h € H. Note that g+h ebY and g+ h € LY(S,X, 1), so that p(g + h) = u(g) + p(h).
Because g,h € H, we have u(g+ h) = pi (19 + I1) = py (I9") and (g + h) = po(I§ + 1) = pua(IZ"), so that
g+heH.

Finally, suppose (f, € H | n € N) is a sequence of non-negative functions in H such that f, 1 f, where
f:8 —[0,00) is a bounded function. By the monotone-convergence theorem, u(f,) 1t u(f). Since f, € H,

u(f) = lim p(fo) = lim (1) = lim pa(13") = (1) = pa(13),

which implies f € H. Because o(Z) = 3, the monotone-class theorem completes the proof.
We will now show that if f: S — [0,00] is a X-measurable function, then

u(f) = m () = /S I (s1)m (ds1) = /S I (s2)z(ds2) = p2(13),
1 2
where the Y;-measurable function I : S; — [0, 00] and the y-measurable function IJ : Sy — [0, 00] are given by
s = [ fonsmlasn) = [ Futan(ds) = ().
2 2

I (s2) = | fGusms) = | fu(sm(ds) = m(fa),
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where fs, : S2 — [0, 00] is a ¥p-measurable function, fs, : S1 — [0, 00] is a ¥1-measurable function, and f(s1, s2) =
fs,(82) = fs,(s1), for every s; € S1 and sy € Ss.

For any n € N, let f, = ay, o f, where a,, is the n-th staircase function. Because f, : S — [0,7n] is bounded
and Y-measurable, there is a bounded Yo-measurable function f, 5, : S2 — [0,n] and a bounded X;-measurable
function f,, s, : S1 — [0,n] such that f,(s1,s2) = fn.s, (52) = fn,s,(s1) for every s; € Sy and sy € Sy. Since f,, 1 f,
consider the ¥s-measurable function f,, = lim,_,o fn,s, and the ¥;-measurable function f,, = lim,_« fn,s,. Note

that f(s1,s2) = fs,(s2) = fs,(51)-

For every s; € S; and sy € Sy, note that f,, 5, T fs, and fi, 5, T fs,, so that the monotone-convergence theorem
implies that jia(fu,s,) 1 2(fo,) and pi1 (fas,)  p1(fsy ). Therefore,

I (s1) = p2(fs) = Hm ps(fus,) = lim If"(s1),
I (s2) = pu(fse) = Hm pn(fs,) = lim I (so).
Since f,, € bX, recall that I{ € bX;, and sz € bXsy. Because I{ is the limit of X;-measurable functions,

I{ € m¥;. Similarly, because I{ is the limit of ¥s-measurable functions, I{ € mYy. Furthermore, I{" 0 I{ and
I;" T I;, since fp41 > fn implies

I{”’H(Sl) _ H2(fn+1,sl) > ﬂ2(fn781) = I{”(Sl)y
17 (52) = i (fr.a) = 11 () = 1 (52).

Because f, 1 f, the monotone-convergence theorem implies that u(f,) T u(f). Because T { "t ]{ and Ig" T Ig ,
the monotone-convergence theorem implies that pl(I{") T ul(I{) and ,LLQ(szn) T ILLQ(sz). Because f,, € bX,

p(f) = lim p(fn) = lim p (1) = m(If) = nli_)rr;oﬂz(féc") = 2 ().

n—oo

Consider the measure space (S, %, ) = (51, X1, 1) X (Sa2, Xa, u2), where pq and po are finite measures. Consider
also a function f € £1(S,%, u), and recall that f = f* — f~ and |f| = f* + f~, where fT : S — [0,00] and
f~ S — [0,00] are non-negative Y-measurable functions. Therefore, for every s; € S; and sg € Sa,

fls1,82) = fH(s1,82) — [ (s1,82) = fif (s2) — fo, (s2) = fif (s1) — [, (51),
|f(s1,82)l = fH(s1,82) + [ (s1,82) = fif (s2) + fo, (s2) = [ (s1) + [, (51),

where fi : Sy — [0,00] and f;, : Sy — [0, 00] are non-negative Yo-measurable functions and f : S — [0, 00] and
[, + 51 — [0, 00] are non-negative ¥;-measurable functions.
For every s; € S1 and sy € Sy, let fo, = fiF — f and f,, = f} — f;,, so that f(s1,52) = fs, (s52) = fs,(51)-
Note that f, is Xp-measurable and f, is ¥i-measurable. Furthermore, |f,, | = f + f5, and |fs,| = [ + f5,.
Finally, let F{ = {s; € S1 | pa(|fs,|) < 0o} and FJ = {s3 € Sy | 11 (| fs,]) < 00}. We will now show that

u(h) =m(fsrl) = [ Hsoms) = [ H(smlas) = mf: F)

where I{ : 51 = Rand Ig : S — R are given by

I (s1) = | f(snsadua(dse) = | for(s2)ua(dse) = pa(Fer),

I (s2) = | Tusms) = | fu(sm(ds) = m(fa),

for every sy € Flf and so € FQf
Because |f] : S — [0, 00] is a non-negative X-measurable function such that p(|f]) < oo,

+4 - + -

(MY = () = 1) < o,
+4 - + -

(I = () = e + 1) <00

(1 f1)
n(lf1)
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For every s; € Si, note that I{Jr(sl) + 1 (s1) = paof §) + pa(fs)) = p2(]fs,]). Because ul(I{c+ +11) < o,
we know that p1(S; \ FY) = m({s1 € S1 | pa(|fs,]) = 00}) = 0. Similarly, for every s, € S, note that

+ - + -
1 (s2) + H (52) = m(f5) + m(fs) = pa(|fal). Because pa(If" + 1] ) < oo, we know that ua(S \ Ff) =
wa({s2 € Sa | p1(|fs,|) = 00}) = 0. Therefore, by the linearity of the integral,

() = n(F ) = () = ) = () = () = i (1 Tps) = (" = 1)) = (1 FY),
() = n(F ) = () = po(f ) = o) = (I Tpy) = o (I pp) = (I — I VLg) = o (14 F).

The previous result is also valid when py and po are o-finite measures.
Consider the measure space (5,3, u) = (2, F,P) x ([0, 00), B([0, 00)), Leb), where (2, F,P) is a probability triple.
Furthermore, consider a random variable X :  — [0, co]. We will now show that

E(X) = /[0 PO 2 2) Leb().

First, let A = {(w,z) € S | v < X(w)} and f(w,z) = 2 — X(w) = p2(w,2) — X(p1(w,z)). Because f is
Y-measurable and f~!((—o0,0]) = A, we know that A € . For every (w,z) € S, note that

Ig(w, ) = H{wesz|xgx(w)}(w) = H{zG[O,oo)\ng(w)}<x)'
Because 14 is a bounded Y-measurable function,

I1*(w) = Leb({z € [0,00) | # < X (w)}
LA(z)=Pwe |z < X(w)}) =P(X >2z).

]
b
E

By the definition of the product measure p,

w(A) =P(I;4) = E(X) = Leb(I3*) = / P(X > z)Leb(dz).
[0,00)

Let C denote the set of open subsets of R?. The Borel o-algebra B(R?) on R? is defined as B(R?) = o(C). We
will now show that B(R?) = B(R)?2, where B(R)? is the product between the Borel o-algebra B(R) on R and itself.

Because the functions p; : R? — R and py : R? — R given by p;(z,y) = 2 and p(z,y) = y for every (z,y) € R?
are continuous, recall that pfl(A) € Cand p;y 1(A) € C for every open set A C R, so that a previous result guarantees
that p; and py are B(R?)-measurable. Therefore, o(p1) U o(p2) C B(R?). Because B(R)? = o(o(p1) U (p2)), we
know that B(R)? C B(R?).

Recall that every open subset C' C R? can be written as C' = U, (ay, b,) X (¢, dy), where a,, < b, and ¢, < d,
for every n € N. Because B(R) contains every open interval and B(R)? = o({By x Bz | By, B2 € B(R)}), we know
that C C B(R)?, so that B(R?) C B(R?). Therefore, B(R?) = B(R)?.

Consider the set Z = {(—o0,z] X (—00,y] | 7,y € R}. We will now show that Z is a m-system on R? such that
o(Z) = B(R)?2, where B(R)? is the product between the Borel o-algebra B(R) on R and itself.

Let A; = (—o00,21] X (—00,y1] and Ay = (—00, 23] X (—00, y2| be elements of Z. In that case,

A1 N Ay = ((—00, 1] N (=00, x2]) X ((—00,y1] N (=00, 2]) = (o0, min(z1, z2)] X (—o0, min(y1,y2)],

so that A1 N Ay € Z. Therefore, Z is a m-system.

Because (—o0,z] € B(R) and (—o00,y] € B(R) for every z,y € R and B(R)? = o({B1 x B2 | By, B2 € B(R)}),
we know that Z C B(R)?, so that o(Z) C B(R)?.

Note that (a,b] x (¢,d] € o(Z) for every a < b and ¢ < d, since

(@, 6] x (¢,d] = ((=00,b] x (=00, d]) N (((=00,b] x (=00, ¢]) U ((—00,a] x (—o0,d]))*.
Also note that (a,b) x (¢,d] € o(Z) for every a < b and ¢ < d, since

(a,b) x (c,d] = ( U (a,b— eln_l}> x (e,d] = U (a,b—en™ x (e, d],

neN+ neNt

where ¢; = (b—a)/2.
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Finally, note that (a,b) x (¢,d) € o(Z) for every a < b and ¢ < d, since

(a,b) x (¢,d) = (a,b) x U (c,d —en™'] = U (a,b) x (¢,d — ean™],
neNt neNt

where €3 = (d — ¢)/2.

Because every open set C' € C can be written as C = Uy, (an, by) X (¢, dy), where a, < b, and ¢, < d,, for every
n € N, we know that C C o(Z). Since o(C) = B(R?) = B(R)?, we know that B(R)? C o(Z).

Consider a probability triple (€2, F,P) and the random variables X : @ - R and Y : Q — R. Let Z : Q — R?
be given by Z(w) = (X (w),Y (w)). We will now show that Z is F/B(R)?-measurable.

Let p1 : R? — R be given by p;(z,y) = 2 and py : R? — R be given by pa(x,y) = y. Note that X = p; o Z and
Y = py07, 50 that X~ '(B) = (p1 0 2) " (B) = 2~ (pr"(B)) and Y"1(B) = (p 0 2)"M(B) = Z-}(p;(B)) for
every B € B(R). Because X and Y are F-measurable, Z~1(C) € F for every C € (a(p1) Ua(p2)).

Note that & = {T' € B(R)? | Z~1(T') € F} is a o-algebra on R2. Because (c(p1)Uc(p2)) C B(R)?2, we know that
o(a(p1) Ua(p2)) = B(R)? C &, so that & = B(R)2. Therefore, Z is F/B(R)?*-measurable.

Consider a probability triple (€2, F,P) and the random variables X : Q — R and Y : Q — R. For any I' € B(R)?,
the joint law Lx y : B(R)? — [0,1] of X and Y is defined by

Lxy([)=P{we Q| (X(w),Y(w)) €T}) =P((X,Y) eI).

Note that £x y is a probability measure on (R?, B(R)?). Clearly, Lx y (R?) =P(Q) = 1 and Lx y (0) = P(0) = 0.
Furthermore, for any sequence of sets (I',, € B(R)? | n € N) such that I',, N T,,, = ) for n # m,

Lxy (Urn> =P ({w €Q|(X(w),Y(w)) e Urn}> =P <U{w €| (X(w),Y(w)) e rn}> = Lxy(Tn).

The joint distribution Fx y : R? — [0,1] of X and Y is defined by
Fxy(z,y) =PHw e Q| X(w) <zand Y(w) <y}) =P(X <z,Y <y) = Lxy((—o0,z] x (—00,¥]).

Because the m-system Z = {(—o0,z] x (—00,y] | z,y € R} generates B(R)?, the joint law Lxy of X and Y
is the unique measure on the measurable space (R?, B(R)?) such that Lx y ((—o0,z] x (—o00,y]) = Fx,y(z,y) for
every (z,y) € R% Therefore, the joint distribution Fx y completely determines the joint law Lx y-.

Consider a probability triple (2, F,P) and the random variables X : @ — R and Y : Q — R. Consider also the
measure space (R?, B(R)?, Leb?) = (R, B(R), Leb)2. The random variables X and Y have a joint probability density
function fx y if fxyv : R? — [0, 00] is a B(R)2-measurable function such that the joint law Lx y is given by

Lxy (D) = [ frr@Lebt(d) = [ Tr(efy () Leb?(da)

In that case, the joint law Lx y has density fx y relative to Leb27 which is denoted by dLx vy /d Leb? = fxy.
Furthermore, because Ir fy,y is a non-negative B(R)?-measurable function,

Lxr®) = [ [ / ur<x,y>fx,y(x,y>Leb<dy>} Lob(ilr) = | { [ el fr .0) Lebla) | Lebiay),

Consider a probability triple (2, F,P) and the random variables X : Q@ — R and Y : Q — R. Note that

Lx(B)=P(X~'(B)) =P({w e 2| X(w) € B}) =P({w € 2| (X(w),Y(w)) € (B xR)}) = Lx,y(B x R),
Ly(B)=P(Y'(B)) =P({w € Q| Y(w) € B}) =P({w € Q| (X(w),Y(w)) € (Rx B)}) = Lxy (R x B),

for every B € B(R), where Lx is the law of X and Ly is the law of Y. Therefore,
£x(B) = [ | [ toaton) oo Lebta) | Leban) = [ | [ 1a() (o) Lebla) | Lebiao),
£r(8) = [ | [ 1ot (o) Lebtan)| Lebtan) = [ | [ 1o o) eb(an) | Lebiay),
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for every B € B(R). By the linearity of the integral with respect to Leb,
Lx(B) = /R s (2) [ /]R Fer (@) Leb(dy)} Leb(dz) = /R I (2) fx (z) Leb(dz) = /B Fx (2) Leb(dz),
Ly(B) = /R I5(y) [ /IR fxy(z,y) Leb(dw)} Leb(dy) = /R Ip(y) fy (y) Leb(dy) = /B fv (y) Leb(dy),

where fx : R — [0,00] and fy : R — [0, 00] are Borel functions given by
(@) = [ Frv (o) Leb(ay),

R
Fr) = [ Fxir,y) Leb(a)

R

By definition, fx is a probability density function for X and fy is a probability density function for Y.
Consider a probability triple (2, F,P) and the random variables X : @ - R and Y : Q — R. Let Lx y denote
the joint law of X and Y, Lx denote the law of X, Ly denote the law of Y, Fix y denote the joint distribution
function of X and Y, Fx denote the distribution function of X, and Fy denote the distribution function of Y. We
will now show that the following are equivalent: X and Y are independent; Lx y = Lx X Ly; and Fxy = FxFy.
Suppose X and Y are independent. In that case, for every By, By € B(R),

Lxy(By x By) =P({we€ Q| (X(w),Y(w)) € (By x Ba)}) =P(X (B1)NY 1 (By)) = Lx(B1)Ly (Ba).

Because Lx X Ly is the unique measure on (R?, B(R)?) such that (Lx x Ly)(B1 x B2) = Lx(B1)Ly(Bs) for
every By, Bs € B(R) and Lx y is a measure on (R?, B(R)?), we know that Lxy = Lx X Ly.
Suppose Lxy = Lx x Ly. In that case, for every z,y € R,

Fxy(z,y) = (Lx X Ly)((—00,z] x (=00,y]) = Lx((—00,z]) Ly ((—00,y]) = Fx(z)Fy (y).
Finally, suppose that Fx y = FxFy. In that case, for every =,y € R,
P(X <2,Y <y) =Fxy(z,y) = Fx(@)Fy(y) =P(X <2)P(Y <y),

so that a previous result implies that X and Y are independent, which completes the proof.

Consider a probability triple (£, F,P) and the random variables X : - R and Y : Q@ — R. Suppose fxy is a
joint probability density function for X and Y, fx is a probability density function for X, and fy is a probability
density function for Y. Furthermore, let F' = {(x,y) € R? | fx(z)fy(y) # fx,v(z,y)}. We will now show that
Leb?(F) = 0 if and only if X and Y are independent random variables.

Suppose Leb?(F) = 0. For every T' € B(R)?, let Ftr = {z € R? | Ip(2) fx (p1(2)) fy (p2(2)) # Ir(2) fx.v (2)}, so
that Fr C I'. Because Fr C Fgr2 = F, we know that LebQ(Fp) = 0. Therefore, because Ir(fx o p1)(fy © p2) and
Irfx.y are non-negative B(R)2-measurable functions,

Lxx () = [ Ty (L) = [ To(a) L)y (pa(2) Leb ().

For every By, Bs € B(R), since Ir(fx o p1)(fy o p2) is a non-negative B(R)2-measurable function,

Lxx (B xB2) = [ [ [ 181 )01 0) Leb(dw] Leb(dz).

Using the fact that Ip, B, (z,y) = Ip, (z)Ip,(y) and the linearity of the integral with respect to Leb,
ﬁx,y(Bl X Bg) = |:/ HBl( ) Leb dx :| |: HBg (y) Leb(dy):l = ﬁx(Bl)ﬁy(BQ).
R

Because Lx X Ly is the unique measure on (R?, B(R)?) such that (Lx x Ly)(B1 x B) = Lx(B1)Ly (Bz) for
every By, By € B(R) and Lx y is a measure on (R?, B(R)?), we know that X and Y are independent.

Suppose X and Y are mdependent Let f = (fx o p1)(fy o p2). Because f is a B(R)?-measurable non-negative
function, recall that (f Leb?) is a measure on (R?, B(R)?) given by

(f Leb?)(T / fdLeb? = / (@) oDy (pa(2) Leb?(d2) = | [ / In(, ) fx (@) fy (4) Leb(dy) | Leb(da).

R

42



By the linearity of the integral with respect to Leb, for every By, Bs € B(R),

Lx(B1)Ly(Bs) = /

[ [ 1) 0 () L) Lebi) = (FLeb?) 1 x Bo).
R R

Because Lx X Ly is the unique measure on (R?, B(R)?) such that (Lx x Ly )(B1 x Bg) = Lx(B1)Ly (Bz) for
every By, Bs € B(R) and (f Leb?) is a measure on (R?, B(R)?), we know that Lx x Ly = (fLeb?). Since X and
Y are independent, Lx y = (f Leb?). Therefore, f is a joint probability density function for X and Y.

Let Iy = {z € R? | f(2) — fx,y(2) >0} and F» = {z € R? | fx,y(2) — f(2) > 0}, so that F = F; U Fy. Since
Fy N Fy = (), we have Leb?(F) = Leb?(F}) + Leb®(F,). In order to find a contradiction, suppose Leb?(F) > 0, so
that Leb?(F}) > 0 or Leb®(Fy) > 0. Because (f — fx.y)Ir, and (fx.y — f)Ir, are non-negative B(R)?-measurable
functions, a previous result then implies that LebQ((f — fxy)Ip) > 0or Leb2((fX7y — )Ig,) > 0. The linearity
of the integral with respect to Leb? then implies that Lxy(F) = Leb2(f]IF1) > Lebz(fx,y]lpl) = Lxy(F1) or
Lx.y(Fy) = Leb?(fx yIg,) > Leb?(fl,) = Lx.y (Fy), which is a contradiction. Therefore, Leb?(F) = 0.

The results in this section can be generalized to products between any number of measure spaces.

Consider the measurable space (R, B(R)) and a sequence of probability measures (A,, | n € N). Let Q =[], R,
so that each w € Q corresponds to a sequence (w, € R | n € N). For every n € N, let X, : Q@ — R be given by
Xn(w) = wy. Furthermore, consider the o-algebra F on 2 given by F = o(U,0(X,,)). Kolmogorov’s extension
theorem guarantees that there is a unique probability measure P on the measurable space (£, F) such that, for
every sequence (B, € B(R) | n € N),

P <1;[ Bn> = HAn(Bn).

The measure space (€2, F,P) is denoted by (2, F,P) = [],(R,B(R),A,). The sequence (X, : @ - R |n € N) is
composed of independent random variables on (€2, F,P) so that A,, is the law of X,.

9 Conditional expectation

Consider a probability triple (€2, F,P) and a random variable X :  — R. For every w € 2, note that knowing
I{x—z}(w) for every x € R is equivalent to knowing X (w). Furthermore, from a previous result,

o(X) = {X‘1 <U {x}) | B € B(R)} = { Ux'{zhBe B(R)} = { U{x=2}|Be B(R)}.

zeB zeB zeB

Let ' = Uzep{X = 2} for some B € B(R). For every w € Q, note that Ip(w) = > .5 lix—s}(w), since I is a
union of disjoint sets. Finally, note that {X = z} € o(X) for every € R. Therefore, for every w € €, knowing
I{x—¢}(w) for every 2 € R is also equivalent to knowing Ir(w) for every I' € o(X).

In conclusion, for every w € €, knowing X (w) is equivalent to knowing Ir(w) for every F € o(X).

More generally, consider a probability triple (2, F,P) and a set of random variables {Y, | v € C} where
Y, : @ — R for every v € C. Suppose that an unknown outcome w € 2 results in a known value Y, (w) € R for every
v € C. The o-algebra o({Y, | v € C}) contains exactly each event F' € F such that it is possible to state whether
w € F. In other words, for every w € Q, knowing Y, (w) € R for every v € C is equivalent to knowing I (w) for
every F' e o({Y, | v € C}).

Consider a probability triple (Q,F,P) and the random variables X : @ — R and Y : Q@ — R. Suppose
o(Y) C o(X). For every w € Q, knowing X (w) allows knowing Iz (w) for every F' € o(Y). Therefore, knowing
X (w) allows knowing Y (w).

In fact, it is possible to show that for every function Z : Q@ — R, a function Y : Q@ — R is o(Z)-measurable if
and only if there is a Borel function f : R — R such that Y = f o Z. Furthermore, if Z1, Zs, ..., Z, are functions
from  to R, then a function Y : Q@ — R is 0({Z1, Za, ..., Z, })-measurable if and only if there is a Borel function
f:R™ = R such that Y(w) = f(Z1(w), Z2(w), ..., Z,(w)) for every w € Q.

Consider the probability triple (2, F,P), a random variable X : Q — R such that E(|X|) < oo, and a o-algebra
G C F. A random variable Y : Q — R is called a version of the conditional expectation E(X | G) of X given G if
and only if Y is G-measurable, E(|Y]) < oo, and, for every set G € G,

/Yd]P’:/Xd]P’.
G G
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In that case, we say that ¥ = E(X | G) almost surely. We will now show that a version Y of the conditional
expectation E(X | G) of X given G always exists. Furthermore, if ¥ and Y are such versions, then P(Y =Y) = 1.

First, suppose X € £2(Q, F,P) and recall that £2(£2,G,P) is a complete vector space. Because £2(2,G,P) C
L2(Q, F,P), there is a version Y € £2(Q,G,P) of the orthogonal projection of X onto £2(Q,G,P) such that
| X = Y|z = inf{||X —W|2 | W € £L2(Q,G,P)} and E(X —Y)Z) = 0, for every Z € L*(Q,G,P). Clearly, Y is
G-measurable. By the monotonicity of norm, E(]Y|) < co. For every G € G, we have Ig € £2(Q2,G,P), so that
E((X —Y)Ig) = 0. Therefore, by the linearity of expectation, E(XIg) = E(Y1q), which completes this step.

Suppose that X is a bounded non-negative random variable, so that X € £2(, F,P). As an auxiliary step, we
will now show that if Y = E(X | G) almost surely, then P(Y > 0) = 1. In order to find a contradiction, suppose
that P(Y > 0) < 1, so that P(Y < 0) > 0. Let A, = {Y < —n7'} = Y7 }((—o0,—n"1)), so that 4, C A, 41
and U, A, = {Y < 0}. Since A, 1T {Y < 0}, the monotone-convergence property of measure guarantees that
P(A,) T P(Y < 0). Because we supposed that P(Y < 0) > 0, there is an n € N such that P(A4,,) = P(Y < —n~!) > 0.
Consider the random variable Y14  given by

Y(w), ifY(w)<
<nmum-ywm%ww—%, s
Because Y14, < —n~'l,,, we know that E(Y1,,) < —n~'P(4,) < 0. Because X > 0, we know that E(XT4, ) > 0.
However, A,, € G, so that E(X14 ) =E(Y1,,). Because this is a contradiction, we know that P(Y > 0) = 1.

Next, suppose X € L£}(Q, F,P) is non-negative. For every n € N, let X,, = a,, 0 X, where «, is the n-th staircase
function, so that X,, € £%(Q,F,P). Furthermore, let Y,, = E(X,, | G) almost surely. Because X,, is a bounded
non-negative random variable, we know that P(Y;, > 0) = 1. For every n € N and G € G, note that

E((Yn+1 - Yn)HG) = ]E(Yn—HHG) - ]E(YnHG) = E(Xn—HHG) - E(X'VLHG) = E((Xn-i-l - Xn)HG)

Because Y, € £L}(Q,G,P) and Y,, 11 € L1(Q,G,P), we know that Y, 11 — Y, = E(X,,11 — X, | G) almost surely.
Because X,,+1 — X, is non-negative and bounded for every n € N, we know that P(Y,, 41 — Y, >0) = 1.
Consider the set A° =], {Y, <0} U{Y,41 — Y, <0}. Note that A € G and P(A) = 1, since

P(A®) =P (U{Yn <O} U{Ypy1 -V, < 0}) <Y PV, <0) +P(Yoyr — Ya <0) =0.

n

For every n € N, note that ¥, 14 > 0 and Y, 4114 > Y, [4. Let Y = limsup,,_,, Ynla. For every G € G, because
every non-decreasing sequence of real numbers converges (possibly to infinity), we know that Y, IsIg 1 YIg. By
the monotone-convergence theorem, we know that E(Y,I41s) 1 E(YIg).

For every n € Nand G € G, we have (ANG) € G and P(X, Igl4 # 0) =0, so that

E(Y,lale) = E(Yalane) = E(Xnlang) = E(X,lalg) + E(X,l4clg) = E(X,1q),

which implies E(X,,I¢) 1 E(Y1g). Since X,Ig T XIg, we also know that E(X,Ig) 1 E(XIg), so that E(YIg) =
E(XI¢g). Because Y is G-measurable and € G, we know that Y = E(X | G) almost surely.

Finally, suppose X € £}(Q, F,P). Let X = XT — X, where Xt : Q — [0,00] and X~ : Q — [0,00]. Let
Yt =E(X* | G) almost surely and Y~ = E(X~ | G) almost surely. For every G € G,

E(XIg) = E((X' - X7)lg) =E(XTIg) - E(X L) =E(YIg) —E(Y Ig) = E(Y' - Y 7)lg),

so that YT — Y~ =E(X | G) almost surely.

It remains to show that if ¥ = E(X | G) almost surely and ¥ = E(X | G) almost surely then P(Y = Y) = 1.
For the purpose of finding a contradiction, suppose that P(Y = )7) < 1, so that P(Y # }7) > 0. In that case,
P(Y >Y)+P(Y >Y)>0,s0 that P(Y >Y) >0or P(Y >Y) > 0. Suppose P(Y >Y) > 0. Let 4, = {Y >
Y +n7 1} = (Y =Y) ' ((n',0)), so that A, C A,y and U,A, = {Y > Y}. By the monotone-convergence
property of measure, we know that P(4,) + P(Y > Y). Because P(Y > Y) > 0, there is an n € N such that

P(A,) =P(Y >Y +n~1) > 0. Note that (Y —Y)I4, >n"'l,,, since

_~ w i _~ w n_l
O’fwth@{W V), i (7 - P >
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Therefore, E((Y — ?)HA ) > E(n~'14,) = n7'P(A,) > 0. However, for every G € G, note that E(Y1g) =
E(YIg), so that E((Y — Y)]Ic;) = 0. Because 4,, € G, we arrived at a contradiction. An analogous contradiction is
found by supposing that P(Y > Y) > 0. Therefore, P(Y =Y) =

Consider the probability triple (Q, F,P), a random variable X : © — R such that E(|X]) < oo, and a random
variable Z :  — R. A random variable Y : Q — R is called a version of the conditional expectation E(X | Z) of
X given Z if and only if it is a version of the conditional expectation E(X | 0(Z)) of X given o(Z). An analogous
definition applies when Z is a set of random variables.

Suppose X € L2(Q, F,P) and Z : Q — R are random variables and let Y = E(X | Z) almost surely. Recall that
for every W € L2(Q,0(Z),P) there is a Borel function f : R — R such that W = f o Z and that E((X — Y)?) <
E((X — W)?). In this sense, if g : R — R is a Borel function such that Y = g o Z, then Y (w) = g(Z(w)) is almost
surely the best prediction about X (w) that can be made given Z(w).

The next three examples illustrate the definition of conditional expectation.

Consider a probability triple (Q, F,P) and the random variables X : @ — X and Z : Q — Z, where X =
{z1,...,2m} and Z = {21, ..., 2z, }. Furthermore, suppose P(Z = z) > 0 for every z € Z.

Let P(Z) denote the set of all subsets of Z and consider the P(Z)-measurable function £ : Z — R given by

PX:J}i,Z:Z

%

We will now show that Y = F o Z is a ¢(Z)-measurable function such that

/ YdP = / XdP,
G G

for every G € 0(Z), so that Y = E(X | Z) almost surely.

For every B € B(R), recall that Y ~}(B) = Z71(E~1(B)). Because E~}(B) € P(Z) and P(Z) C B(R), we know
that Y~1(B) € 0(Z). Therefore, Y is o(Z)-measurable.

Because Y is a bounded F-measurable function and {Z = z} € F for every z € Z,

/{ - YdP = /Q 7=} (W) B(Z(w))P(dw) = /Q I{z=2}(w) B(2)P(dw) = E(2)P ZmIP’ =, 7 =2).

By the definition of the integral of a simple function with respect to P,

YdIP:/ il X g 7 d}P’:/ Lz S @l x—s, dP:/H . XdIP:/ XdP.
/{Z_Z} Q(Z (X=2;.2 }) Q({z }2 (x }) | Liz=2 )

Because Z(w) € Z for every w € 2 and P(Z) C B(R),

{U{Z_z}|BeB } {U{Z—z}|B€P( )}

z€B zEB

Let G = J,cp{Z = z} for some B € P(Z). For every w € €, note that Ig(w) = > 5 liz—.}(w), since G is a
union of disjoint sets. Therefore, because Y is a bounded F-measurable function and G € F,

/Yd]P’ /Z]I{Z NG P(dw) Z/]I{Z NG P(dw) Z/]I{Z (W)X (w)P(dw).

z€B z€B z€B

By the linearity of the integral with respect to P and the fact that Ig(w) = >, 5 I{z=2} (w),

/ YdP = / Ig(w) X (w)P(dw) = / XdP,
G Q G
which completes the proof.

Consider the probability triple (Q, F,P) = ([0, 1], B([0, 1]), Leb) x ([0, 1], B([0, 1]), Leb) and the bounded random
variables X : @ — R and Z : Q — [0, 1], where Z(a,b) = a. Furthermore, consider the bounded 5B(]0, 1])-measurable
function I;¥ : [0,1] — R given by

LX(a) = o X (a, b) Leb(db).
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We will now show that Y = I{¥ o Z is a o(Z)-measurable function such that

/ YdP = / XdP,

for every G € 0(Z), so that Y = E(X | Z) almost surely.

Recall that o(Z) = {A x [0,1] | A € B([0,1])}. For every B € B(R), note that Y ~1(B) = Z~1((I;X)~}(B)).
Because (I7¥)~1(B) € B([0,1]), we know that Y is o(Z)-measurable.

Let G = A x [0, 1] for some A € B([0,1]). Because Y is a bounded F-measurable function and G € F,

= a a a) = a X a
/GYdIP’_/[OJ] l/{o’” Lux(o.11(a, B)Y (a, b) Leb(db) | Leb(da) /[071] [/M L (@) (a) Leb(db)

By the linearity of the integral with respect to Leb and using the fact that Leb([0,1]) = 1,

/G VP = [ /[0,1] Leb(db)] [ /[071] La(a) ¥ (a) Leb(da)] _ /[071] ]IA(a)l Xl Leb(db)] Leb(da).

Therefore, using the fact that I4(a) = L4x,11(a,b) = Ia(a,b),

/G VP = /[0,1] [ /M Hg(a,b)X(a,b)Leb(db)] Leb(da) = /G XdP.

Consider a probability triple (2, F,P) and the random variables X : Q@ — R and Z : Q@ — R. Suppose that
fx.z : R? = [0, c] is a joint probability density function for X and Z. Let fx : R — [0, 00] be a probability density
function for X and fz : R — [0, 00] be a probability density function for Z such that

Leb(da).

x):/foyz(x,z) Leb(dz),
:/fxyz(x,z)Leb(da:).
R

Furthermore, consider the elementary conditional probability density function fx |z : R? — [0, 00] given by

07 if fZ( ) O’
Ixiz(x,2) = § fxz(x,2)/fz(2), if0< fz(2) < oo,
0, if fz(z) = 0.

Let h: R — R be a Borel function such that E(|h o X|) < oo, so that

E(hoX):/Q(hoX)d]P’:/Rh dEX:/Rh(x)fX(:r)Leb(dx),

where Lx is the law of X. Finally, consider the function g : R — R given by

z
I fR z)fx|z(x,z) Leb(dz), if z € Fy,

where FY = {z e R| [ |h(z)fx|z(z, z)| Leb(dz) < co}.
We will now show that Y = go Z is a o(Z)-measurable function such that E(]Y]) < co and

/de /hoX)d]P’

for every G € 0(Z), so that Y =E((ho X) | Z) almost surely.
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First, we will show that (hop)fx|z is B(R)*measurable. Let Ay = {z € R| fz(z) > 0}N{z € R| fz(2) < o0}.
Because fz is Borel, we know that R x A; € B(R)2. Furthermore, note that

fx.z(z,2)
fz(pg(l‘, Z)) + HRXAY (l‘, Z) .

Ix1z(x,2) = Irxa, (z,2)

Because the function  : (0, 00] — [0, 00) given by u(r) = 1/r is Borel, we know that fx|z is B(R)*-measurable.
Because h is Borel, we also know that (h o py)fy |z is B(R)*-measurable.

We will now show that g is Borel. Because [(hop1) fX| 7| is non-negative and B(R)?-measurable, we know that
the function I : R — [0, o0] given by I5(2) = [, |h(2) fx|z(x, z)| Leb(dx) is Borel, so that F§ € B(R). Furthermore,

0(2) = Ips (2) / ((h o p1) fx12)*t () Leb(dz) — Tpg (2) / (ko p1)fx12)” (&, 2) Leb(dz).

Since ((hop1)fx)z)" and ((hop1)fx|z)~ are non-negative and B(R)?-measurable, we know that g is Borel, which
also implies that Y = g o Z is a o(Z)-measurable function.
We will now show that E(|Y]) < co. Because |g(z)| < I2(z) for every z € R,

9(2)|f2(2) < Ia(2) fz(= /\h ) fx|z(%, )| fz(2) Leb(dx) /Ih )La, (2) fx.z(x, z) Leb(dx).

Because |g|fz and I fz are non-negative and Borel,

/ |g(2)|fz(2) Leb(dz) < / [/ |h(2)| L4, (2) fx,z(z, 2) Leb(dx)} Leb(dz).
Because a previous result for probability density functions extends to joint probability density functions,
[ 1oz Leb(dz) < [ 1hopl(La, 0 p2) ez dLeb® =B(Jho X[Lz-1(4,) < o0
R R

since (I, 0 Z) = Iz-1(a,). Because Leb(|g|fz) = E(|g o Z|), we know that Y € L*(2, F,P).
Let Lx 7z : B(R)? — [0, 1] denote the joint law of X and Z.
We will now show that L£x z(Irx AT) = 0. Because a previous result for laws extends to joint laws,

/ Tpsas dLx 7 = / T as fx,7 dLeb? = / { / Lac (2) fx. 22, 2) Leb(dm)} Leb(dz).
R? R? R L/R
By rearranging terms,

/ Tas dCx.z = / Lic (2) { / Fxn(z, ) Leb(dx)} Leb(dz) = / Lu¢ () £ (=) Leb(dz).

R? R R R
Because A{ = {fz = 0} U{fz = oo} is a union of disjoint sets, we know that [ = I;;, oy + Ifs,—oc). Therefore,
/2 Irxac dLx 7z = / Igs,—03(2)fz(2) Leb(dz) + / It ;=001 (2) fz(2) Leb(dz) = 0,
R R R

since Iy, -0} fz = 0 and Leb(fz) < oo.
Let Ay = {z € R| [; |h(z)|fx,z(x, z) Leb(dx) < oo}, so that Ay € B(R). We will now show that Lx, 7 (Irxag) =
0. From a previous result about probability density functions,

E(|h o X]|) /|h )| £x () Leb(dz) = /[/h Wfx.z(, Z)Leb(dz)}Leb (dz) /|hop1|fXZdLeb

Because E(|ho X|) < oo, we know that Leb(AS) = 0. Because a previous result about laws extends to joint laws,

/ HRxAg dACX’Z Z/ HRXAng,Z dLeb2 :/ |:/ ]IAS(Z)fxyz(SL’,Z) Leb(dm)} Leb(dz)
R2 R2 R L/R
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By rearranging terms and the using fact that Leb(I4) = 0 implies Leb({I45 fz > 0}) < Leb({Iag > 0}) = 0,

/2 Irxag dLx z = / Lag(2)fz(2) Leb(dz) = 0.
R R
Finally, we will show that E(YIg) = E((h o X)Ig) for every G € o(Z). Note that, for every G € (%),

1, it Z(w) € B,

HG(W) = ]szl(B)(W) = (]IB o Z)(W) - {0 if Z(w) ¢ B

for some B € B(R). Let S = (R x A1) N (R x Az), so that S° = (R x A7) U (R x A5) and Lx,z(Isc) = 0. Note that

/Q(hoX)Hc dIP:/Q(hoX)(]IBoZ) d]P’:/

(ho p1)(Is 0 p2) dLx.z = / (ho p1)(Is 0 p2)ls dLx 7.
RQ

R2

since (ho p1)(Ip o p2) and (ho p1)(Ip o p2)ls are Lx, z-integrable and equal almost everywhere.
Because a previous result for probability density functions extends to joint probability density functions,

/(hoX)HG dP :/ (hop1)(Ip o pa)lsfx.z dLeb?.
Q R2

Because Is(z, 2) = 4, (2)1a,(2) for every (x,z) € R?,

/Q (ho X)lg dP = /F [ /R h(2)Lp(2)La, (2)La, (2) fx.2(z, 2) Leb(das)} Leb(dz),

where F' = {z € R| [ |h(x)[I5(2)La, (2)1a,(2) fx,z(x, 2z) Leb(dx) < co}.
Because Az C F, we know that Ipla, = [4,. Therefore,

/Q(h o X)Ig dP :/R {/R h(x)p(2)La, (2)La,(2) fx,z(z, 2) Leb(daz)} Leb(dz).

Because fx,z(2, 2)a, (2) = fx|2(2: 2) f7(2)a, (2) for every (,2) € R?,
/Q(h o X)lg dP = /R {/R h(z)Ip(2)la, (2)1a,(2) fx)2 (2, 2) f2(2) Leb(d:c)} Leb(dz).
By rearranging terms,
/Q(h o X)lg dP = /]R]IB(z)fz(z)]IAlmA2 (2) {/R h(z)fx)z(x, 2) Leb(dac)} Leb(dz).

For any z € (A1 N Ajy), by the linearity of the integral with respect to Leb,

L, (2) [ Ih(o)l x.2(e,2) Leblds) = f2(2) [ [ho)]fxiz(a,2) Lebida) < o

R R

Because fz(z) > 0, we know that [, |h(x)|fx|z (2, z) Leb(dz) < oo, so that z € Fy.
Because (A1 N Ag) C Fy implies [4,14, = La,na,1pg,

/(hoX)]IG dIP’:/]IB(z)fZ(z)HAmAQ(z)]IFg(z) [/ h(z)fx|z(x,z) Leb(dx)| Leb(dz).
Q R R

By the definition of g,

/(hoX)HG dP:/]IB(z)fZ(z)]IAmA2(z)g(z)Leb(dz).
Q

R

By once again applying results about probability density functions and joint laws,

/ (ho X)lg dP = / (Ip 0 Z)(Laynay © Z)(g 0 Z) dP = / (Is 0 p2)(Lasray © p2) (g © p2) dLx..
Q Q R2
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Because Ig(z,2) = 14, (2)La,(z) for every (z,2) € R?,

/(hoX)HG dP = / (gop2)(Ipop)ls dlx 7.
Q R2

Because (go p2)(Ip o p2) and (go p2)(Ip o p2)lg are Lx z-integrable functions that are equal almost everywhere,

/Q(hoX)HG dIP’:/RZ(gopQ)(]IBOpQ) dﬁX’Z:/Q(goZ)(]IBoZ) dP:/QYHG dP,

which completes the proof.

Consider a random variable X € £1(Q, F,P) and a o-algebra G C F. For the remainder of this text, we let
E(X | G) denote an arbitrary version of the conditional expectation of X given G.

Consider a random variable X € £(£, F,P) and a o-algebra G C F. Note that E(E(X | §)) = E(E(X | §)Ig) =
E(XIq) = E(X).

Consider a random variable X € £}(Q2, F,P) and a o-algebra G C F. Note that if X is G-measurable, then
X =E(X | G) almost surely.

Consider a random variable X € £1(Q, F,P) and let Y = E(X)I,. We will now show that Y = E(X | {0,Q})
almost surely. For every B € B(R), we have Y "}(B) =0 if E(X) ¢ B and Y ~}(B) = Q if E(X) € B. Furthermore,
E(]Y]) = E(|E(X)Iq|) = E(|X|) < co. Therefore, Y € £1(Q, {0, Q},P). Finally, E(YIg) = E(E(X)Ioly) = E(XI0)
and E(YTy) = 0 = E(XTy).

Consider the probability triple (2, F,P), a random variable X : Q@ — R, and a o-algebra G C F. We will now
show that if X = 0 almost surely, then 0 = E(X | G) almost surely, where 0 denotes the zero function. Clearly,
0 € L1(Q,G,P). For every G € G, because P(XIg = 0) = 1, we know that E(XIg) =0 = E(0Lg).

Consider the random variables X; € £}(Q, F,P) and X, € £}(Q, F,P) and a o-algebra G C F. We will now
show that a1 E(X; | G) + a2E(X2 | G) = E(a1 X1 + a2 X2 | G) almost surely for every aj,as € R.

Because £1(Q, G, P) is a vector space, we know that a1E(X; | G) + a2 E(X2 | G) € LY(Q,G,P). For every G € G,

E((a1E(X1 [ ) + a2E(X2 | G))le) = aiE(E(Xy | §)lg) + a:E(E(X: | §)lg).
From the definition of a version of the conditional expectation,
E((alE(Xl | g) —|— CLQE(XQ | g))]Ig) = alE(Xl]Ig) —|— ag]E(XQ]Ig) = E((a1X1 + CLQXQ)HG).

Consider the random variables X; € £}(Q, F,P) and X, € £}(Q, F,P) and a o-algebra G C F. We will now
show that if X; = X5 almost surely, then E(X; | G) = E(X3 | G) almost surely. Because P(X; — Xo = 0) = 1, we
know that P(E(X; — X3 | G) = 0) = 1. Therefore, by linearity, P(E(X; | G) =E(X2 | G)) =1

Consider a random variable X € £1(2, F,P) and a o-algebra G C F. We will again show that if X > 0, then
PE(X |G)>0)=1.

In order to find a contradiction, suppose that IP’( (X | G) >0) <1, sothat P(E(X | G) < 0) > 0. Let
={E(X | G) < —n"1} =E(X | G ((~00,—n"1)), so that A4, C An+1 and U, A, = {E(X | G) < 0}. Since
A T {E(X | G) < 0}, the monotone-convergence property of measure guarantees that P(4,,) + P(E(X | G) < 0).
Because we supposed that P(E(X | G) < 0) > 0, there is an n € N such that P(4,,) = P(E (X | G) < —n71) > 0.

Consider the random variable E(X | G)I4, given by

if E(X | G)(w) —

(X | 9)L,) () = E(X | §)(@)l, () = {f(X X o =

Because E(X | G)l4, < —n~1l4,, we know that E(E(X | G)la,) < —n~'P(4,) < 0. Because X > 0, we know that
E(X1,4,) > 0. However, A, € G, so that E(X14, ) = E(E(X | G)l4,). Because this is a contradiction, we know
that P(E(X | G) > 0) = 1.

Consider a random variable X € £1(Q, F,P) and a o-algebra G C F. We will now show that |E(X | )| <
E(|X| | G) almost surely. By the linearity of conditional expectation,

P(EX[9)]=EX"-X"|g)|=[EX"]9)-EX|9)]) =
PE(X]|G)=EXT+X"|§)=EX"|G)+EX"|7)) =

By the triangle inequality, |[E(X™ | G) —E(X~ | §)| < [E(XT | §)| + [E(X~ | §)|.
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Because P(|[E(XT |G)|=E(XT|G)=1and P(|E(X~ |G)|=E(X~ |G)) =1,
P(IE(X |9)] < [E(XT G|+ [EX|G)|=EXT|G)+EX" |G =E(X||g) =1

Consider a sequence of non-negative random variables (X,, € £1(Q,F,P) | n € N), a non-negative random
variable X € £}(Q, F,P), and a o-algebra G C F. The conditional monotone-convergence theorem states that if
X, 1 X, then P(E(X,, | G)I4 T E(X | G)) =1, where A € G is a set such that P(A4) = 1.

We will now show this theorem. Because X, is a non-negative random variable, P(E(X,, | G) > 0) = 1. For
every n € N, because X,,11 — X,, is non-negative and E(X,+1 | G) —E(X,, | G) = E(X,41 — X, | G) almost surely,
PE(Xn41 | G) —E(Xn |G) > 0) =L

Let A =J,{E(X, | G) < 0} U{E(X,41 | G) —E(X, | G) < 0}. Note that A € G and P(A) = 1, since

P(A) < Y P(E(X, | §) < 0) + PE(X,11 | G) — E(X, | G) < 0) =0.

For every n € N, note that E(X,, | G)I4 > 0 and E(X,,41 | G)I4 > E(X,, | G)l4.

Let Y = limsup,,_, ., E(X, | G)I4. For every G € G, because every non-decreasing sequence of real numbers
converges (possibly to infinity), we know that E(X,, | G)Iallg T Y1, which also implies E(X,, | G)I4 1 Y. By the
monotone-convergence theorem, we know that E(E(X,, | G)Ialg) T E(Yg).

For every n € N and G € G, we have (ANG) € G and P(X, Igl4: # 0) = 0, so that

EE(X, | §)lalg) = E(E(X, | 9)lanc) = E(Xnlang) = E(XIale) + E(X,I4:lg) = E(X,1g),

which implies E(X,,Ig) T E(Y1g). Since X,Ig T XIg, we also know that E(X,Ig) 1 E(XIg), so that E(YIg) =
E(XIg). Because Y is G-measurable and 2 € G, we know that Y = E(X | G) almost surely.

Consider a sequence of non-negative random variables (X,, € £L}(Q, F,P) | n € N) and a o-algebra G C F. The
conditional Fatou lemma states that if E(liminf, . X,) < oo, then

P (]E <limiann | g) < liminf B(X, | g)) ~ 1L

n—oo

We will now show this lemma. For any m € N, consider the function Z,, = inf,,>,, X,,, such that

liminf X,, = lim inf X,, = lim Z,,.
n—00 m—0o0 n>m m— 00

Because Z,, < Z,,+1 for every m € N, we have Z,, 1 liminf,_, X,. Furthermore, Z,, > 0 and Z,, € £ (Q, F,P)
for every m € N. Therefore, by the conditional monotone-convergence theorem,

i (E(Zm 1 G)I4 1 E (lingiann | g)) ~ 1,
where A € G and P(A) = 1.

For any n > m, note that X,, > Z,,. Therefore, P (E(X,, — Z,, | G) > 0) =1land P(E(X,, |G) > E(Z | G9)) = 1.
Furthermore, for every m € N, because P(A°) = 0,

P ( inf B(X,, | G) > E(Zp | Q)HA> ~1.

By taking the limit of both sides of the previous inequation when m — oo,

P (liminf]E(Xn 1G)>E <linrr_1>iorc1)an | g)) -1

n—oo

Consider a sequence of non-negative random variables (X,, € £L}(Q, F,P) | n € N), a o-algebra G C F, and a
non-negative random variable Y € £1(Q, F,P) such that X,, <Y for every n € N. The reverse conditional Fatou
lemma states that

n—oo n— oo

P <IE (limsup X, | g) > limsup E(X,, | g)) =1

We will now show this lemma. Because X,, <Y for every n € N, we know that E(limsup,,, . X,,) < E(Y) < cc.
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For every n € N, consider the non-negative function Z, = Y — X,,, so that Z, € £YQ,F,P). From the
conditional Fatou lemma, since E(liminf,, . Z,) < 0o,

IP’(]E (limian—Xn | g) < liminf E(Y - X, | g)) ~ 1

n—oo

For every n € N, by moving constants outside the corresponding limits and linearity,
P(E(Y |G)+E (lminf—X, | §) <E(Y | G)+liminf —E(X,, | §)) = 1.
n— 00 n—oo

By the relationship between limit inferior and limit superior and linearity,

n—oo n—o0

P (E016)- & (lmaw X, |6) <07 )~ lmswpB(X, |6)) =1

The proof is completed by reorganizing terms in the inequation above.

Consider a probability triple (2, 7,P), a sequence of random variables (X,, | n € N), a o-algebra G C F, a
random variable X, and a non-negative random variable V € £1(Q, F,P) such that |X,,| <V for every n € N. The
conditional dominated convergence theorem states that if P (lim,, oo X, = X) = 1, then X € £1(Q, F,P) and

IP’( lim E(X, | §)lc = E(X | g)) ~1.

n—oo

where C' € G is a set such that P(C) = 1.

We will now show this theorem. Because | X,| < V for every n € N, we know that E(|X,,|) <E(V) < oo, which
implies that X,, € £L}(Q, F,P). Because the function | - | is continuous, we know that P(lim,, ., |X,| = |X]|) = 1.
Because P (lim, o [X,| < V) = 1, we know that P (|X| < V) = 1. Because P(|X| # |X|I{x|<v}) = 0, we know
that E(|X|) = E(|X I x)<vy) < E(V) < oo, so that X € £1(Q, F,P).

Since P(|X,| < V) =1 and P(|X| < V) =1, we have P(|X,,| + |X| < 2V) = 1. By the triangle inequality,

[Xn = X| = [ X + (=X)] < [ Xn] +[X],
which implies that P(|X,, — X| <2V) = 1.
Let A ={|X, — X| <2V}, so that P(|X,, — X| = |X,, — X|I4) =1 and E(| X, — X|) = E(|X,, — X|L4). Because

| X, — X|I4 is an F-measurable function and |X,, — X|I4 < 2V for every n € N, where 2V : Q — [0,00] is an
F-measurable function such that E(2V) = 2E(V) < oo, the reverse conditional Fatou lemma states that

P (IE (limsup|Xn — X4 | g) > limsupE (| X, — X|I4 | g)) =1
n— oo n—oo

Since | - | is continuous, we have P (lim,, o | X,, — X|I4 = 0) = 1, where 0 is the zero function. Therefore,

n—oo

P <limsup | X, — X|I4 =liminf |X,, — X|I4 = lim |X,, — X|I4 = O> =1.
n—oo n—oo
Because each of the random variables above is almost surely equal to zero,

P (IE (limsup|Xn ~ XL, | g) —E (liminf|Xn — XLy | g) —E ( lim |X,, — XLy | g) = 0) =1
n—oo n o

n—oo

Since (X, — X)Ia € LY(Q, F,P) for every n € N, we have P(|[E((X,, — X)I4 | G)| <E(| X, — X|14|G)) = 1.
By taking the limit superior of both sides of the previous inequation and employing the previous results,

P (O < limsup [E((X,, — X)I4 | G)| < limsupE (| X, — X|I4 | G) <E (hmsuan — X4 | g) = O) =1.
n—oo

n—r oo n— oo

Therefore, by the relationship between limits,

P <1imianE((Xn —X)4 | G) =limsupE((X,, — X)[4|G) = 0) =1

n—0o0 n—00
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Because P ((X,, — X)I4 = (X, — X)) = 1 implies P(E((X,, — X)I4 |G) =E(X,,— X | G)) = 1.

P <liminfE(Xn —X|G) =limsupE(X,, — X |G) = 0> =1.

n—00 n—00

By the linearity of conditional expectation,

P <lirginfE(Xn | G) =limsupE(X,, | G) = E(X | g)) =1

n—oo

Let C ={w € Q| lim,_,0 E(X,, | G)(w) exists in R}. Because E(X,, | G) is G-measurable for every n € N, recall
that C' € G. Because E(|E(X | G)|) < oo, recall that P (|E(X | G)| < o0) = 1, so that P(C) = 1. Furthermore,

IP( lim E(X, | §)lc = E(X | g)) ~ 1

n—oo

Consider a random variable X € £Y(Q, F,P), a o-algebra G C F, and a convex function ¢ : R — R. The
conditional Jensen’s inequality states that if (¢ o X) € £1(Q, F,P), then P((¢ o E(X | G)) <E((¢po X) | G)) = 1.

We will now show this inequality. Because ¢ is a convex function, it is possible to show that there is a sequence
((an,b,) € R? | n € N) such that ¢(x) = sup,, anx + b, for every x € R. Therefore, ¢(x) > a,x + b, for every z € R
and n € N. Furthermore, if (¢ o X) € £L}(Q, F,P), then (¢ o X) — a, X — b, >0 for every n € N and

PE(poX)—a, X —-0,|G) >0)=1.
For every n € N, by the linearity of conditional expectation,
PE((¢oX)|G) = aE(X | G) +by) =1

By taking the supremum of both sides of the previous inequation,
P (]E(((boX) | G) > supa,E(X |G) + b, =(poE(X | g))) =1.

Consider a random variable X € LP(Q, F,P), where p € [1,00), and a o-algebra G C F. We will now show that
IEX [ G)llp < 1 Xlp-

From the monotonicity of norm, we know that X € £!(Q, F,P). Consider the convex function ¢ : R — R
given by ¢(z) = |z|P, so that (¢ o X) = |X|P. Because E(|X|P) < oo, we know that | X|P € £}(Q, F,P). From the
conditional Jensen’s inequality, P (|[E(X | )P <E(|X|P|G)) =1. Let A={|E(X | §)|P <E(|X|?|G)}.

Because |[E(X | G)|P is non-negative and G-measurable and E(|X|? | G) € £1(Q,G,P),

E(EX | G)IP) =E(E(X | 9)["Ta) < E(E(X[” [ G)La) = E(E(X[" [ §)) = E(|X[").

Consider a random variable X € £}(2, F,P), a o-algebra G C F, and a o-algebra H C G. The tower property
states that E(E(X | G) | H) = E(X | H) almost surely. We will now show this property.
Because E(X | G) € £L}(Q,G,P), we know that E(E(X | G) | H) € LY(Q, H,P). For every H € H, since H € G,

/IE(IE(X 1G) | H)Iy dP = / E(X | G)Iy dP = / X1y dP,
Q Q Q

as we wanted to show. For the remainder of this text, we let E(X | G | H) denote E(E(X | G) | H).

Consider a random variable X € £}(Q2, F,P), a o-algebra G C F, and a G-measurable random variable Z : ) —
R. We will now show that if E(|ZX]) < oo, then E(ZX | G) = ZE(X | G) almost surely.

We will start by assuming that X > 0.

First, suppose that Z = 14, where A € G. For every G € G, since ZX € L}(Q, F,P) and ANG € G,

E(ZX1e) = E(XLing) = E(E(X | 9)Linc) = E(ZE(X | 6)Ic).

Because ZE(X | G) is G-measurable and E(ZE(X | G)) = E(ZX) < oo, we know that ZE(X | G) = E(ZX | G)
almost surely.
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Next, suppose that Z is a simple function that can be written as Z = ;" | agla, for some fixed a1, as, ..., an €
[0,00] and Ay, As, ..., A, € G. By the linearity of the conditional expectation and the previous step,

P <E(ZX 1G)=E (i arla, X | g) = iakE(HAkX 1G) = iak]IAkE(X |G) = ZE(X | g)) =1,

k=1 k=1 k=1

where we also used the fact that E(I4, X) < E(X) < oc.

Next, suppose that Z is a non-negative G-measurable function. For any n € N, consider the simple function
Zy = ay 0 Z, where a, is the n-th staircase function.

For every G € G, since Z,, T Z and Xl > 0, note that Z,XIg 1 ZX1g. For every G € G, since Z,, T Z and
[E(X | G)|Ig > 0, note that Z,|E(X | G)|l¢ T Z|E(X | G)|Ig. Therefore, by the monotone-convergence theorem,
we know that E(Z,X1g) T E(ZX1g) and E(Z,|E(X | §)|lg) T E(Z|E(X | §)|1g).

Because Z,, is a simple G-measurable function and E(Z,,X) < E(ZX) < oo, note that E(Z,X | G) = Z,E(X | G)
almost surely. Because Z,E(X | G) = Z,|E(X | G)| almost surely, E(Z,X1g) = E(Z,/E(X | §)|lg) for every
G € G. Therefore, the previous result implies that E(ZXIg) = E(Z|E(X | G)|lg) for every G € G, so that
ZIE(X | G)|=E(ZX | G) almost surely. Because Z|E(X | G)| = ZE(X | G) almost surely, this step is complete.

Next, suppose that Z is a G-measurable function. Recall that Z = ZT — Z~, where ZT and Z~ are non-negative
G-measurable functions. By the linearity of the conditional expectation and the previous step,

IP’(IE(ZX |G)=E(ZTX |G)-E(Z X|G)=Z"E(X|G)-Z E(X|G)=ZE(X | g)) =1,

where we have also used the fact that E(ZtX) 4+ E(Z-X) =E((ZT + Z7)X) =E(|ZX]) < .
Finally, suppose that X € L£1(©2, F,P). Recall that X = Xt — X~ where X and X~ are non-negative
F-measurable functions By the linearity of the conditional expectation,

]P’(IE(ZX |G)=E(ZX"|G)—E(ZX |G)=ZE(X" |G) - ZE(X™ | G) = ZE(X | Q)) =1,

where we have also used the fact that E(|Z|XT) + E(|Z|X ) =E(|Z|(XT + X)) = E(|ZX]) < 0.

Consider a random variable X € £1(Q, F,P), a o-algebra G C F, and a o-algebra H C F. We will now show
that if H and o(o(X) U G) are independent, then E(X | (G UH)) =E(X | G) almost surely.

We will start by assuming that X > 0.

For every G € G, note that [E(X | G)|Ig is G-measurable. Consider the Borel function f : R? — R given by
f(a,b) = ab. Since (XIg)(w) = f(X(w),lg(w)) for every w € €, we also know that X1 is o(o(X)UG)-measurable.

For every G € G and H € H, we know that XIs and Iy are independent, since Iy is H-measurable. We also
know that |E(X | G)|Ig and Iy are independent, since G C o(o(X)UG).

For every G € G and H € H, because Xlg € L1(Q, F,P), |[E(X | §)|Ig € L(Q, F,P), and Iy € L}(Q, F,P),

E(X;GNH) = E(Xlgly) = E(XIe)E(lg) = E(JE(X | §)[Ic)E(lx) = E(JE(X | §)[Icly) = E([E(X | §)[; G N H).

Consider the set Z={GNH | G € G and H € H}. Suppose that (G; N Hy) € Z and (G2 N Hs) € Z, and note
that (G1 N Hy) N (Ga N Hy) = (G NG2) N (Hy N Hy). Because (G NGy) € G and (Hy N H) € H, we know that
((GyNHy)N(GaN Hy)) € Z, so that 7 is a w-system.

Since Q2 € G, we know that H C Z. Since Q € H, we know that G C Z. Therefore, G UH C Z, so that
0(GUH) C o(Z). For every G € G and H € H, we know that (GN H) € (G U®H). Therefore Z C o(GUH), so
that o(Z) C 6(G UH). In conclusion, o(Z) = o(G UH).

Consider the measure (XP) : F — [0,00] given by (XP)(A) = E(X; A) and the measure (|[E(X | G)|P) : F —
[0, 00] given by (JE(X | §)|P)(A) = E(|E(X | G)|; A). For every I € Z, we know that (XP)(I) = (|[E(X | G)|P)(1).
In particular, we know that (XP)(Q2) = E(X) = (JE(X | G)|P)(2) < co. Therefore, from a previous result, we
know that E(X14) = E(JE(X | G)|14) for every A € 0(G UH). Because |E(X | G)| is 0(G U H)-measurable and
E(E(X | §)|) = E(X) < oo, we know that |[E(X | G)| = E(X | 0c(GUH)) almost surely. Since [E(X | )| =E(X | G)
almost surely, this step is complete.

Finally, suppose X € £1(Q, F,P). Recall that X = X+ — X~ where X+ € £}(Q, F,P) and X~ € L1(Q, F,P)
are non-negative. By the linearity of the conditional expectation,

P(E(X |o(GUH) =EX" |o(GUH)) —E(X™ [o(GUH)) =EX"|G)-EX"|§)=EX|7)) =1,

where we used the fact that o(c(XT)UG) C o(c(X)UG) and o(a(X")UG) Co(a(X)UG).
Consider a random variable X € £(Q, F,P) and a o-algebra H C F. We will now show that if # and o(X)
are independent, then E(X | #) = E(X) almost surely.
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Let G = {0,Q}. Using the previous result, we know that E(X | H) = E(X | G) almost surely. Based on a
previous result, we know that E(X) = E(X | G) almost surely.

Consider the probability triple (2, F,P) and a o-algebra G C F. For every F € F, we let P(F | G) denote a
version of the conditional expectation E(Ir | G) of Ir given G, so that P(F | G) = E(Ir | G) almost surely. Note
that P(F | {0,Q}) =E(Ig | {0,Q}) = E(Ip) = P(F) almost surely.

Consider a probability triple (Q2, 7,P) and the random variables Ip : @ — {0,1} and Z : Q — Z, where F € F
and Z = {z1,...,2,}. Furthermore, suppose P(Z = z) > 0 for every z € Z. Recall that if E : Z — [0,1] is given by

Plp=1,Z=2) PFEFN{Z=2z})

B ==z =~ " Pz=9

then Eo Z =E(Ip | Z) =P(F | Z) almost surely.

Consider a sequence of events (F,, € F | n € N) such that F,, N F,,, = 0 for every n # m. We will now show that
P(U,Fn|G)=>,14P(F, | G) almost surely, where A € G is a set such that P(A) = 1.

For every k € N, by the linearity of conditional expectation,

k k k k
P (IF’ <U F | g) -E (Huhﬂ | g) —E (ZHE | g) =Y E(r |6) =Y P(F| g)) ~1.
i=0 B i=0 i=0 i=0
Because HULO r Ty, F, with respect to k, by the conditional monotone-convergence theorem,

k
i (Z LiP(Fy |9) = lim S IuP(Fi | G) = lim E (JIU;CZU -
n =0

G)Ia=E(ly, r, | 9) :P<L7LJFHIQ>> =1,

where A € G is a set such that P(A4) = 1.
Consider the probability triple (£, F,P) and a o-algebra G C F. A function Pg : Q x F — [0,1] is called a
regular conditional probability given G if

e There is a set A € F such that P(A) = 1 and, for every w € A, the function Pg(w,-) : F — [0,1] is a
probability measure on (€2, F).

e For every F' € F, the function Pg(-, F') : Q — [0, 1] is a version of the conditional expectation E(Ir | G) of Ip
given G, so that Pg(-, F) =P(F | G) = E(Ir | G) almost surely.

It can be shown that a regular conditional probability given G exists under very permissive assumptions.
Consider the probability triple (Q, F,P), a bounded Borel function h : R™ — R, and the independent random
variables X7, Xo, ..., X,,. Let h(X1,Xa,...,X,) : @ — R be given by

hX71, Xo, ..., Xpn)(w) = (X1 (w), Xo(w), ..., Xn(w)).
Furthermore, for every 1 € R, let h(z1, Xs,...,X,) : @ = R be given by
h(z1, Xa,. .., Xn)(w) = h(z1, Xo(w), ..., Xp(w)).
Finally, let v : R — R be given by
v(z1) = E(h(z1, Xo, ..., Xpn)).

We will now show that v(X;1) = E(h(X1, Xa,...,X,) | X1) almost surely, where v(X;) = v o X;.

For every (z1,2,...,7,) € R?, let hy, : R"™1 — R be given by hy, (z2,...,7,) = h(x1,22,...,7,), and
recall that h,, is a bounded Borel function. Furthermore, recall that the function Z : Q@ — R" given by
Z(w) = (X1(w), X2(w),..., Xp(w)) is F/B(R)"measurable and that the function ¥ : Q — R""! given by
Y (w) = (X2(w), ..., Xp(w)) is F/B(R)"l-measurable.

For every x; € R, note that h(Xy, Xa,...,X,) = ho Z and h(xy,Xa,...,X,) = hy, oY. Because h and h,,
are Borel, for every B € B(R), we know that Z~'(h™*(B)) € F and Y~(h;'(B)) € F. Because h and h,, are
bounded, h(X1, Xo,...,X,) € LY(Q, F,P) and h(z1, Xa,...,X,) € L1(Q, F,P).

For every k € {1,...,n}, let £ : B(R) — [0,1] denote the law of X}. Because the random variables
X1, Xs,..., X, are independent, recall that the joint law of X;, X;11,...,X,, is given by £; X L;41 X --- X L.
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For every 1 € R, because a previous result for laws extends to joint laws,

’y(xl):/h(a:l,Xg,...,Xn) d]P’:/(hwloY) dIP’:/ hay d(Ls X - % Ln).
Q Q

Rn—1

Because h,, is a bounded Borel function,

’y(xl):/R--~/Rh(x1,x2,...,xn)ﬁn(dxn)~--£2(dx2),

which also implies that v is B(R)-measurable, so that v(X;) is o(X;)-measurable.
For every B € B(R), recall that Ix-1p) = [5(X;). Therefore, for every X; *(B) € o(X1),

/ h(Xl,XQ, . ’Xn)]IXfl(B) dP = h]IB(Pl) d(L’l X oo X £n)
Q Rn

Because hlg(p1) is bounded Borel function,

/h(Xl,XQ,,Xn)]le—l(B) dP:/I[B(Qfl) |://h($1,$27,!En)ﬁn(dwn)EQ(dﬂ,‘g) El(dl'])
Q R R R

Using the previous expression for v(z;1) and a previous result for laws,

/Qh(Xl, Xo, oo X)) dP = /R]IB(xl)v(ml)El(dacl) - /Qv(Xl)Hxl—l(B) dP.
Because E(y(X1)) = E(h(X1, Xa,...,Xp)) < 00, the proof is complete.
Consider a measurable space (€2, F) and the sequence of g-algebras (F,, C F | n € NT). For every n € Nt let
I, ={NF; | F; € F; for every i € {1,...,n}}. We will now show that Z = U, Z, is a m-system on 2 such that
O’(I) = J(.Fl,fg, . .), where J(.Fl,fQ, . ) = J({fl,f27 . }) = (T(Unfn)
For some n € N, consider the sets B € Z,, and C € Z,, such that B = N, F; and C = NP, F/, where F; € F;
and F] € F; for every i € {1,...,n}. In that case,

i=1 i=1

i=1

Because (F; N F}) € F; for every i € {1,...,n}, we know that (BN C) € Z,,. Therefore, Z,, is a m-system on 2.
Because Q € F,, for every n € N*, we know that Z,, C Z,,+1 . Therefore, Z = U,,Z,, is also a m-system on {.

Since Q € F, for every n € NT, we also know that F,, C T for every n € NT. Therefore, U,F,, C Z and
o0(UnFn) C o(Z). Consider a set (N, F;) € Z, where m € Nt and F; € F; for every i € {1,...,m}. Clearly,
F; € U, F, for every i € {1,...,m}. Because o(U,F,) is a o-algebra, we know that (N, F;) € o(U,F,), which
implies Z C (U, F,) and o(Z) C o(U,Fy), completing the proof.

Consider a probability triple (2, F,P) and the sequence of independent o-algebras (F, C F | n € NT). We will
now show that o(F,...,Fx) and o(Fky1, Fkie,--.) are independent for every k € N¥.

From the previous proof, we know that Z = {nf_, F; | F; € F; for every i € {1,...,k}} is a m-system on § such
that o(Z) = o(F1,...,Fr). We also know that J = Un{ﬂfi,?ﬂFi | F; € F;foreveryi e {k+1,....k+n}}isa
m-system on 2 such that o(J) = o(Frt1, Frt2,---)-

Consider a set (Nf_,F;) € Z, where F; € F; for every i € {1,...,k}, and a set (ﬁf:,;LHFi) € J, where n €
N* and F; € F; for every i € {k+1,...,k+ n}. Because Fi,..., Fri, are independent,

((07) (0 7)) = (W) (I =) =#(01e) ()

which implies that Z and J are independent. Because o(Z) and o(J) are then independent, the proof is complete.
Consider a probability triple (2, F,P) and a sequence of independent identically distributed random variables
(X, : Q@ = R | n € Nt), each of which has the same law Lx as the random variable X € £Y(Q, F,P). Let
Sn : £ — R be a random variable given by S, = X; + --- + X,,. We will now show that
Sn

E(Xx | Sn) = E(Xe | Sy Sty -o) = 22
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almost surely, where n € Nt and k € {1,...,n}.

We will start by showing that o(S,, Sni1,...) = 0(Sn, Xni1, Xnia,...) for every n € N*. For every i € NT,
note that S, ; = Sp + Xpp1 + - + Xpp, so that 0(Sp4:) € 0(Sn, Xnt1, Xnt2,-..). Therefore, o(Sy, Spi1,...) C
0(Sny Xn+1, Xnta,...). For every i € NT, note that X,,1; = Spyi — Snyi—1, so that (X, 4i) C 0(Sn, Snt1,---)-
Therefore, o(Sy, Xnt1, Xnt2,---) € 0(Sn, Snt1,---)-

Next, we will show that o(S,,, Xx) and o(X,,4+1, Xpnt2,...) are independent for every n € Nt and k € {1,...,n}.
Note that o(Sy,) C o(X1,...,X,). Therefore, 0(Sp, Xx) C o(X1,...,Xy). From a previous result, we know that
o(X1,...,X,) and 0(Xp41, Xnto,...) are independent, so that o(Sy,, Xi) and 0(X,4+1, Xpnt2,. . .) are independent.

By considering this independence, for every n € N* and k € {1,...,n},

E(Xk | SnsSnt1,---) = E( Xk | Sn, Xnt1, Xng2,-.) = E (X | Sn)

almost surely.
For every n € N*, recall that I -1(p) = 15(Sn) forall B € B(R). Since X}, € L£1(Q, F,P) forevery k € {1,...,n},

Xilg-1p) d}P’:/Xk]IB(Sn) d]P’:/fB(Xk,Xl,...,Xk_l,XkH,...,Xn) dP,
Q Q Q

where fp : R™ — R is a Borel function given by fg(z1,...,2,) = x1lg(z1 + - + zp).
Because a previous result for laws extends to joint laws and X, ..., X, are independent,
/SIXkHSnfl(B) dP = A B AdLx, X1, X1 Xpi1 s X = A fs dL%.

Therefore, for every n € N*, B € B(R), S;}(B) € 0(S,), and i,j € {1,...,n},

/ E(X; | Sn)lg-1(p) dP = /XH Ly dP = / deﬁx_/X]I /E(Xj|5n)115;1(3) dp,
Q Q

so that E(X; | S,,) = E(X; | S,,) almost surely.
Finally, for every n € N* and k € {1,...,n},

E(X | S,) ZEXk\s ~ B [ S,) - (ZX|S> E(Sn | 5) = .

i=1

almost surely, so that E(X} | S,,) = S, /n almost surely.

10 Martingales

Consider a probability triple (Q2, F,P). A filtration (F,), is a sequence (F, C F | n € N) of o-algebras such that
Fn C Fpga for every n € N. In that case, we let Foo = o(Fo, Fi,...) = c(UpFn).

A filtered space (Q, F, (Fyn)n,P) is composed of a probability triple (2, F,P) and a filtration (F,),. Intuitively,
at a given time n € N, for every w € Q, recall that knowing I (w) for every F,, € F,, allows knowing Z,(w) for
every J,-measurable random variable Z,,.

For any set C, recall that a set (or sequence) of random variables Y = (Y, | v € C) on a probability triple
(Q, F,P) is called a stochastic process (parameterized by C).

Consider a probability triple (Q, F,P). The natural filtration (F,), of the stochastic process (W,, | n € N) is
given by F, = o(Wy,...,W,) for every n € N. Intuitively, at a given time n € N, for every w € €, recall that
knowing I, (w) for every F,, € o(Wy,...,W,,) is equivalent to knowing Wy (w), ..., W, (w).

Consider a filtered space (Q, F, (Fp)n,P). A stochastic process (X,, | n € N) is called adapted (to the filtration
(Fn)n) if X,, is F,-measurable for every n € N. Note that if (F,,),, is the natural filtration of the stochastic process
(W,, | n € N), then there is a Borel function f,, : R"*! — R such that X,, = f,,(Wo,..., W,).

Consider a filtered space (Q, F, (Fpn)n, P).

A stochastic process (X,, | n € N) is called a martingale if (X, | n € N) is adapted; E(|X,|) < oo for every
n € N; and E(X,, | F,,—1) = X,,—1 almost surely for every n € NT.

A stochastic process (X, | n € N) is called a supermartingale if (X, | n € N) is adapted; E(|X,,|) < oo for every
n € N; and E(X,, | F,,_1) < X,,_1 almost surely for every n € N*.
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A stochastic process (X, | n € N) is called a submartingale if (X,, | n € N) is adapted; E(]X,,|) < oo for every
n € N; and E(X,, | F,—1) > X,,—1 almost surely for every n € N*.

Consider an adapted stochastic process (X,, | n € N) and suppose that E(|X,,|) < oo for every n € N. For every
n € NT, note that E(X,, | F,—1) = X,,—1 almost surely if and only if E(X,, | F,—1) < X,,—1 < E(X,, | Fri—1) almost
surely. Therefore, (X,, | n € N) is a martingale if and only if (X, | n € N) is a supermartingale and a submartingale.

If (X, | n € N) is a supermartingale, then (—X,, | n € N) is adapted; E(| — X,,|) = E(|X,|) < oo for every n € N;
and E(—X,, | F—1) > —X,,—1 almost surely for every n € N*. Therefore, (—X,, | n € N) is a submartingale.

If (X, | »n € N) is a submartingale, then (—X,, | n € N) is adapted; E(| — X,,|) = E(|X,,|) < oo for every n € N;
and E(—X,, | F_1) < —X,,_1 almost surely for every n € N*. Therefore, (—X,, | n € N) is a supermartingale.

Consider an adapted stochastic process (X, | n € N) and suppose that E(|X,|) < oo for every n € N. Further-
more, consider the stochastic process (X,, — Xo | n € N). Because X,, — Xy is F,-measurable for every n € N, we
know that (X,, — Xo | n € N) is adapted. Because £!(Q, F,P) is a vector space, we know that E(|X,, — Xo|) < oo
for every n € N. By the linearity of conditional expectation,

E(X, — Xo| Fno1) =E(X,, | Frum1) — E(Xo | Frm1) = E(X, | Fo1) — Xo
almost surely for every n € N*. Therefore:

e For every n € NT, E(X,, | F,,_1) = X,,_1 almost surely if and only if E(X,, — Xo | Fr_1) = X1 — X almost
surely. Therefore, (X, | n € N) is a martingale if and only if (X,, — Xo | n € N) is a martingale.

e For every n € NT, E(X,, | F,,_1) < X,,_1 almost surely if and only if E(X,, — Xo | Fr_1) < X,,_1 — X almost
surely. Therefore, (X,, | n € N) is a supermartingale if and only if (X,, — X, | n € N) is a supermartingale.

e For every n € Nt E(X,, | F,—1) > X,,_1 almost surely if and only if E(X,, — Xo | Fn—1) > X,,—1 — Xo almost
surely. Therefore, (X,, | n € N) is a submartingale if and only if (X,, — Xy | n € N) is a submartingale.

Consequently, it is common to assume that a stochastic process (X,, | n € N) has Xy = 0 and Fy = {0, Q}.
If (X, | » € N) is a martingale, n € N* and m < n, then

E(Xo [ Frm) = E(Xo | Froa [ Fn) = E(E(Xn | Fr1) | Fin) = E(Xn1 | Fin)
almost surely. Therefore, almost surely,
E(X, | Fm) =E(Xpn_1 | Fn) =... =E(Xps1 | Fin) = EXp | Fin) = X
If (X,, | n € N) is a supermartingale, n € N, and m < n, then
E(Xo [ Fm) = E(Xo | Froor [ Fn) = E(E(Xn [ Fr1) | Fin) S E(Xn1 | Fin)
almost surely. Therefore, almost surely,
E(Xp | Fin) SEXpo1 | Fn) <o SEXng1 | Fn) SEXo | Fin) = Xon.
If (X,, | n € N) is a submartingale, n € N*, and m < n, then
E(Xn | Fm) = B(Xo | For | Fin) = E(E(Xy | Fooa) | Fin) 2 B(Xno1 | Fin)
almost surely. Therefore, almost surely,
E(Xp | Fn) 2 E(Xp—1 | Fin) = ... 2 E(Xpg1 | Fn) = E( X | Fin) = X

The next three examples illustrate the definition of martingales.

Consider a probability triple (€2, F,P), a sequence of independent random variables (X,, € £Y(Q, F,P)) | n €
NT), and suppose that E(X,) = 0 for every n € N*. Let S, = X; +--- + X,, for every n € NT and Sy = 0. We
will now show that (S,, | n € N) is a martingale.

Let F, = o(X1,...,X,,) for every n € NT and Fy = {0,Q}. Clearly, (S, | n € N) is adapted to the filtration
(Fpn)n. Because L1(Q, F,P) is a vector space, S,, € L1(Q, F,P) for every n € N. For every n € N*,

E(Sn | ]:nfl) = E(Snfl + Xn | ]:nfl) = E(Snfl | ]:nfl) +E(Xn ‘ ]:nfl) = Snfl +E(Xn> = Snfl

almost surely, where we used the fact that o(X,,) is independent of JF,,_; for every n € N7.
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Consider a probability triple (Q2, F,P), a sequence of independent random variables (X,, € L}(Q, F,P) | n € N*),
and suppose that E(X,,) =1 for every n € NT. Let M,, = X1 ----- X, for every n € N and My = 1. We will now
show that (M, | n € N) is a martingale.

Let F,, = 0(X1,...,X,) for every n € NT and Fy = {0,Q}. Clearly, (M, | n € N) is adapted to the filtration
(Fn)n. Because X1,..., X, are independent, M, € L(Q, F,P) for every n € N. For every n € N*,

E(Mn ‘ -Fn—l) = E(Mn—an | ]:n—l) = Mn—lE(Xn | fn—l) = Mn—l]E(Xn) = Mn—l

almost surely, where we used the fact that o(X,,) is independent of JF,,_; for every n € N7.

Consider a filtered space (Q, F, (F,)n,P) and a random variable ¢ € £1(Q, F,P). Let M,, = E(¢ | F,,) almost
surely for every n € N. We will now show that (M,, | n € N) is a martingale.

Clearly, (M,, € L}(Q2, F,,,P) | n € N) is adapted to the filtration (F,),. For every n € NT,

E(Mn | ]:n*l) = ]E(E(E | ]:n) | ]:nfl) = E(€ | ]:n | ]:nfl) = E(E | ]:nfl) = Mn,1

almost surely.

Consider a filtered space (Q, F, (Fpn)n, P).

A stochastic process (C,, | n € N) is called previsible if C,, is F,,_1 measurable for every n € NT. Note that if
(Fn)n is the natural filtration of the stochastic process (W,, | n € N), then there is a Borel function g, : R" — R
such that C,, = g,(Wo,...,W,_1) for every n € NT.

The martingale transform (C' e X) of an adapted process X = (X,, | n € N) by a previsible process C' = (C, |
n € N) is the adapted process ((C @ X),, | n € N), where (C e X)y =0 and

n

(CoX)y = Cp(Xy— Xp_1)

k=1

for every n € N*. Note that (C e X), = (C e X),,_1 + Cp(X,, — X,,_1) for every n € N*.

The following example illustrates the definition of martingale transform.

For every w € £, suppose that X, (w) — X,,_1(w) represents the profit per unit stake in round n € NT of a
game. In that case, C,(w) can be interpreted as the amount stake in round n € NT by a particular gambling
strategy C. For every n € NT and w € Q, the amount stake C,(w) may rely on knowledge about Ir, _,(w) for

every F,_; € F,,_1, which includes at the very least knowledge about Xy(w),..., X,—1(w) and Co(w), ...Cr_1(w).
Finally, in this setting, (C' e X),,(w) represents the profit after n € N* rounds. Note that:

o If (X,, | n € N) is a martingale, then E(X,, — X,,_1 | Frn—1) = E(X,, | Fno1) — Xn—1 = 0 almost surely for
every n € NT, so that the game is fair.

e If (X,, | n € N) is a supermartingale, then E(X,, — X,,_1 | Fr—1) = E(X,, | Fr—1) — Xn—1 < 0 almost surely
for every n € NT, so that the game is unfavourable.

e If (X, | n € N) is a submartingale, then E(X,, — X,,_1 | Frn—1) = E(X,, | Fn—1) — Xn—1 > 0 almost surely for
every n € NT, so that the game is favourable.

Consider an adapted process X = (X,, | n € N) and a previsible process C = (C,, | n € N). We will now show
that if C,, € £%(Q,F,P) and X,, € L%(Q,F,P) for every n € N, then C,,(X,, — X,,_1) € LY(Q, F,P) for every
neNT.

Since £2(2, F,P) is a vector space, (X,, — X,,_1) € L2(Q2, F,P) for every n € N*. By the Schwarz inequality,
Cn(Xn — Xp_1) € L1, F, P).

Consider an adapted process X = (X,, | n € N) and a previsible process C = (C,, | n € N). We will now show
that if |C,| < K and E(|X,,|) < oo for every n € N and some K € [0,00), then C,,(X,, — X,,_1) € L*(Q, F,P) for
every n € NT,

Since |Cp || X —X—1] < K|X,,—X,,—1] for every n € NT, we know that E(|C,,(X,,— Xp—1)|) < KE(|X,,—X,—1]).
Because £1(Q2, F,P) is a vector space, we know that C,,(X,, — X,,—1) € L}(Q, F,P).

Consider an adapted process X = (X, € LY(Q, F,,P) | n € N) and a previsible process C = (C,, | n € N).
Furthermore, suppose that C,(X,, — X,,_1) € £LY(Q, F,P) for every n € N*.

First, recall that (C e X) is adapted. Because (C' @ X)g =0and (CeX), =(CeX), 1+ C,(X,, — X,,_1) for
every n € Nt we know that (C e X),, € L}(Q, F,P) for every n € N. Finally, for every n € N*t,

E((C L X)n ‘ ]:nfl) - E((C.X)nfl + Cn(Xn - anl) | -anl) - (C L4 X)nfl + Cn]E(Xn - anl I -anl)

almost surely. Therefore:
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e If (X, | n € N) is a martingale, then, E((C @ X),, | F,,_1) = (C ® X),,_; almost surely for every n € Nt so
that (C e X) is a martigale.

e If (X, | n € N) is a supermartingale and C is non-negative, then E((C ® X),, | Fn—1) < (C @ X),_; almost
surely for every n € Nt so that (C e X) is a supermartigale.

e If (X, | n € N) is a submartingale and C' is non-negative, then E((C ® X),, | F,—1) > (C @ X),,_1 almost
surely for every n € Nt so that (C e X) is a submartigale.
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