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1 Measure spaces
Definition 1.1. A set S contains s if s ∈ S. A set S includes F if F ⊆ S.

Definition 1.2. An algebra Σ0 on a set S is a set of subsets of S such that

• S ∈ Σ0,

• If F ∈ Σ0, then F c ∈ Σ0, where F c = S \ F ,

• If F,G ∈ Σ0, then F ∪G ∈ Σ0.

Proposition 1.1. If Σ0 is an algebra on S,

• ∅ ∈ Σ0,

• If F,G ∈ Σ0, then F ∩G ∈ Σ0.

Definition 1.3. A trivial algebra on S is given by {∅, S}.

Definition 1.4. A σ-algebra Σ on S is an algebra on S such that⋃
n∈N

Fn ∈ Σ

for any sequence (Fn ∈ Σ | n ∈ N), which also implies⋂
n∈N

Fn ∈ Σ.

Definition 1.5. A measurable space (S,Σ) is a pair composed of a set S and a σ-algebra Σ on S. An element of
Σ is called a Σ-measurable subset of S.

Definition 1.6. Let C be a set of subsets of S. The σ-algebra σ(C) generated by C is the smallest σ-algebra Σ on
S such that C ⊆ Σ. The σ-algebra σ(C) is the intersection of all the σ-algebras on S that include C.

Note that the set P(S) of all subsets of S is a σ-algebra on S that includes any set of subsets C.

Definition 1.7. The Borel B(R) σ-algebra is the σ-algebra on R generated by the set of open sets of real numbers.

Proposition 1.2. Let π(R) = {(−∞, x] | x ∈ R} be the set that contains every interval that contains every real
number smaller or equal to every real number x ∈ R. The σ-algebra generated by π(R) is σ(π(R)) = B(R).

Proof. First, recall that (−∞, x] =
⋂

n∈N+(−∞, x + n−1). Because B(R) is a σ-algebra on R that contains every
(−∞, x+ n−1), we have (−∞, x] ∈ B(R). Because B(R) is a σ-algebra on R that includes π(R) and σ(π(R)) is the
smallest σ-algebra on R that includes π(R), we have σ(π(R)) ⊆ B(R).

Second, recall that every open set of real numbers is a countable union of open intervals. Because σ(π(R)) is
a σ-algebra on R, if it contains every open interval, then it contains every open set of real numbers. This would
also imply that B(R) ⊆ σ(π(R)), since σ(π(R)) is a σ-algebra on R and B(R) is the the smallest σ-algebra on R
that contains every open set of real numbers. In order to show that σ(π(R)) contains every open interval, first
note that (a, u] = (−∞, u] ∩ (−∞, a]c ∈ σ(π(R)) for any u > a and then note that (a, b) = ∪n∈N+(a, b − ϵn−1] for
ϵ = (b− a)/2.

Definition 1.8. Consider an algebra Σ0 on a set S. A function µ0 : Σ0 → [0,∞] is called additive if µ0(∅) = 0
and, for any F,G ∈ Σ0 such that F ∩G = ∅,

µ0(F ∪G) = µ0(F ) + µ0(G).
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Definition 1.9. A function µ0 : Σ0 → [0,∞] is called countably additive if µ0(∅) = 0 and, for any sequence
(Fn ∈ Σ0 | n ∈ N) such that Fn ∩ Fm = ∅ for n ̸= m,

µ0

(⋃
n∈N

Fn

)
=
∑
n∈N

µ0(Fn)

whenever
⋃

n∈N Fn ∈ Σ0. This last requirement is always met when Σ0 is a σ-algebra.

Definition 1.10. Let (S,Σ) be a measurable space. A countably additive function µ : Σ → [0,∞] is called a
measure on (S,Σ). The triple (S,Σ, µ) is called a measure space.

Proposition 1.3. A measure space (S,Σ, µ) has the following properties:

• If µ(S) < ∞ and A,B ∈ Σ, then µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B),

• If A,B ∈ Σ, then µ(A ∪B) ≤ µ(A) + µ(B),

• µ
(⋃

n∈N Fn

)
≤
∑

n∈N µ(Fn) for any sequence (Fn ∈ Σ | n ∈ N).

Definition 1.11. A measure µ on the measurable space (S,Σ) is called finite if µ(S) < ∞.

Definition 1.12. A measure µ on the measurable space (S,Σ) is called σ-finite if there is a sequence (Sn ∈ Σ | n ∈
N) such that µ(Sn) < ∞ and ∪n∈NSn = S.

Definition 1.13. A measure µ on the measurable space (S,Σ) is called a probability measure if µ(S) = 1. The
triple (S,Σ, µ) is then called a probability triple. A set F ∈ Σ is called µ-null if µ(F ) = 0. If a statement is false
only for elements of a µ-null set F ∈ Σ, then the statement is said to be true almost everywhere.

Definition 1.14. A π-system I on S is a set of subsets of S such that if I1, I2 ∈ I, then I1 ∩ I2 ∈ I.

Definition 1.15. A d-system D on S is a set of subsets of S such that

• S ∈ D;

• If A,B ∈ D and A ⊆ B, then B \A ∈ D;

• For any sequence (An ∈ D | n ∈ N), if An ⊆ An+1 for every n ∈ N, then ∪nAn ∈ D.

Definition 1.16. Let C be a set of subsets of S. The d-system d(C) generated by C is the smallest d-system on S
such that C ⊆ d(C). The d-system d(C) is the intersection of all the d-systems on S that include C.

Proposition 1.4. A set Σ of subsets of S is a σ-algebra on S if and only if Σ is a π-system and a d-system on S.

Proof. If Σ is a σ-algebra on S, then:

• If E,F ∈ Σ, then E ∩ F ∈ Σ;

• S ∈ Σ;

• If E,F ∈ Σ and E ⊆ F , then F \ E ∈ Σ, since F \ E = F ∩ Ec;

• For any sequence (Fn ∈ Σ | n ∈ N), if Fn ⊆ Fn+1 for every n ∈ N, then ∪nFn ∈ Σ.

If Σ is a π-system and a d-system on S, then:

• S ∈ Σ;

• If E ∈ Σ, then Ec ∈ Σ, since E ⊆ S and S \ E = Ec;

• If E,F ∈ Σ, then E ∪ F ∈ Σ, since (Ec ∩ F c)c = E ∪ F ;

• If (En ∈ Σ | n ∈ N) is a sequence, then ∪nEn ∈ Σ. In order to see this, let Gk = ∪n≤kEn for every k ∈ N.
Since Gk ∈ Σ and Gk ⊆ Gk+1 for every k ∈ N, we know that ∪kGk ∈ Σ.

Lemma 1.1 (Dynkin’s lemma). If I is a π-system on S, then d(I) = σ(I).

2



Proof. We will show that d(I) is a π-system on S, so that d(I) is a σ-algebra on S and σ(I) ⊆ d(I). Because σ(I)
is a d-system on S that includes I, we know that d(I) ⊆ σ(I), which will show that d(I) = σ(I).

Let D1 = {B ∈ d(I) | B ∩ C ∈ d(I) for every C ∈ I}. For every every B,C ∈ I, we know that B ∩ C ∈ I.
Because I ⊆ d(I), we also know that I ⊆ D1. Furthermore, D1 is a d-system on S:

• S ∈ D1, since S ∈ d(I) and S ∩ C = C and C ∈ d(I) for every C ∈ I.

• If B1, B2 ∈ D1 and B1 ⊆ B2, then B2 \B1 ∈ D1. In order to see this, note that, for every C ∈ I,

(B2 ∩ C) \ (B1 ∩ C) = (B2 ∩ C) ∩ (Bc
1 ∪ Cc) = B2 ∩ (C ∩ (Bc

1 ∪ Cc)) = B2 ∩ (Bc
1 ∩ C) = (B2 \B1) ∩ C.

Since (B1∩C) ∈ d(I) and (B2∩C) ∈ d(I) and (B1∩C) ⊆ (B2∩C), we know that (B2∩C)\ (B1∩C) ∈ d(I).
Therefore, B2 \B1 ∈ d(I) and (B2 \B1) ∩ C ∈ d(I) for every C ∈ I, so that B2 \B1 ∈ D1.

• For any sequence (Bn ∈ D1 | n ∈ N), if Bn ⊆ Bn+1 for every n ∈ N, then ∪nBn ∈ D1. In order to see
this, note that, for every n ∈ N and C ∈ I, we have Bn ∩ C ∈ d(I) and Bn ∩ C ⊆ Bn+1 ∩ C. Since
∪n(Bn ∩ C) = (∪nBn) ∩ C, we know that ∪nBn ∈ d(I) and (∪nBn) ∩ C ∈ d(I) for every C ∈ I, so that
∪nBn ∈ D1.

Because I ⊆ D1, we know that d(I) ⊆ D1. By definition, we know that D1 ⊆ d(I), so that D1 = d(I). Therefore,
for every B ∈ d(I) and C ∈ I, we know that B ∩ C ∈ d(I).

Let D2 = {A ∈ d(I) | A ∩ B ∈ d(I) for every B ∈ d(I)}. From the previous result, we know that I ⊆ D2.
Furthermore, D2 is a d-system on S:

• S ∈ D2, since S ∈ d(I) and S ∩B = B and B ∈ d(I) for every B ∈ d(I).

• If A1, A2 ∈ D2 and A1 ⊆ A2, then A2 \A1 ∈ D2. In order to see this, note that, for every B ∈ d(I),

(A2 ∩B) \ (A1 ∩B) = (A2 ∩B) ∩ (Ac
1 ∪Bc) = A2 ∩ (B ∩ (Ac

1 ∪Bc)) = A2 ∩ (Ac
1 ∩B) = (A2 \A1) ∩B.

Since (A1∩B) ∈ d(I) and (A2∩B) ∈ d(I) and (A1∩B) ⊆ (A2∩B), we know that (A2∩B)\ (A1∩B) ∈ d(I).
Therefore, A2 \A1 ∈ d(I) and (A2 \A1) ∩B ∈ d(I) for every B ∈ d(I), so that A2 \A1 ∈ D2.

• For any sequence (An ∈ D2 | n ∈ N), if An ⊆ An+1 for every n ∈ N, then ∪nAn ∈ D2. In order to see
this, note that, for every n ∈ N and B ∈ d(I), we have An ∩ B ∈ d(I) and An ∩ B ⊆ An+1 ∩ B. Since
∪n(An ∩ B) = (∪nAn) ∩ B, we know that ∪nAn ∈ d(I) and (∪nAn) ∩ B ∈ d(I) for every B ∈ d(I), so that
∪nAn ∈ D2.

Because I ⊆ D2, we know that d(I) ⊆ D2. By definition, we know that D2 ⊆ d(I), so that D2 = d(I). Therefore,
for every A ∈ d(I) and B ∈ d(I), we have A ∩B ∈ d(I), which shows that d(I) is a π-system on S.

Proposition 1.5. If I is a π-system on S and D is a d-system on S such that I ⊆ D, then σ(I) ⊆ D.

Proof. Since d(I) ⊆ D, this is a direct consequence of the previous lemma.

Proposition 1.6. Let Σ = σ(I) be the σ-algebra generated by a π-system I. If µ1 and µ2 are measures on the
measurable space (S,Σ) such that µ1(S) = µ2(S) < ∞ and µ1(I) = µ2(I) for any I ∈ I, then µ1(F ) = µ2(F ) for
any F ∈ Σ. Therefore, if two probability measures agree on a π-system, then they agree on the σ-algebra generated
by that π-system.

Theorem 1.1 (Carathéodory’s extension theorem). If Σ0 is an algebra on S and Σ = σ(Σ0) is the σ-algebra
generated by Σ0 and µ0 : Σ0 → [0,∞] is a countably additive function, then there exists a measure µ on the
measurable space (S,Σ) such that µ(F ) = µ0(F ) for any F ∈ Σ0. If µ0(S) < ∞, then µ is unique, since an algebra
is a π-system.

Definition 1.17. Let Σ0 be the algebra on the set S = (0, 1] that contains every F such that

F =

r⋃
k=1

(ak, bk],

where r ∈ N and 0 ≤ a1 ≤ b1 ≤ . . . ≤ ar ≤ br ≤ 1.
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Let µ0 : Σ0 → [0, 1] denote the countably additive function given by

µ0(F ) =

r∑
k=1

(bk − ak).

Let B((0, 1]) = σ(Σ0) be the σ-algebra generated by Σ0. The unique measure µ : B((0, 1]) → [0, 1] on the
measurable space ((0, 1],B((0, 1])) that agrees with µ0 on the algebra Σ0 is called the Lebesgue measure Leb on
((0, 1],B((0, 1])). The σ-finite Lebesgue measure Leb on the measurable space (R,B(R)) is similarly defined.

Intuitively, a Lebesgue measure Leb assigns lenghts.

Definition 1.18. Let an ↑ a denote that a sequence of real numbers (an | n ∈ N) is such that an ≤ an+1 and
a = limn→∞ an. Similarly, let an ↓ a denote that a sequence of real numbers (an | n ∈ N) is such that an+1 ≤ an
and a = limn→∞ an.

Definition 1.19. Let An ↑ A denote that a sequence of sets (An | n ∈ N) is such that An ⊆ An+1 and A = ∪n∈NAn.
Similarly, let An ↓ A denote that a sequence of sets (An | n ∈ N) is such that An+1 ⊆ An and A = ∩n∈NAn.

Proposition 1.7 (Monotone-convergence property of measure). Consider the measure space (S,Σ, µ). For a
sequence (Fn ∈ Σ | n ∈ N), if Fn ↑ F , then µ(Fn) ↑ µ(F ). Similarly, for a sequence (Gn ∈ Σ | n ∈ N), if Gn ↓ G
and µ(Gk) < ∞ for some k, then µ(Gn) ↓ µ(G).

2 Events
Definition 2.1. Consider a probability triple (Ω,F ,P). An element ω ∈ Ω is called an outcome. The set Ω is
called an outcome space. A set of outcomes F ∈ F is called an event. The probability measure P : F → [0, 1] is
defined on a σ-algebra F on the outcome space Ω.

A probability P(F ) assigns a degree of belief to the statement that the outcome ω ∈ Ω of an experiment belongs
to the event F ∈ F . For instance, a probability P(F ) = 1 indicates that ω ∈ F almost surely, while a probability
P(F ) = 0 indicates that ω /∈ F almost surely. In general, a statement about an outcome is said to be true almost
surely if P(F ) = 1, where F ∈ F is the event that contains every outcome ω ∈ Ω for which the statement is true.

Example 2.1. Consider an experiment where a coin is tossed twice. Let H = 0 represent heads and T = 1
represent tails. The outcome space Ω may be defined as Ω = {(H,H), (H,T ), (T,H), (T, T )}. The σ-algebra F on
the outcome space Ω may be defined as the set of all subsets of Ω, which is denoted by F = P(Ω). The event F
where at least one head is observed is then given by F = {(H,H), (H,T ), (T,H)}.

Example 2.2. Consider an experiment where a coin is tossed infinitely often. The outcome space Ω may be
defined as the set of infinite binary sequences Ω = {H,T}N. In order to at least assign probabilities to every event
F = {ω ∈ Ω | ωn = W} where n ∈ N and W ∈ {H,T}, the σ-algebra F on the outcome space Ω may be generated
as F = σ({{ω ∈ Ω | ωn = W} | n ∈ N,W ∈ {H,T}}).

Proposition 2.1. Consider a sequence of events (Fn ∈ F | n ∈ N). If P(Fn) = 1 for every n ∈ N, then
P(∩n∈NFn) = 1.

Definition 2.2. The infimum infn xn of a sequence of real numbers (xn ∈ R | n ∈ N) is the largest r ∈ [−∞,∞]
such that r ≤ xn for every n ∈ N. The supremum supn xn of a sequence of real numbers (xn ∈ R | n ∈ N) is the
smallest r ∈ [−∞,∞] such that r ≥ xn for every n ∈ N.

Definition 2.3. The limit inferior of a sequence of real numbers (xn ∈ R | n ∈ N) is defined by

lim inf
n→∞

xn = sup
m

inf
n≥m

xn = lim
m→∞

inf
n≥m

xn.

Note that the sequence (infn≥m xn | m ∈ N) is non-decreasing. Let z ∈ [−∞,∞]. If z < lim infn→∞ xn, then
z < xn for all sufficiently large n ∈ N. If z > lim infn→∞ xn, then z > xn for infinitely many n ∈ N.

Definition 2.4. The limit superior of a sequence of real numbers (xn ∈ R | n ∈ N) is defined by

lim sup
n→∞

xn = inf
m

sup
n≥m

xn = lim
m→∞

sup
n≥m

xn.
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Note that the sequence (supn≥m xn | m ∈ N) is non-increasing. Let z ∈ [−∞,∞]. If z > lim supn→∞ xn, then
z > xn for all sufficiently large n ∈ N. If z < lim supn→∞ xn, then z < xn for infinitely many n ∈ N.

Proposition 2.2. For any sequence (xn ∈ R | n ∈ N), the limit inferior and the limit superior are related by

− lim inf
n→∞

xn = lim
m→∞

− inf
n≥m

xn = lim
m→∞

sup
n≥m

−xn = lim sup
n→∞

−xn.

Definition 2.5. A sequence of real numbers (xn ∈ R | n ∈ N) is said to converge in [−∞,∞] if and only if

lim inf
n→∞

xn = lim sup
n→∞

xn = lim
n→∞

xn.

Definition 2.6. The limit inferior of a sequence of sets (En | n ∈ N) is defined by

lim inf
n→∞

En =
⋃
m∈N

⋂
n≥m

En.

Let Fm =
⋂

n≥m En. Note that Fm ⊆ Fm+1. Furthermore, ω ∈ lim infn→∞ En if and only if ω ∈ En for all
sufficiently large n ∈ N.

Definition 2.7. The limit superior of a sequence of sets (En | n ∈ N) is defined by

lim sup
n→∞

En =
⋂
m∈N

⋃
n≥m

En.

Let Fm =
⋃

n≥m En. Note that Fm ⊇ Fm+1. Furthermore, ω ∈ lim supn→∞ En if and only if ω ∈ En for
infinitely many n ∈ N.

Proposition 2.3. For any sequence of sets (En ⊆ Ω | n ∈ N), the limit inferior and the limit superior are related
by (

lim inf
n→∞

En

)C
= lim sup

n→∞
EC

n .

Definition 2.8. Consider a measurable space (Ω,F). The indicator function IF : Ω → {0, 1} of an event F ∈ F is
defined by

IF (ω) =

{
1, if ω ∈ F ,
0, if ω /∈ F .

Proposition 2.4. For any outcome ω ∈ Ω and sequence of events (En ∈ F | n ∈ N),

Ilim infn→∞ En
(ω) = lim inf

n→∞
IEn

(ω),

Ilim supn→∞ En
(ω) = lim sup

n→∞
IEn

(ω).

Lemma 2.1 (Reverse Fatou Lemma). For a probability triple (Ω,F ,P) and a sequence (En ∈ F | n ∈ N),

P
(
lim sup
n→∞

En

)
≥ lim sup

n→∞
P(En).

Proof. Let Fm =
⋃

n≥m En such that Fm ⊇ Fm+1. By definition, Fm ↓ lim supn→∞ En, which implies P(Fm) ↓
P (lim supn→∞ En). Because A ⊆ (B ∪A) implies P(A) ≤ P(B ∪A) for any events A,B ∈ F ,

P (Fm) = P

 ⋃
n≥m

En

 ≥ sup
n≥m

P(En).

By taking the limit of both sides of the equation above when m → ∞,

lim
m→∞

P(Fm) = P
(
lim sup
n→∞

En

)
≥ lim

m→∞
sup
n≥m

P(En) = lim sup
n→∞

P(En).
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Lemma 2.2 (Fatou Lemma for sets). For a probability triple (Ω,F ,P) and a sequence (En ∈ F | n ∈ N),

P
(
lim inf
n→∞

En

)
≤ lim inf

n→∞
P(En).

Proof. Let Fm =
⋂

n≥m En such that Fm ⊆ Fm+1. By definition, Fm ↑ lim infn→∞ En, which implies P(Fm) ↑
P(lim infn→∞ En). Because (A ∩B) ⊆ B implies P(A ∩B) ≤ P(B) for any events A,B ∈ F ,

P(Fm) = P

 ⋂
n≥m

En

 ≤ inf
n≥m

P(En).

By taking the limit of both sides of the equation above when m → ∞,

lim
m→∞

P(Fm) = P
(
lim inf
n→∞

En

)
≤ lim

m→∞
inf
n≥m

P(En) = lim inf
n→∞

P(En).

Lemma 2.3 (First Borel-Cantelli Lemma). For a probability triple (Ω,F ,P) and a sequence of events (En ∈ F |
n ∈ N) such that

∑∞
n=0 P(En) < ∞,

P
(
lim sup
n→∞

En

)
= 0.

Proof. Let Fm =
⋃

n≥m En such that Fm ⊇ Fm+1. By definition, Fm ↓ lim supn→∞ En, which implies P(Fm) ↓
P (lim supn→∞ En). Because P(A ∪B) ≤ P(A) + P(B) for any events A,B ∈ F ,

P (Fm) = P

 ⋃
n≥m

En

 ≤
∑
n≥m

P(En).

By taking the limit of both sides of the equation above when m → ∞,

lim
m→∞

P (Fm) = P
(
lim sup
n→∞

En

)
≤ lim

m→∞

∑
n≥m

P(En) = 0,

where the last equality comes from the fact that, for any ϵ > 0, there is an N ∈ N such that, for all m− 1 ≥ N ,

ϵ >

∣∣∣∣∣
∞∑

n=0

P(En)−
m−1∑
n=0

P(En)

∣∣∣∣∣ = ∑
n≥m

P(En).

3 Random variables
Definition 3.1. Consider a measurable space (S,Σ) and a function h : S → R. The function h−1 is defined as

h−1(A) = {s ∈ S | h(s) ∈ A}

for any A ⊆ R. The function h is called Σ-measurable if h−1(A) ∈ Σ for every A ∈ B(R). In an extended definition,
a function h : S → [−∞,∞] is called Σ-measurable if h−1(A) ∈ Σ for every A ∈ B([−∞,∞]).

Definition 3.2. A B(R)-measurable function h : R → R is said to be Borel.

Definition 3.3. The set of Σ-measurable functions on S is denoted by mΣ. The set of non-negative Σ-measurable
functions on S is denoted by (mΣ)+. The set of bounded Σ-measurable functions on S is denoted by bΣ.

Proposition 3.1. Consider a function h : S → R. For any set A ⊆ R,

h−1(Ac) = {s ∈ S | h(s) ∈ Ac} = {s ∈ S | h(s) ∈ A}c = (h−1(A))c.
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Proposition 3.2. Consider a function h : S → R. For any sequence of sets (An ⊆ R | n ∈ N),

h−1

(⋃
n∈N

An

)
= {s ∈ S | h(s) ∈

⋃
n∈N

An} =
⋃
n∈N

{s ∈ S | h(s) ∈ An} =
⋃
n∈N

h−1(An).

Similarly,

h−1

(⋂
n∈N

An

)
= {s ∈ S | h(s) ∈

⋂
n∈N

An} =
⋂
n∈N

{s ∈ S | h(s) ∈ An} =
⋂
n∈N

h−1 (An) .

Proposition 3.3. Consider a measurable space (S,Σ) and a function h : S → R. The set E = {B ∈ B(R) |
h−1(B) ∈ Σ} is a σ-algebra on R.

Proof. First, note that h−1(R) = {s ∈ S | h(s) ∈ R} = S and S ∈ Σ. Therefore, R ∈ E . Consider an element
B ∈ E . In that case, h−1(B) ∈ Σ, which implies (h−1(B))c = h−1(Bc) ∈ Σ. Therefore, Bc ∈ E . Finally, consider a
sequence (Bn ∈ E | n ∈ N). In that case, h−1(Bn) ∈ Σ for every n ∈ N, which implies ∪nh

−1(Bn) ∈ Σ. Therefore,
h−1(∪nBn) ∈ Σ and ∪nBn ∈ E .

Proposition 3.4. Consider a measurable space (S,Σ), a function h : S → R, and a set C of subsets of R. If
σ(C) = B(R) and h−1(C) ∈ Σ for every C ∈ C, then h is Σ-measurable.

Proof. Note that the set E = {B ∈ B(R) | h−1(B) ∈ Σ} is a σ-algebra on R. Because C ⊆ E , E ⊆ B(R), and
B(R) is the smallest σ-algebra that includes C, we know that E = B(R), which implies that h−1(B) ∈ Σ for every
B ∈ B(R).

Proposition 3.5. If a function h : R → R is continuous, then it is Borel.

Proof. First, consider the measurable space (R,B(R)) and let C be the set of open sets of real numbers. Recall that
B(R) = σ(C). Second, recall that a function h is continuous if h−1(A) ∈ C is an open set for every open set A ∈ C.
Using the previous result, h−1(B) ∈ B(R) for every B ∈ B(R).

Proposition 3.6. Consider a measurable space (S,Σ) and a function h : S → R. For any c ∈ R, define

{h ≤ c} = h−1((−∞, c]) = {s ∈ S | h(s) ≤ c}.

If {h ≤ c} ∈ Σ for every c ∈ R, then h is Σ-measurable.

Proof. First, let C = {(−∞, x] | x ∈ R} be the set that contains every interval that contains every real number
smaller or equal to every real number x ∈ R. Recall that B(R) = σ(C). By assumption, h−1(C) ∈ Σ for every
C ∈ C, and so h−1 is Σ-measurable.

Note that analogous results apply for {h ≥ c}, {h < c}, and {h > c}.

Proposition 3.7. Consider a measurable space (S,Σ). Let h : S → R, h1 : S → R, and h2 : S → R be Σ-
measurable functions and let λ ∈ R be a constant. In that case, h1 + h2 is a Σ-measurable function, h1h2 is a
Σ-measurable function, and λh is a Σ-measurable function.

Proof. We will only show the first of these statements. Based on the previous result, if {h1 + h2 > c} = {s ∈ S |
h1(s) + h2(s) > c} ∈ Σ for every c ∈ R, then h1 + h2 is Σ-measurable. Recall that h1(s) + h2(s) > c if and only if
there is a rational q ∈ Q such that h1(s) > q > c− h2(s). Therefore,

{h1 + h2 > c} = {s ∈ S | h1(s) > q and q > c− h2(s) for some q ∈ Q} =
⋃
q∈Q

{s ∈ S | h1(s) > q and q > c− h2(s)},

which is a countable union of elements of Σ given by

{h1 + h2 > c} =
⋃
q∈Q

{s ∈ S | h1(s) > q} ∩ {s ∈ S | q > c− h2(s)} =
⋃
q∈Q

{h1 > q} ∩ {h2 > c− q}.
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Proposition 3.8. Consider a measurable space (S,Σ) and a Σ-measurable function h : S → R. Consider also the
measurable space (R,B(R)) and a B(R)-measurable function f : R → R. For all s ∈ S, let (f ◦ h)(s) = f(h(s)). For
any A ⊆ R,

(f ◦ h)−1(A) = {s ∈ S | (f ◦ h)(s) ∈ A} = {s ∈ S | f(h(s)) ∈ A}.

Note that f−1(A) ⊆ R for any A ⊆ R, since f−1(A) = {r ∈ R | f(r) ∈ A}. Therefore,

(h−1 ◦ f−1)(A) = h−1(f−1(A)) = {s ∈ S | h(s) ∈ f−1(A)} = {s ∈ S | f(h(s)) ∈ A} = (f ◦ h)−1(A),

where we used the fact that f(h(s)) ∈ A if and only if h(s) ∈ f−1(A), for all s ∈ S and A ⊆ R. Furthermore, since
f−1(A) ∈ B(R) for any A ∈ B(R) and h−1(f−1(A)) ∈ Σ for any f−1(A) ∈ B(R), the function f ◦h is Σ-measurable.

Definition 3.4. Consider the measurable spaces (S1,Σ1) and (S2,Σ2). A function h : S1 → S2 is called Σ1/Σ2-
measurable if h−1(A) ∈ Σ1 for every A ∈ Σ2. Therefore, a function on a measurable space (S,Σ) is Σ-measurable
if it is Σ/B(R)-measurable.

Consider a measurable space (S,Σ) and a sequence of Σ/B([−∞,∞])-measurable functions (hn | n ∈ N).

Definition 3.5. For any s ∈ S, the function infn hn : S → [−∞,∞] is given by(
inf
n

hn

)
(s) = inf

n
hn(s).

Proposition 3.9. The function infn hn is Σ/B([−∞,∞])-measurable.

Proof. Note that if {infn hn ≥ c} ∈ Σ for every c ∈ R, then infn hn is Σ/B([−∞,∞])-measurable. For every c ∈ R,

{inf
n

hn ≥ c} = {s ∈ S | inf
n

hn(s) ≥ c} = {s ∈ S | hn(s) ≥ c for all n ∈ N},

where we used the fact that infn hn(s) ≥ c if and only if hn(s) ≥ c for all n ∈ N, for all s ∈ S and c ∈ R. Therefore,

{inf
n

hn ≥ c} =
⋂
n∈N

{s ∈ S | hn(s) ≥ c} =
⋂
n∈N

{hn ≥ c},

which is a countable intersection of elements of Σ.

Definition 3.6. For any s ∈ S, the function supn hn : S → [−∞,∞] is given by(
sup
n

hn

)
(s) = sup

n
hn(s).

Proposition 3.10. The function supn hn is Σ/B([−∞,∞])-measurable.

Proof. Note that if {supn hn ≤ c} ∈ Σ for every c ∈ R, then supn hn is Σ/B([−∞,∞])-measurable. For every c ∈ R,

{sup
n

hn ≤ c} = {s ∈ S | sup
n

hn(s) ≤ c} = {s ∈ S | hn(s) ≤ c for all n ∈ N},

where we used the fact that supn hn(s) ≤ c if and only if hn(s) ≤ c for all n ∈ N, for all s ∈ S and c ∈ R. Therefore,

{sup
n

hn ≤ c} =
⋂
n∈N

{s ∈ S | hn(s) ≤ c} =
⋂
n∈N

{hn ≤ c},

which is a countable intersection of elements of Σ.

Definition 3.7. For any s ∈ S, the function lim infn→∞ hn : S → [−∞,∞] is given by(
lim inf
n→∞

hn

)
(s) = lim inf

n→∞
hn(s).

Proposition 3.11. The function lim infn→∞ hn is Σ/B([−∞,∞])-measurable.
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Proof. Each function in the sequence (Ln = infr≥n hr | n ∈ N) is Σ/B([−∞,∞])-measurable, which implies that
supn Ln is Σ/B([−∞,∞])-measurable. Also,(

lim inf
n→∞

hn

)
(s) = lim inf

n→∞
hn(s) = sup

n
inf
r≥n

hr(s) = sup
n

(
inf
r≥n

hr

)
(s) = sup

n
Ln(s) =

(
sup
n

Ln

)
(s).

Definition 3.8. For any s ∈ S, the function lim supn→∞ hn : S → [−∞,∞] is given by(
lim sup
n→∞

hn

)
(s) = lim sup

n→∞
hn(s).

Proposition 3.12. The function lim supn→∞ hn is Σ/B([−∞,∞])-measurable.

Proof. Each function in the sequence (Ln = supr≥n hr | n ∈ N) is Σ/B([−∞,∞])-measurable, which implies that
infn Ln is Σ/B([−∞,∞])-measurable. Also,(

lim sup
n→∞

hn

)
(s) = lim sup

n→∞
hn(s) = inf

n
sup
r≥n

hr(s) = inf
n

(
sup
r≥n

hr

)
(s) = inf

n
Ln(s) =

(
inf
n

Ln

)
(s).

Proposition 3.13. Consider the set F = {s ∈ S | limn→∞ hn(s) exists in R}. Recall that limn→∞ hn(s) exists in R
if and only if

−∞ < lim inf
n→∞

hn(s) = lim sup
n→∞

hn(s) < ∞.

Therefore, F ∈ Σ, since F is an intersection of elements of Σ:

F = {s ∈ S | lim inf
n→∞

hn(s) > −∞} ∩ {s ∈ S | lim sup
n→∞

hn(s) < ∞} ∩ {s ∈ S |
(
lim sup
n→∞

hn − lim inf
n→∞

hn

)
(s) = 0}.

Definition 3.9. Consider a measurable space (Ω,F). An F-measurable function X : Ω → R is a random variable.
By definition, for any B ∈ B(R), X−1(B) ∈ F .

Proposition 3.14. The indicator function IF : Ω → {0, 1} of any event F ∈ F is a random variable.

Proof. The function IF is defined by

IF (ω) =

{
1, if ω ∈ F ,
0, if ω /∈ F .

Recall that if {ω ∈ Ω | IF (ω) ≤ c} ∈ F for every c ∈ R, then IF is F-measurable. For every c < 1, we have
{ω ∈ Ω | IF (ω) ≤ c} = {ω ∈ Ω | ω /∈ F} = F c. For every c ≥ 1, we have {ω ∈ Ω | IF (ω) ≤ c} = Ω.

Example 3.1. Once again consider an experiment where a coin is tossed infinitely often. Let H = 0 represent
heads and T = 1 represent tails. The outcome space Ω may be defined as the set of infinite binary sequences
Ω = {H,T}N+

. Let Fn,W = {ω ∈ Ω | ωn = W} be the set of infinite binary sequences whose n-th element is W .
The σ-algebra F on the outcome space Ω may be generated as F = σ({Fn,W | n ∈ N+,W ∈ {H,T}}). Note that
IFn,W

is a random variable, since Fn,W ∈ F . Therefore, for any n ∈ N+, the function An,W given by

An,W (ω) =

(
n−1

n∑
i=1

IFi,W

)
(ω) =

1

n

n∑
i=1

IFi,W
(ω)

is also a random variable. For a given sequence ω ∈ Ω, An,W (ω) is the fraction of the first n tosses resulting in W .
For a given p ∈ [0, 1], consider the set ΛW = {ω ∈ Ω | limn→∞ An,W (ω) = p}. Clearly,

ΛW = {ω ∈ Ω | lim inf
n→∞

An,W (ω) = p} ∩ {ω ∈ Ω | lim sup
n→∞

An,W (ω) = p},
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which can be rewritten as

ΛW =
(
lim inf
n→∞

An,W

)−1

({p}) ∩
(
lim sup
n→∞

An,W

)−1

({p}).

Note that ΛW ∈ F , since both the limit inferior and the limit superior of the sequence of F-measurable functions
(An,W | n ∈ N+) are F-measurable functions. Therefore, a probability triple (Ω,F ,P) would define the probability
P(ΛW ) that the fraction of tosses with result W tends to a given p ∈ [0, 1].

Definition 3.10. Consider a function X : Ω → R. The σ-algebra σ(X) on Ω is defined as σ(X) = σ({X−1(B) |
B ∈ B(R)}).

Note that if X is a random variable on a measurable space (Ω,F), then σ(X) ⊆ F .

Definition 3.11. Consider a set of functions {Yγ | γ ∈ C} where Yγ : Ω → R. The σ-algebra σ({Yγ | γ ∈ C}) is
defined by

σ({Yγ | γ ∈ C}) = σ({Y −1
γ (B) | γ ∈ C, B ∈ B(R)}).

Note that if Yγ : Ω → R is a random variable on a measurable space (Ω,F) for every γ, then σ({Yγ | γ ∈ C}) ⊆ F .

Proposition 3.15. Consider a measurable space (Ω,F) and a random variable Y : Ω → R. For a set E of subsets
of R, let Y −1(E) = {Y −1(E) | E ∈ E}. By definition, σ(Y ) = σ(Y −1(B(R))). In that case, σ(Y ) = Y −1(B(R)).

Proof. By definition, Y −1(B(R)) = {Y −1(B) | B ∈ B(R)}. Because R ∈ B(R), Y −1(R) ∈ Y −1(B(R)), where
Y −1(R) = Ω. Consider an element Y −1(B) ∈ Y −1(B(R)). Because Bc ∈ B(R), Y −1(Bc) ∈ Y −1(B(R)), where
Y −1(Bc) = (Y −1(B))c. Finally, consider a sequence (Y −1(Bn) ∈ Y −1(B(R)) | n ∈ N). Because ∪nBn ∈ B(R),
Y −1(∪nBn) ∈ Y −1(B(R)), where Y −1(∪nBn) = ∪nY

−1(Bn). Therefore, Y −1(B(R)) is a σ-algebra on Ω. Because
σ(Y ) is the smallest σ-algebra on Ω that includes Y −1(B(R)), we know that σ(Y ) = Y −1(B(R)).

Proposition 3.16. Additionally, consider the π-system π(R) = {(−∞, x] | x ∈ R} and let π(Y ) = Y −1(π(R)). In
that case, σ(Y ) = σ(π(Y )).

Proof. By definition, σ(π(Y )) = σ({Y −1((−∞, x]) | (−∞, x] ∈ π(R)}). Clearly, π(R) ⊆ B(R) implies σ(π(Y )) ⊆
σ(Y ), since σ(Y ) = σ({Y −1(B) | B ∈ B(R)}). Because {Y ≤ x} ∈ σ(π(Y )) for every x ∈ R, Y is σ(π(Y ))-
measurable. Therefore, σ(Y ) ⊆ σ(π(Y )).

Proposition 3.17. If Y : Ω → R, then Z : Ω → R is a σ(Y )-measurable function if and only if there is a Borel
function f : R → R such that Z = f ◦ Y .

Proposition 3.18. If Y1, Y2, . . . , Yn are functions from Ω to R, then a function Z : Ω → R is σ({Y1, Y2, . . . , Yn})-
measurable if and only if there is a Borel function f : Rn → R such that Z(ω) = f(Y1(ω), Y2(ω), . . . , Yn(ω)) for
every ω ∈ Ω.

Definition 3.12. Consider a probability triple (Ω,F ,P) and a random variable X : Ω → R. For any B ∈ B(R),
X−1(B) ∈ σ(X), σ(X) ⊆ F , and P(X−1(B)) ∈ [0, 1]. For any B ∈ B(R), this allows defining the law LX : B(R) →
[0, 1] of X as

LX(B) = P(X−1(B)).

Proposition 3.19. The law LX is a probability measure on the measurable space (R,B(R)).

Proof. First, note that

LX(R) = P(X−1(R)) = P({ω ∈ Ω | X(ω) ∈ R}) = P(Ω) = 1,

LX(∅) = P(X−1(∅)) = P({ω ∈ Ω | X(ω) ∈ ∅}) = P(∅) = 0.

Second, consider a sequence of sets (Bn ∈ B(R) | n ∈ N) such that Bn ∩Bm = ∅ for n ̸= m and note that

LX

(⋃
n∈N

Bn

)
= P

(
X−1

(⋃
n∈N

Bn

))
= P

(⋃
n∈N

X−1(Bn)

)
=
∑
n∈N

P(X−1(Bn)) =
∑
n∈N

LX(Bn),

where we used the fact that X−1(Bn) ∩X−1(Bm) = X−1(Bn ∩Bm) = X−1(∅) = ∅ for n ̸= m.

10



Definition 3.13. The (cumulative) distribution function FX : R → [0, 1] of the random variable X is defined by

FX(c) = LX((−∞, c]) = P(X−1((−∞, c])) = P({ω ∈ Ω | X(ω) ≤ c}) = P({X ≤ c}).

Proposition 3.20. Recall that the σ-algebra generated by π(R) = {(−∞, x] | x ∈ R} is σ(π(R)) = B(R). Consider
a probability measure µ on the measurable space (R,B(R)) such that µ((−∞, c]) = FX(c) = LX((−∞, c]) for every
c ∈ R. Because µ and LX agree on the π-system π(R), we have µ = LX . Therefore, FX fully determines the law
LX of X.

Consider a random variable X : Ω → R carried by a probability triple (Ω,F ,P) and the distribution function
FX : R → [0, 1].

Proposition 3.21. If a ≤ b, then FX(a) ≤ FX(b).

Proof. Clearly, {X ≤ a} ⊆ {X ≤ b}, which implies P({X ≤ a}) ≤ P({X ≤ b}).

Proposition 3.22. limx→−∞ FX(x) = 0.

Proof. Recall that f : R → R is a function such that limx→−∞ f(x) = L for some L ∈ R if and only if
limn→∞ f(xn) = L for all non-increasing sequences (xn ∈ R | n ∈ N) such that limn→∞ xn = −∞.

Consider a non-increasing sequence (xn ∈ R | n ∈ N) such that limn→∞ xn = −∞ and the sequence of sets
(An = (−∞, xn] | n ∈ N). Because An ↓ ∅, LX(An) ↓ 0. Therefore, limn→∞ LX((−∞, xn]) = 0, which implies

lim
x→−∞

FX(x) = lim
x→−∞

LX((−∞, x]) = 0.

Proposition 3.23. limx→∞ FX(x) = 1.

Proof. Recall that f : R → R is a function such that limx→∞ f(x) = L for some L ∈ R if and only if limn→∞ f(xn) =
L for all non-decreasing sequences (xn ∈ R | n ∈ N) such that limn→∞ xn = +∞.

Consider a non-decreasing sequence (xn ∈ R | n ∈ N) such that limn→∞ xn = +∞ and the sequence of sets
(An = (−∞, xn] | n ∈ N). Because An ↑ R, LX(An) ↑ 1. Therefore, limn→∞ LX((−∞, xn]) = 1, which implies

lim
x→∞

FX(x) = lim
x→∞

LX((−∞, x]) = 1.

Proposition 3.24. The function FX is right-continuous.

Proof. Recall that f : R → R is right continuous if and only if limn→∞ f(xn) = f(x) for every x ∈ R and every
non-increasing sequence (xn ∈ R | n ∈ N) such that limn→∞ xn = x and xn > x for every n ∈ N.

Consider x ∈ R and a non-increasing sequence (xn ∈ R | n ∈ N) such that limn→∞ xn = x and xn > x for
every n ∈ N. Consider also the sequence of sets (An = (−∞, xn] | n ∈ N). Because An ↓ (−∞, x], LX((−∞, xn]) ↓
LX((−∞, x]). Therefore, limn→∞ LX((−∞, xn]) = LX((−∞, x]), which implies

lim
n→∞

FX(xn) = lim
n→∞

LX((−∞, xn]) = LX((−∞, x]) = FX(x).

Proposition 3.25. Consider a right-continuous function F : R → [0, 1] such that if a ≤ b, then F (a) ≤ F (b);
limx→−∞ F (x) = 0; and limx→∞ F (x) = 1. There is a unique probability measure L on the measurable space
(R,B(R)) such that L((−∞, x]) = F (x) for every x ∈ R.

Proof. Consider the probability triple ((0, 1),B((0, 1)),Leb) and a function X− : (0, 1) → R given by

X−(ω) = inf{z ∈ R | F (z) ≥ ω}.

In words, X−(ω) is the infimum z ∈ R such that F (z) reaches ω ∈ (0, 1).
First, note that ω ≤ F (c) if and only if X−(ω) ≤ c for every c ∈ R. Clearly, if ω ≤ F (c), then X−(ω) ≤ c.

Now suppose X−(ω) ≤ c. Because F is non-decreasing, F (X−(ω)) ≤ F (c). Because F is also right-continuous,
F (X−(ω)) ≥ ω. Therefore, ω ≤ F (c). This also implies that X− is a random variable since, for every c ∈ R,

{X− ≤ c} = {ω ∈ (0, 1) | X−(ω) ≤ c} = {ω ∈ (0, 1) | ω ≤ F (c)} = (0, F (c)].
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For every c ∈ R, the distribution function FX− on the probability triple ((0, 1),B((0, 1)),Leb) is given by

FX−(c) = LX−((−∞, c]) = Leb({X− ≤ c}) = Leb((0, F (c)]) = F (c).

Finally, recall that the distribution function FX− fully determines the law LX− of X−, which is the desired unique
probability measure on the measurable space (R,B(R)) such that LX−((−∞, x]) = F (x) for every x ∈ R.

Theorem 3.1 (Monotone-class theorem). If

• H is a set of bounded functions from a set S into R,

• H is a vector space over R,

• The constant function 1 is an element of H,

• If (fn ∈ H | n ∈ N) is a sequence of non-negative functions in H such that fn ↑ f , where f is a bounded
function on S, then f ∈ H,

• H contains the indicator function of every set in some π-system I,

then H contains every bounded σ(I)-measurable function on S.

4 Independence
Consider a probability triple (Ω,F ,P).

Definition 4.1. The sub-σ-algebras G1,G2, . . . of F are called independent if, for every choice of distinct indices
i1, i2, . . . , in and events Gi1 , Gi2 , . . . , Gin such that Gik ∈ Gik for every ik,

P

(
n⋂

k=1

Gik

)
=

n∏
k=1

P(Gik).

Definition 4.2. The random variables X1, X2, . . . are called independent if the σ-algebras σ(X1), σ(X2), ... are
independent.

Definition 4.3. The events E1, E2, . . . are called independent if the σ-algebras E1, E2, . . . are independent, where
Ek = {∅, Ek, E

c
k,Ω}.

Proposition 4.1. The events E1, E2, . . . are called independent if and only if the random variables IE1
, IE2

, . . . are
independent.

Proof. We have already shown that each indicator function IEk
is Ek-measurable. Since I−1

Ek
({1}) = Ek, we know

that Ek ∈ σ(IEk
), which implies Ek = σ(IEk

).

Proposition 4.2. The events E1, E2, . . . are independent if and only if, for every choice of distinct indices
i1, i2, . . . , in,

P

(
n⋂

k=1

Eik

)
=

n∏
k=1

P(Eik).

Proposition 4.3. If X1, X2, . . . are independent random variables, then the events {X1 ≤ x1}, {X2 ≤ x2}, . . . are
independent for every x1, x2, . . . ∈ R, since X−1

n ((−∞, xn]) ∈ σ(Xn) for every n ∈ N+.

Proposition 4.4. Suppose that G and H are sub-σ-algebras of F . Furthermore, let I and J be π-systems such
that σ(I) = G and σ(J ) = H. If P(I ∩ J) = P(I)P(J) for every I ∈ I and J ∈ J , we say that I and J are
independent. The sub-σ-algebras G and H are independent if and only if I and J are independent.
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Proof. Suppose that G and H are independent. In that case, P(G ∩H) = P(G)P(H) for every G ∈ G and H ∈ H.
Since I ⊆ G and J ⊆ H, I and J are independent.

Suppose that I and J are independent. For every I ∈ I and H ∈ H, let µI(H) = P(I ∩ H) and ηI(H) =
P(I)P(H). Clearly, µI(∅) = 0 = ηI(∅). Also, µI(Ω) = P(I) = ηI(Ω). Finally, if (Hn ∈ H | n ∈ N) is a sequence of
events such that Hn ∩Hm = ∅ for n ̸= m,

µI

(⋃
n

Hn

)
= P

(
I ∩

(⋃
n

Hn

))
= P

(⋃
n

(I ∩Hn)

)
=
∑
n

P(I ∩Hn) =
∑
n

µI(Hn),

ηI

(⋃
n

Hn

)
= P(I)P

(⋃
n

Hn

)
= P(I)

∑
n

P(Hn) =
∑
n

P(I)P(Hn) =
∑
n

ηI(Hn).

Considered together, these results imply that µI and ηI are finite measures on (Ω,H). By assumption, µI(J) =
P(I ∩ J) = P(I)P(J) = ηI(J) for every I ∈ I and J ∈ J . Therefore, µI and ηI agree on the π-system J ,
which implies that they agree on the σ-algebra σ(J ) = H. In other words, for every I ∈ I and H ∈ H, we have
P(I ∩H) = µI(H) = ηI(H) = P(I)P(H).

For every H ∈ H and G ∈ G, let µ′
H(G) = P(H ∩ G) and η′H(G) = P(H)P(G). Analogously, µ′

H and η′H are
finite measures on (Ω,G). From our previous result, for every I ∈ I and H ∈ H, we have P(I ∩ H) = µ′

H(I) =
η′H(I) = P(I)P(H). Therefore, µ′

H and η′H agree on the π-system I, which implies that they agree on the σ-algebra
σ(I) = G. In other words, for every G ∈ G and H ∈ H, we have P(G ∩H) = µ′

H(G) = η′H(G) = P(G)P(H).

Proposition 4.5. Consider the random variables X and Y on the probability triple (Ω,F ,P). For every A ∈ B(R)
and B ∈ B(R) such that P(Y −1(B)) > 0, let P(X−1(A) | Y −1(B)) = P(X−1(A) ∩ Y −1(B))/P(Y −1(B)). If X and
Y are independent, then P(X−1(A) | Y −1(B)) = P(X−1(A)), since X−1(A) ∈ σ(X) and Y −1(B) ∈ σ(Y ).

In what follows, we will employ a common abuse of notation. Consider the random variables X and Y on the
probability triple (Ω,F ,P). For every x ∈ R, we will let P(X ≤ x) denote P({X ≤ x}). Furthermore, for every
x, y ∈ R, we will let P(X ≤ x, Y ≤ y) denote P({X ≤ x} ∩ {Y ≤ y}). We will employ analogous notation when
there are more random variables and different predicates.

Proposition 4.6. Consider the random variables X and Y on the probability triple (Ω,F ,P). Suppose that, for
every x, y ∈ R, P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y). The random variables X and Y are independent.

Proof. Recall that π(R) = {(−∞, x] | x ∈ R} and π(X) = {X−1((−∞, x]) | (−∞, x] ∈ π(R)} = {{X ≤ x} | x ∈ R}.
Note that π(X) is a π-system on Ω: for any x1, x2 ∈ R, if {X ≤ x1} ∈ π(X) and {X ≤ x2} ∈ π(X), then {X ≤
x1} ∩ {X ≤ x2} = {ω ∈ Ω | X(ω) ≤ x1 and X(ω) ≤ x2} = {ω ∈ Ω | X(ω) ≤ min(x1, x2)} = {X ≤ min(x1, x2)}.
By assumption, P({X ≤ x} ∩ {Y ≤ y}) = P({X ≤ x})P({Y ≤ y}) for any {X ≤ x} ∈ π(X) and {Y ≤ y} ∈ π(Y ).
By definition, the π-systems π(X) and π(Y ) are independent. Therefore, σ(π(X)) and σ(π(Y )) are independent.
Based on a previous result, we know that σ(π(X)) = σ(X) and σ(π(Y )) = σ(Y ).

Proposition 4.7. In general, the random variables X1, X2, . . . , Xn are independent if and only if, for every
x1, x2, . . . , xn ∈ R,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = P

(
n⋂

k=1

{Xk ≤ xk}

)
=

n∏
k=1

P(Xk ≤ xk).

Lemma 4.1 (Second Borel-Cantelli Lemma). Consider a probability triple (Ω,F ,P) and a sequence of independent
events (En ∈ F | n ∈ N) such that

∑∞
n=0 P(En) = ∞. In that case,

P
(
lim sup
n→∞

En

)
= 1.

Proof. Because the events are independent, for any m, r ∈ N such that m ≤ r,

P

 ⋂
m≤n≤r

Ec
n

 =
∏

m≤n≤r

P(Ec
n) =

∏
m≤n≤r

(1− P(En)).

13



Let e denote Euler’s number. For any x ≥ 0, recall that 1− x ≤ e−x. Therefore,

P

 ⋂
m≤n≤r

Ec
n

 ≤
∏

m≤n≤r

e−P(En) = e−
∑

m≤n≤r P(En).

Because both sides of the inequation above are non-increasing with respect to r, we may take the limit of both
sides when r → ∞ and use the fact that

∑∞
n=0 P(En) = ∞ to conclude that

lim
r→∞

P

 ⋂
m≤n≤r

Ec
n

 = P

 ⋂
n≥m

Ec
n

 ≤ lim
r→∞

e−
∑

m≤n≤r P(En) = 0.

Using the relationship between the limit superior and the limit inferior,

P
((

lim sup
n→∞

En

)c)
= P

(
lim inf
n→∞

EC
n

)
= P

⋃
m

⋂
n≥m

Ec
n

 ≤
∑
m

P

 ⋂
n≥m

Ec
n

 = 0.

Definition 4.4. A valid distribution function F : R → [0, 1] is a right-continuous function such that if a ≤ b, then
F (a) ≤ F (b); limx→−∞ F (x) = 0; and limx→∞ F (x) = 1.

Proposition 4.8. For any sequence of valid distribution functions (Fn | n ∈ N), there is a sequence of independent
random variables (Xn | n ∈ N) on the probability triple ([0, 1],B([0, 1]),Leb) such that Fn is the distribution
function of Xn.

Definition 4.5. Let (Xn | n ∈ N) be a sequence of independent random variables on the probability triple (Ω,F ,P).
If P(Xn ≤ x) = F (x) for every n ∈ N, x ∈ R, and a distribution function F : R → [0, 1], then the random variables
are considered independent and identically distributed.

Example 4.1. As an application of the Borel-Cantelli lemmas, consider a sequence of independent random variables
(Xn | n ∈ N+) on the probability triple (Ω,F ,P). Suppose that each random variable Xn is exponentially distributed
with rate 1 such that P(Xn > xn) = 1− P(Xn ≤ xn) = e−xn for every xn ≥ 0. If xn = α log n for some α > 0, then

P(Xn > α log n) = e−α logn = (elogn)−α =
1

nα
.

For some α > 0, consider the sequence of independent events ({Xn > α log n} ∈ F | n ∈ N+) and recall that

∞∑
n=1

P(Xn > α log n) =

∞∑
n=1

1

nα
< ∞

if and only if α > 1. Using the Borel-Cantelli lemmas,

P
(
lim sup
n→∞

{Xn > α log n}
)

=

{
0, if α > 1,
1, if α ≤ 1.

Recall that ω ∈ lim supn→∞ {Xn > α log n} if and only if Xn(ω) > α log n for infinitely many n ∈ N+.
In particular, if ω ∈ lim supn→∞ {Xn > log n}, then for every m ∈ N+ there is an n > m such that Xn(ω) > log n

and Xn(ω)/ log n > 1. In that case,

lim sup
n→∞

Xn(ω)

log n
= lim

m→∞
sup
n≥m

Xn(ω)

log n
≥ 1,

so that ω ∈
{
lim supn→∞

Xn

logn ≥ 1
}

and

P
(
lim sup
n→∞

Xn

log n
≥ 1

)
≥ P

(
lim sup
n→∞

{Xn > log n}
)

= 1.
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For every k ∈ N+, if ω ∈
{
lim supn→∞

Xn

logn > 1 + 2k−1
}

, then for every m ∈ N+ there is an n > m such that
Xn(ω)
logn > 1 + 2k−1 and Xn(ω) > (1 + 2k−1) log n. In that case, ω ∈ lim supn→∞{Xn > (1 + 2k−1) log n} and

P
(
lim sup
n→∞

Xn

log n
> 1

)
= P

( ⋃
k∈N+

{
lim sup
n→∞

Xn

log n
> 1 + 2k−1

})
≤
∑
k∈N+

P
(
lim sup
n→∞

{Xn > (1 + 2k−1) log n}
)

= 0.

By combining the previous results,

P
(
lim sup
n→∞

Xn

log n
= 1

)
= 1.

Definition 4.6. For any set C, a set (or sequence) of random variables Y = (Yγ | γ ∈ C) on a probability triple
(Ω,F ,P) is called a stochastic process parameterized by C.

Proposition 4.9. Consider a measurable space (Ω,F) and a function X : Ω → C, where C ⊆ N. If {X = c} ∈ F
for every c ∈ C, then X is F-measurable.

Proof. For any B ∈ B(R), let A = B ∩ C and note that

X−1(B) = {ω ∈ Ω | X(ω) ∈ B} = {ω ∈ Ω | X(ω) ∈ B and X(ω) ∈ C} = X−1(B ∩ C) = X−1(A).

Furthermore, note that

X−1(A) = X−1

(⋃
a∈A

{a}

)
=
⋃
a∈A

X−1({a}) =
⋃
a∈A

{X = a}.

Because A ⊆ C, we have {X = a} ∈ F for every a ∈ A. Because F is a σ-algebra, we have X−1(A) ∈ F .
Therefore, for every B ∈ B(R), we have X−1(B) ∈ F .

Definition 4.7. Consider a set E ⊆ N. Let P be a stochastic matrix whose (i, j)-th element is given by pi,j ≥ 0 and
suppose that

∑
k∈E pi,k = 1 for every i, j ∈ E. Let µ be a probability measure on the measurable space (E,P(E)),

where P(E) is the set of all subsets of E, and let µi denote µ({i}) for every i ∈ E. A time-homogeneous Markov
chain Z = (Zn | n ∈ N) on E with initial distribution µ and 1-step transition matrix P is a stochastic process
parameterized by N such that, for every n ∈ N+ and i0, i1, . . . , in ∈ E,

P(Z0 = i0, Z1 = i1, . . . , Zn = in) = µi0pi0,i1 . . . pin−1,in = µi0

n∏
k=1

pik−1,ik .

Proposition 4.10. A probability triple (Ω,F ,P) carrying the aforementioned stochastic process Z exists.

Proof. First, for any set of valid distribution functions {Fn | n ∈ N}, recall that there is a set of independent
random variables {Xn | n ∈ N} on a certain probability triple (Ω,F ,P) such that Fn is the distribution function of
Xn. Using this result, for every i, j ∈ E and n ∈ N+, let Z0 : Ω → E and Yi,n : Ω → E be independent random
variables on a probability triple (Ω,F ,P) such that P(Z0 = i) = µi and P(Yi,n = j) = pi,j .

For every ω ∈ Ω and n ∈ N+, let Zn(ω) = YZn−1(ω),n(ω). Using induction, we will show that the function
Zn : Ω → E is a random variable for every n ∈ N. We already know that Z0 is a random variable. Suppose that
Zn−1 is a random variable. We will show that {Zn = in} ∈ F for every in ∈ E. By definition,

{Zn = in} = {ω ∈ Ω | Zn(ω) = in} = {ω ∈ Ω | YZn−1(ω),n(ω) = in} =
⋃
i∈E

{ω ∈ Ω | Zn−1(ω) = i and Yi,n(ω) = in},

which implies

{Zn = in} =
⋃
i∈E

{Zn−1 = i} ∩ {Yi,n = in}.

Because Zn−1 and Yi,n are random variables for every i ∈ E, {Zn = in} ∈ F , as we wanted to show.
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Using induction, we will now show that, for every n ∈ N and i0, . . . , in ∈ E,

n⋂
k=0

{Zk = ik} = {Z0 = i0} ∩
n⋂

k=1

{Yik−1,k = ik}.

The statement above is true when n = 0, so suppose it is true for some n− 1 ∈ N. Using a previous result,

n⋂
k=0

{Zk = ik} =

(
n−1⋂
k=0

{Zk = ik}

)
∩ {Zn = in} =

(
n−1⋂
k=0

{Zk = ik}

)
∩

(⋃
i∈E

{Zn−1 = i} ∩ {Yi,n = in}

)
.

By distributing the intersection over the union,

n⋂
k=0

{Zk = ik} =
⋃
i∈E

(
n−1⋂
k=0

{Zk = ik}

)
∩ {Zn−1 = i} ∩ {Yi,n = in}.

Because {Zn−1 = in−1} ∩ {Zn−1 = i} = ∅ whenever i ̸= in−1,

n⋂
k=0

{Zk = ik} =

(
n−1⋂
k=0

{Zk = ik}

)
∩ {Yin−1,n = in} = {Z0 = i0} ∩

n⋂
k=1

{Yik−1,k = ik},

where the last equation follows from the inductive hypothesis.
The event above is the intersection of events from the σ-algebras of independent random variables, which implies

P(Z0 = i0, Z1 = i1, . . . , Zn = in) = P

(
n⋂

k=0

{Zk = ik}

)
= P(Z0 = i0)

n∏
k=1

P(Yik−1,k = ik) = µi0

n∏
k=1

pik−1,ik .

Example 4.2. Consider a time-homogeneous Markov chain Z = (Zn | n ∈ N) on E with initial distribution µ and
1-step transition matrix P . Consider also a finite sequence of elements of E given by I = i0, i1, . . . in. We say that
the sequence I appears in outcome ω ∈ Ω at time t if Zt+k(ω) = ik for every k ≤ n. We will now show how several
interesting events related to the appearance of the sequence I may be defined.

The event Mt composed of outcomes where the sequence I appears at time t is given by

Mt =

n⋂
k=0

{Zt+k = ik} =

n⋂
k=0

{ω ∈ Ω | Zt+k(ω) = ik}.

The event St composed of outcomes where the sequence I appears at least once at or after time t is given by

St =
⋃
t′≥t

Mt′ .

The event Lt,m composed of outcomes where the sequence I appears at least m times up to time t is given by

Lt,m =
⋃

l1,...,lm

m⋂
k=1

Mlk ,

where l1, . . . , lm is a finite sequence of distinct elements of E such that lk ≤ t for every k ≤ m.
The event Lm composed of outcomes where I appears at least m times is given by Lt,m when t = ∞.
The event E composed of outcomes where the sequence I appears infinitely many times is given by

E = lim sup
t→∞

Mt.
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5 Integration
Consider a measure space (S,Σ, µ). The integral with respect to µ of a Σ-measurable function f : S → R is denoted
by µ(f).

Definition 5.1. For any set A ∈ Σ, the integral with respect to µ of the indicator function IA : S → {0, 1} is
defined as

µ(IA) = µ(A).

Definition 5.2. A simple function is a Σ-measurable function f : S → [0,∞] that can be written as

f(s) =

m∑
k=1

akIAk
(s)

for every s ∈ S, for some fixed a1, a2, . . . , am ∈ [0,∞] and A1, A2, . . . , Am ∈ Σ.

Intuitively, when A1, A2, . . . , Am partition S, each set Ak is assigned a value ak.

Definition 5.3. The integral with respect to µ of the simple function f : S → [0,∞] as written above is defined as

µ(f) =

m∑
k=1

akµ(Ak).

It is possible to show that the right side of the equation above is equivalent for every choice of sets and constants
used to write the simple function f . Therefore, the integral µ(f) with respect to µ of a simple function f is well-
defined. Intuitively, when A1, A2, . . . , Am partition S, the integral with respect to µ accumulates the measure µ(Ak)
of each set Ak multiplied by the value ak assigned to it.

Proposition 5.1. If f : S → [0,∞] and g : S → [0,∞] are simple functions, then

• f + g is a simple function and µ(f + g) = µ(f) + µ(g),

• if c ≥ 0, then cf is a simple function and µ(cf) = cµ(f),

• if µ(f ̸= g) = µ({s ∈ S | f(s) ̸= g(s)}) = 0, then µ(f) = µ(g),

• if f ≤ g such that f(s) ≤ g(s) for every s ∈ S, then µ(f) ≤ µ(g),

• if h = min(f, g) such that h(s) = min(f(s), g(s)) for every s ∈ S, then h is a simple function,

• if h = max(f, g) such that h(s) = max(f(s), g(s)) for every s ∈ S, then h is a simple function.

Definition 5.4. The integral with respect to µ of a Σ-measurable function f : S → [0,∞] is defined as

µ(f) = sup{µ(h) | h is simple and h ≤ f}.

Proposition 5.2. Consider a Σ-measurable function f : S → [0,∞]. If µ(f) = 0, then µ({f > 0}) = 0.

Proof. Because the measure µ is non-negative, this is equivalent to showing that if µ({f > 0}) > 0, then µ(f) > 0.
For every n ∈ N+, let An = {f > n−1} = {s ∈ S | f(s) > n−1} and note that

{f > 0} = {s ∈ S | f(s) > 0} =
⋃

n∈N+

{s ∈ S | f(s) > n−1} =
⋃

n∈N+

An.

For every s ∈ S and n ∈ N+, if f(s) > n−1, then f(s) > (n + 1)−1. Therefore, An ⊆ An+1 and An ↑ {f > 0}.
Furthermore, the monotone-convergence property of measure guarantees that µ(An) ↑ µ({f > 0}).

Suppose that µ({f > 0}) > 0. In that case, there is an n ∈ N+ such that

µ(I{f>n−1}) = µ({f > n−1}) = µ(An) > 0.
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For such an n ∈ N+, consider now the simple function g = n−1I{f>n−1} given by

g(s) = n−1I{f>n−1}(s) =

{
n−1 f(s) > n−1,

0 f(s) ≤ n−1.

The fact that f ≥ g implies that µ(f) ≥ µ(g) even if f is not simple. Therefore,

µ(f) ≥ µ(g) = µ(n−1I{f>n−1}) = n−1µ(I{f>n−1}) > 0,

where the last inequality follows from the fact that n−1 > 0.

Definition 5.5. Let fn ↑ f denote that a sequence of functions (fn : S → R | n ∈ N) is such that fn(s) ↑ f(s) for
every s ∈ S. Similarly, let fn ↓ f denote that a sequence of functions (fn : S → R | n ∈ N) is such that fn(s) ↓ f(s)
for every s ∈ S.

Theorem 5.1 (Monotone-convergence theorem). If (fn : S → [0,∞] | n ∈ N) is a sequence of Σ-measurable
functions such that fn ↑ f , then µ(fn) ↑ µ(f).

Before showing how the integral with respect to µ of a given Σ-measurable function is the limit of a sequence of
integrals with respect to µ of simple functions, it is convenient to introduce staircase functions.

Definition 5.6. Let αn : [0,∞] → [0, n] denote the n-th staircase function given by αn(x) = min(n, ⌊2nx⌋/2n) for
every n ∈ N and x ∈ [0,∞].

Intuitively, the n-th staircase function partitions its domain into a sequence of intervals of length 1/2n. The
value assigned to the first interval is zero, and the value of each following interval is 1/2n plus the value of the
previous interval, with values truncated at n.

Proposition 5.3. Let h : [0,∞] → [0,∞] denote the identity function given by h(x) = x for every x ∈ [0,∞]. In
that case, αn ↑ h.

Proof. We will start by showing that min(n, ⌊2nx⌋/2n) = αn(x) ≤ αn+1(x) = min(n+ 1, ⌊2n+1x⌋/2n+1), for every
n ∈ N and x ∈ [0,∞]. When x = ∞, we have αn(x) = n ≤ n + 1 = αn+1(x). When x < ∞, the fact that
n ≤ n+1 implies that we only need to show that ⌊2nx⌋/2n ≤ ⌊2n+1x⌋/2n+1. Note that ⌊2nx⌋ ≤ 2nx, which implies
2⌊2nx⌋ ≤ 2n+1x. By the monotonicity of the floor function, ⌊2⌊2nx⌋⌋ ≤ ⌊2n+1x⌋. Because the floor of an integer is
itself an integer, 2⌊2nx⌋ ≤ ⌊2n+1x⌋. Dividing both sides of the previous inequation by 2n+1 completes the proof.

In order to show that αn ↑ h, it remains to show that, for every x ∈ [0,∞],

lim
n→∞

αn(x) = x.

The case where x = ∞ is trivial, since αn(x) = n. When x < ∞, note that 2nx ≥ ⌊2nx⌋ implies x ≥ ⌊2nx⌋/2n,
and so n > x implies n > ⌊2nx⌋/2n. Therefore, for every sufficiently large n ∈ N, we know that αn(x) = ⌊2nx⌋/2n
when x < ∞. It remains to show that limn→∞⌊2nx⌋/2n = x. By noting that 2nx− 1 ≤ ⌊2nx⌋ ≤ 2nx and dividing
each term by 2n,

x− 1

2n
=

2nx− 1

2n
≤ ⌊2nx⌋

2n
≤ 2nx

2n
= x.

Using the squeeze theorem with n → ∞ completes the proof that αn ↑ h.

Proposition 5.4. Consider a Σ-measurable function f : S → [0,∞]. For every n ∈ N, consider fn : S → [0, n]
such that

fn(s) = αn(f(s)) =

m∑
k=1

akI{fn=ak}(s),

where a1, . . . , am ∈ [0, n] are the (distinct) elements of the (finite) image of fn. In that case, µ(fn) ↑ µ(f).
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Proof. Because f is Σ-measurable and αn is B([0,∞])-measurable, we know that fn = αn ◦ f is Σ-measurable,
which implies that fn is also simple. For every s ∈ S, we have f(s) ∈ [0,∞] and (αn ◦ f)(s) ↑ f(s). Therefore,
fn ↑ f . From the monotone-convergence theorem, µ(fn) ↑ µ(f).

In other words, the integral with respect to µ of a given Σ-measurable function f : S → [0,∞] is the limit of a
sequence of integrals with respect to µ of simple functions (fn : S → [0, n] | n ∈ N).

Proposition 5.5. Let f : S → [0,∞] and g : S → [0,∞] be Σ-measurable functions. If µ({f ̸= g}) = 0, then
µ(f) = µ(g).

Proof. Recall that we already have the analogous result for simple functions. For any n ∈ N, let fn = αn ◦ f and
gn = αn ◦ g, where αn is the n-th staircase function. Note that

{fn ̸= gn} = {s ∈ S | fn(s) ̸= gn(s)} ⊆ {s ∈ S | f(s) ̸= g(s)} = {f ̸= g},

which implies µ({fn ̸= gn}) ≤ µ({f ̸= g}) = 0. Because fn and gn are simple functions such that µ({fn ̸= gn}) = 0,
we know that µ(fn) = µ(gn). From the monotone-convergence theorem, µ(fn) ↑ µ(f) and µ(gn) ↑ µ(g), so

µ(f) = lim
n→∞

µ(fn) = lim
n→∞

µ(gn) = µ(g).

Proposition 5.6. Consider a Σ-measurable function f : S → [0,∞] and a sequence of Σ-measurable functions
(fn : S → [0,∞] | n ∈ N) such that fn(s) ↑ f(s) for every s ∈ S \ N for some µ-null set N ⊆ S. In that case,
µ(fn) ↑ µ(f).

Proof. Consider the Σ-measurable function fIS\N such that (fIS\N )(s) = f(s)IS\N (s) for every s ∈ S. Clearly,
{fIS\N ̸= f} ⊆ N . Therefore, µ({fIS\N ̸= f}) ≤ µ(N) = 0 and µ(fIS\N ) = µ(f).

Analogously, consider the Σ-measurable function fnIS\N such that (fnIS\N )(s) = fn(s)IS\N (s) for every s ∈ S
and n ∈ N. Clearly, {fnIS\N ̸= fn} ⊆ N . Therefore, µ({fnIS\N ̸= fn}) ≤ µ(N) = 0 and µ(fnIS\N ) = µ(fn).

Note that (fnIS\N )(s) ↑ (fIS\N )(s), whether s ∈ N or s ∈ S \ N . Therefore, µ(fnIS\N ) ↑ µ(fIS\N ), which
implies µ(fn) ↑ µ(f).

Lemma 5.1 (Fatou lemma). For a sequence of Σ-measurable functions (fn : S → [0,∞] | n ∈ N),

µ
(
lim inf
n→∞

fn

)
≤ lim inf

n→∞
µ(fn).

Proof. For any m ∈ N, consider the function gm = infn≥m fn such that

lim inf
n→∞

fn = lim
m→∞

inf
n≥m

fn = lim
m→∞

gm.

Because gm+1 ≥ gm for every m ∈ N, we have that gm ↑ lim infn→∞ fn. Because gm : S → [0,∞] is also
Σ-measurable for every m ∈ N, the monotone-convergence theorem guarantees that µ(gm) ↑ µ(lim infn→∞ fn).

For any n ≥ m, note that gm ≤ fn and µ(gm) ≤ µ(fn), which also implies µ(gm) ≤ infn≥m µ(fn). By taking
the limit of both sides of the previous inequation when m → ∞,

µ
(
lim inf
n→∞

fn

)
= lim

m→∞
µ(gm) ≤ lim

m→∞
inf
n≥m

µ(fn) = lim inf
n→∞

µ(fn).

Proposition 5.7. For a Σ-measurable function f : S → [0,∞] and a constant c ≥ 0, we have µ(cf) = cµ(f).

Proof. Recall that we already have the analogous result for simple functions. For any n ∈ N, let fn = αn ◦ f , where
αn is the n-th staircase function. Because fn ↑ f , we know that cfn ↑ cf . Because cfn is Σ-measurable for every
n ∈ N, the monotone-convergence theorem guarantees that µ(cfn) ↑ µ(cf). Because µ(cfn) = cµ(fn), we have
cµ(fn) ↑ µ(cf). Because cµ(fn) ↑ cµ(f), we have µ(cf) = cµ(f).

Proposition 5.8. Consider a Σ-measurable function f : S → [0,∞] and a Σ-measurable function g : S → [0,∞].
In that case, µ(f + g) = µ(f) + µ(g).
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Proof. Recall that we already have the analogous result for simple functions. For any n ∈ N, let fn = αn ◦ f and
gn = αn◦g, where αn is the n-th staircase function. Because fn ↑ f and gn ↑ g, we know that fn+gn ↑ f+g. Because
fn+ gn is Σ-measurable for every n ∈ N, the monotone-convergence theorem guarantees that µ(fn+ gn) ↑ µ(f + g).
Because µ(fn + gn) ↑ µ(f) + µ(g), we have µ(f + g) = µ(f) + µ(g).

Lemma 5.2 (Reverse Fatou lemma). Consider a sequence of Σ-measurable functions (fn : S → [0,∞] | n ∈ N)
such that fn ≤ g for every n ∈ N and some Σ-measurable function g : S → [0,∞] such that µ(g) < ∞. In that case,

µ

(
lim sup
n→∞

fn

)
≥ lim sup

n→∞
µ(fn).

Proof. For every n ∈ N, consider the function hn = g − fn. Because g and fn are Σ-measurable and fn ≤ g, we
know that hn : S → [0,∞] is Σ-measurable. From the Fatou lemma,

µ
(
lim inf
n→∞

(g − fn)
)
≤ lim inf

n→∞
µ(g − fn).

By using the fact that µ(g) = µ(g − fn) + µ(fn) and moving g and µ(g) outside the corresponding limits,

µ
(
g + lim inf

n→∞
−fn

)
≤ µ(g) + lim inf

n→∞
−µ(fn).

By using the relationship between limit inferior and limit superior,

µ

(
g − lim sup

n→∞
fn

)
≤ µ(g)− lim sup

n→∞
µ(fn).

By using the fact that µ(g) = µ(g − lim supn→∞ fn) + µ(lim supn→∞ fn),

µ(g)− µ

(
lim sup
n→∞

fn

)
≤ µ(g)− lim sup

n→∞
µ(fn).

The proof is completed by reorganizing terms in the inequation above.

Definition 5.7. For a Σ-measurable function f : S → R, the Σ-measurable function f+ : S → [0,∞] is given by

f+(s) = max(f(s), 0) =

{
f(s), if f(s) > 0,

0, if f(s) ≤ 0.

Definition 5.8. For a Σ-measurable function f : S → R, the Σ-measurable function f− : S → [0,∞] is given by

f−(s) = max(−f(s), 0) =

{
0, if f(s) > 0,

−f(s), if f(s) ≤ 0.

Proposition 5.9. For a Σ-measurable function f : S → R, whether f(s) > 0 or f(s) ≤ 0,

f(s) = f+(s)− f−(s).

Furthermore, whether f(s) > 0 or f(s) ≤ 0,

|f(s)| = f+(s) + f−(s).

In other words, f = f+ − f− and |f | = f+ + f−.

Definition 5.9. A function f : S → R is µ-integrable if it is Σ-measurable and µ(|f |) = µ(f+ + f−) = µ(f+) +
µ(f−) < ∞.

Definition 5.10. The set of all µ-integrable functions in the measure space (S,Σ, µ) is denoted by L1(S,Σ, µ).
The set of all non-negative µ-integrable functions in the measure space (S,Σ, µ) is denoted by L1(S,Σ, µ)+.
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Definition 5.11. The integral µ(f) with respect to µ of a µ-integrable function f : S → R is defined as

µ(f) = µ(f+)− µ(f−).

Alternatively, the integral µ(f) with respect to µ of a µ-integrable function f : S → R is denoted by∫
S

fdµ =

∫
S

f(s)µ(ds) = µ(f).

Proposition 5.10. If a function f : S → R is µ-integrable, then µ(f+) < ∞ and µ(f−) < ∞. By the triangle
inequality,

|µ(f)| = |µ(f+) + (−µ(f−))| ≤ |µ(f+)|+ | − µ(f−)| = µ(f+) + µ(f−) = µ(|f |).

Proposition 5.11. Consider a µ-integrable function f : S → R. Because −f : S → R is Σ-measurable and
µ(| − f |) = µ(|f |) < ∞, we know that −f is µ-integrable. Furthermore, µ(−f) = −µ(f).

Proof. For every s ∈ S, (−f)+(s) = max(−f(s), 0) = f−(s) and (−f)−(s) = max(f(s), 0) = f+(s). Therefore,

µ(−f) = µ((−f)+)− µ((−f)−) = −(µ((−f)−)− µ((−f)+)) = −(µ(f+)− µ(f−)) = −µ(f).

Proposition 5.12. Consider a µ-integrable function f : S → R and a constant c ∈ R. Because cf : S → R is
Σ-measurable and µ(|cf |) = µ(|c||f |) = |c|µ(|f |) < ∞, we know that cf is µ-integrable. Furthermore, µ(cf) = cµ(f).

Proof. Because f = f+ − f−, we know that cf = cf+ − cf−. Furthermore, (cf) = (cf)+ − (cf)−. Therefore,

(cf)+ − (cf)− = cf+ − cf−.

By rearranging negative terms,

(cf)+ + cf− = (cf)− + cf+.

We will now consider the case where c ≥ 0. By the linearity of the integral of non-negative functions,

µ((cf)+) + µ(cf−) = µ((cf)−) + µ(cf+).

By rearranging terms,

µ((cf)+)− µ((cf)−) = µ(cf+)− µ(cf−).

Because cf is µ-integrable and by the linearity of the integral of non-negative functions,

µ(cf) = cµ(f+)− cµ(f−) = c(µ(f+)− µ(f−)) = cµ(f).

When c < 0, note that µ(cf) = µ(−|c|f) = |c|µ(−f) = −|c|µ(f) = cµ(f).

Proposition 5.13. Consider a µ-integrable function f : S → R and a µ-integrable function g : S → R. Because
f + g : S → R is Σ-measurable and |f + g| ≤ |f |+ |g| implies µ(|f + g|) ≤ µ(|f |) + µ(|g|) < ∞, we know that f + g
is µ-integrable. Furthermore, µ(f + g) = µ(f) + µ(g).

Proof. We know that f + g = (f+ − f−) + (g+ − g−). Furthermore, (f + g) = (f + g)+ − (f + g)−. Therefore,

(f + g)+ − (f + g)− = (f+ − f−) + (g+ − g−).

By rearranging negative terms,

(f + g)+ + f− + g− = (f + g)− + f+ + g+.

By the linearity of the integral of non-negative functions,

µ((f + g)+) + µ(f−) + µ(g−) = µ((f + g)−) + µ(f+) + µ(g+).
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By rearranging terms,

µ((f + g)+)− µ((f + g)−) = (µ(f+)− µ(f−)) + (µ(g+)− µ(g−))

Because f + g is µ-integrable,

µ(f + g) = µ(f) + µ(g).

Proposition 5.14. Let f : S → R and g : S → R be µ-integrable functions. If µ({f ̸= g}) = 0, then µ(f) = µ(g).

Proof. Recall that we already have the analogous result for non-negative Σ-measurable functions. First, note that
if f+(s) ̸= g+(s) or f−(s) ̸= g−(s) for some s ∈ S, then f(s) ̸= g(s). Therefore,

{s ∈ S | f+(s) ̸= g+(s)} ∪ {s ∈ S | f−(s) ̸= g−(s)} ⊆ {s ∈ S | f(s) ̸= g(s)},

so that µ({f+ ̸= g+}) + µ({f− ̸= g−}) ≤ µ({f ̸= g}). Because µ({f ̸= g}) = 0, we know that µ({f+ ̸= g+}) = 0
and µ({f− ̸= g−}) = 0. Because f+, f−, g+, and g− are non-negative Σ-measurable functions, we know that
µ(f+) = µ(g+) and µ(f−) = µ(g−). Therefore,

µ(f) = µ(f+)− µ(f−) = µ(g+)− µ(g−) = µ(g).

Definition 5.12. The integral with respect to µ of a µ-integrable function f : S → R over the set A ∈ Σ is defined
as

µ(f ;A) = µ(fIA).

Because fIA is Σ-measurable and |fIA| ≤ |f | implies µ(|fIA|) ≤ µ(|f |) < ∞, we know that fIA is µ-integrable.
Alternatively, the integral µ(f ;A) with respect to µ of f over the set A ∈ Σ is denoted by∫

A

fdµ =

∫
A

f(s)µ(ds) = µ(f ;A).

Proposition 5.15. Consider a sequence of real numbers (xn | n ∈ N) and the measure space (N,P(N), µ), where
µ({n}) = 1 for every n ∈ N. Furthermore, consider a function f : N → R such that f(n) = xn. In that case, f is
µ-integrable if and only if

∑
n |xn| < ∞. Also, if f is µ-integrable, then µ(f) =

∑
n xn.

Proof. Suppose that f(n) ≥ 0 for every n ∈ N. For every k ∈ N, consider the function fk : N → [0,∞] given by

fk(n) =

k∑
i=0

f(i)I{i}(n) =

{
f(n), if n ≤ k,

0, if n > k.

Clearly, if k → ∞, then fk → f . Because fk is a simple function,

µ(fk) =

k∑
i=0

f(i)µ({i}) =
k∑

i=0

f(i) =

k∑
i=0

xi.

Because fk ≤ fk+1, we have fk ↑ f . By the monotone-convergence theorem, µ(fk) ↑ µ(f). Therefore,

µ(f) = lim
k→∞

k∑
i=0

xi =
∑
n

xn.

Now suppose f(n) ∈ R for every n ∈ N. Based on our previous result,

µ(|f |) = µ(f+) + µ(f−) =
∑
n

max(xn, 0) + max(−xn, 0) =
∑
n

|xn|.

By definition, f is integrable if and only if µ(|f |) =
∑

n |xn| < ∞, in which case

µ(f) = µ(f+)− µ(f−) =
∑
n

max(xn, 0)−max(−xn, 0) =
∑
n

xn.
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Theorem 5.2 (Dominated convergence theorem). Consider a sequence of Σ-measurable functions (fn : S → R |
n ∈ N) and a Σ-measurable function f : S → R such that limn→∞ fn = f . Furthermore, suppose there is a
µ-integrable non-negative function g ∈ L1(S,Σ, µ)+ that dominates this sequence of functions such that |fn| ≤ g
for every n ∈ N. In that case, f is µ-integrable and limn→∞ µ(fn) = µ(f).

Proof. Because g is µ-integrable and non-negative, µ(g) = µ(|g|) < ∞. Because |fn| ≤ g for every n ∈ N, we know
that µ(|fn|) ≤ µ(g) < ∞, which implies that fn is µ-integrable. Because the function | · | is continuous, we know
that limn→∞ |fn| = |f |, which implies |f | ≤ g. Because µ(|f |) ≤ µ(g) < ∞, we know that f is µ-integrable.

Because |fn| ≤ g and |f | ≤ g, we know that |fn|+ |f | ≤ 2g. By the triangle inequality,

|fn − f | = |fn + (−f)| ≤ |fn|+ |f | ≤ 2g.

Because |fn−f | : S → [0,∞] is a Σ-measurable function and |fn−f | ≤ 2g for every n ∈ N, where 2g : S → [0,∞]
is a Σ-measurable function such that µ(2g) = 2µ(g) < ∞, the reverse Fatou lemma states that

µ

(
lim sup
n→∞

|fn − f |
)

≥ lim sup
n→∞

µ(|fn − f |).

Since the function | · | is continuous, we know that limn→∞ |fn− f | = 0, where 0 is the zero function. Therefore,

lim sup
n→∞

|fn − f | = lim inf
n→∞

|fn − f | = lim
n→∞

|fn − f | = 0.

By taking the integral with respect to µ of these non-negative functions,

µ

(
lim sup
n→∞

|fn − f |
)

= µ
(
lim inf
n→∞

|fn − f |
)
= µ

(
lim
n→∞

|fn − f |
)
= µ(0) = 0.

Because fn − f is µ-integrable for every n ∈ N and |µ(fn − f)| ≤ µ(|fn − f |),

0 ≥ lim sup
n→∞

µ(|fn − f |) ≥ lim sup
n→∞

|µ(fn − f)| ≥ lim inf
n→∞

|µ(fn − f)| ≥ 0.

Because the limit superior and limit inferior in the inequation above must be equal to zero, we know that
limn→∞ |µ(fn − f)| = 0, which implies limn→∞ µ(fn − f) = 0. By the linearity of the integral with respect to µ,

lim
n→∞

µ(fn) = µ(f).

Lemma 5.3 (Scheffé’s lemma for non-negative functions). Consider a sequence of µ-integrable non-negative func-
tions (fn : S → [0,∞] | n ∈ N) and a µ-integrable non-negative function f : S → [0,∞] such that limn→∞ fn = f
(almost everywhere). In that case,

lim
n→∞

µ(|fn − f |) = 0 if and only if lim
n→∞

µ(fn) = µ(f).

Proof. First, suppose limn→∞ µ(|fn − f |) = 0. Since 0 ≤ |µ(fn − f)| ≤ µ(|fn − f |), the squeeze theorem implies
that limn→∞ |µ(fn − f)| = 0, which also implies that limn→∞ µ(fn − f) = 0. By the linearity of the integral with
respect to µ, we conclude that limn→∞ µ(fn) = µ(f).

Now suppose limn→∞ µ(fn) = µ(f) and consider the function (fn − f)− : S → [0,∞] given by

(fn − f)−(s) = max(−(fn − f)(s), 0) = max((f − fn)(s), 0) = (f − fn)
+(s) =

{
f(s)− fn(s), if f(s) > fn(s),

0, if f(s) ≤ fn(s).

Note that (fn−f)− ≤ f for every n ∈ N. Because limn→∞ fn = f , we know that for every s ∈ S and ϵ > 0 there
is an N ∈ N such that n > N guarantees that |f(s)− fn(s)| < ϵ. Note that, for every n > N , if f(s) > fn(s), then
|(fn − f)−(s)| = |f(s) − fn(s)| < ϵ. If f(s) ≤ fn(s), then |(fn − f)−(s)| = 0 < ϵ. Therefore, for every s ∈ S and
ϵ > 0, there is an N ∈ N such that n > N guarantees that |(fn − f)−(s)| < ϵ. By definition, limn→∞(fn − f)− = 0,
where 0 denotes the zero function.

Consider the sequence of Σ-measurable functions ((fn − f)− : S → R | n ∈ N) and the Σ-measurable function
0 : S → R such that limn→∞(fn − f)− = 0. Furthermore, consider the µ-integrable non-negative function f ∈
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L1(S,Σ, µ)+ such that |(fn − f)−| = (fn − f)− ≤ f for every n ∈ N. By the dominated convergence theorem, we
know that limn→∞ µ((fn − f)−) = µ(0) = 0.

For every n ∈ N, recall that (fn− f)+ = (fn− f)+ (fn− f)−. By the linearity of the integral with respect to µ,

lim
n→∞

µ((fn − f)+) = lim
n→∞

µ(fn)− µ(f) + µ((fn − f)−) = µ(f)− µ(f) + lim
n→∞

µ((fn − f)−) = 0.

For every n ∈ N, recall that |fn − f | = (fn − f)+ +(fn − f)−. By the linearity of the integral with respect to µ,

lim
n→∞

µ(|fn − f |) = lim
n→∞

µ((fn − f)+) + µ((fn − f)−) = 0.

Lemma 5.4 (Scheffé’s lemma). Consider a sequence of µ-integrable functions (fn : S → R | n ∈ N) and a
µ-integrable function f : S → R such that limn→∞ fn = f (almost everywhere). In that case,

lim
n→∞

µ(|fn − f |) = 0 if and only if lim
n→∞

µ(|fn|) = µ(|f |).

Proof. First, suppose limn→∞ µ(|fn − f |) = 0. By the triangle inequality,

|fn| = |(fn − f) + f | ≤ |fn − f |+ |f |,
|f | = |(f − fn) + fn| ≤ |fn − f |+ |fn|.

Because the integral with respect to µ is non-decreasing and linear,

µ(|fn − f |) ≥ µ(|fn|)− µ(|f |),
µ(|fn − f |) ≥ µ(|f |)− µ(|fn|).

Because µ(|fn − f |) ≥ a and µ(|fn − f |) ≥ −a for a = µ(|fn|)− µ(|f |),

µ(|fn − f |) ≥ |µ(|fn|)− µ(|f |)| ≥ 0.

By the squeeze theorem, limn→∞ |µ(|fn|) − µ(|f |)| = 0, which implies limn→∞ µ(|fn|) − µ(|f |) = 0. By the
linearity of the integral with respect to µ, we conclude that limn→∞ µ(|fn|) = µ(|f |).

Now suppose limn→∞ µ(|fn|) = µ(|f |). Because the function g : R → R given by g(x) = max(x, 0) is continuous,

lim
n→∞

f+
n (s) = lim

n→∞
max(fn(s), 0) = max(f(s), 0) = f+(s),

lim
n→∞

f−
n (s) = lim

n→∞
max(−fn(s), 0) = max(−f(s), 0) = f−(s).

Because (f+
n : S → [0,∞] | n ∈ N) and (f−

n : S → [0,∞] | n ∈ N) are sequences of Σ-measurable functions, the
Fatou lemma guarantees that

µ(f+) = µ
(
lim
n→∞

f+
n

)
= µ

(
lim inf
n→∞

f+
n

)
≤ lim inf

n→∞
µ(f+

n ),

µ(f−) = µ
(
lim
n→∞

f−
n

)
= µ

(
lim inf
n→∞

f−
n

)
≤ lim inf

n→∞
µ(f−

n ).

Consider the integrals µ(f+
n ) and µ(f−

n ) written as

µ(f+
n ) = µ(f+

n ) + µ(f−
n )− µ(f−

n ),

µ(f−
n ) = µ(f−

n ) + µ(f+
n )− µ(f+

n ).

By taking the limit superior of both sides,

lim sup
n→∞

µ(f+
n ) = lim sup

n→∞

(
µ(f+

n ) + µ(f−
n )− µ(f−

n )
)
,

lim sup
n→∞

µ(f−
n ) = lim sup

n→∞

(
µ(f−

n ) + µ(f+
n )− µ(f+

n )
)
.
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By the subadditivity of the limit superior,

lim sup
n→∞

µ(f+
n ) ≤ lim sup

n→∞

(
µ(f+

n ) + µ(f−
n )
)
+ lim sup

n→∞
−µ(f−

n )

lim sup
n→∞

µ(f−
n ) ≤ lim sup

n→∞

(
µ(f−

n ) + µ(f+
n )
)
+ lim sup

n→∞
−µ(f+

n ).

From our assumption that limn→∞ µ(|fn|) = µ(|f |),

lim sup
n→∞

(
µ(f+

n ) + µ(f−
n )
)
= lim sup

n→∞

(
µ(f−

n ) + µ(f+
n )
)
= lim sup

n→∞
µ(|fn|) = lim

n→∞
µ(|fn|) = µ(|f |).

Therefore, by the relationship between the limit inferior and the limit superior,

lim sup
n→∞

µ(f+
n ) ≤ µ(|f |)− lim inf

n→∞
µ(f−

n ),

lim sup
n→∞

µ(f−
n ) ≤ µ(|f |)− lim inf

n→∞
µ(f+

n ).

By non-decreasing the right sides of the previous inequations using our previous result,

lim sup
n→∞

µ(f+
n ) ≤ µ(|f |)− µ(f−) = µ(f+) + µ(f−)− µ(f−) = µ(f+),

lim sup
n→∞

µ(f−
n ) ≤ µ(|f |)− µ(f+) = µ(f+) + µ(f−)− µ(f+) = µ(f−).

By noting that the limit superior is at least as large as the limit inferior and combining the previous results,

µ(f+) ≤ lim inf
n→∞

µ(f+
n ) ≤ lim sup

n→∞
µ(f+

n ) ≤ µ(f+),

µ(f−) ≤ lim inf
n→∞

µ(f−
n ) ≤ lim sup

n→∞
µ(f−

n ) ≤ µ(f−).

Because the previous inequations imply that the limits must match,

lim
n→∞

µ(f+
n ) = µ(f+),

lim
n→∞

µ(f−
n ) = µ(f−).

Because (f+
n : S → [0,∞] | n ∈ N) and (f−

n : S → [0,∞] | n ∈ N) are sequences of µ-integrable non-
negative functions and f+ : S → [0,∞] and f− : S → [0,∞] are µ-integrable non-negative functions such that
limn→∞ f+

n = f+ and limn→∞ f−
n = f−, Scheffé’s lemma for non-negative functions guarantees that

lim
n→∞

µ(|f+
n − f+|) = 0,

lim
n→∞

µ(|f−
n − f−|) = 0.

By the triangle inequality,

|fn − f | = |(f+
n − f−

n )− (f+ − f−)| = |(f+
n − f+) + (f− − f−

n )| ≤ |f+
n − f+|+ |f−

n − f−|.

Because the integral with respect to µ is non-negative for non-negative functions, non-decreasing, and linear,

0 ≤ µ(|fn − f |) ≤ µ(|f+
n − f+|) + µ(|f−

n − f−|).

By the squeeze theorem, and as we wanted to show,

lim
n→∞

µ(|fn − f |) = 0.

Proposition 5.16. Consider the measure space (S,Σ, µ). For a set A ∈ Σ, consider the triple (A,ΣA, µA) such
that ΣA = {B ∈ Σ | B ⊆ A} and µA(B) = µ(B) for every B ∈ ΣA. In that case, (A,ΣA, µA) is a measure space
restricted to A.
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Proof. First, we will show that ΣA is a σ-algebra on A. Because A ∈ Σ and A ⊆ A, we have A ∈ ΣA. If B ∈ ΣA,
then B ∈ Σ and A ∩Bc ∈ Σ. Because A ∩Bc ⊆ A, we have A \B ∈ ΣA. For any sequence (Bn ∈ ΣA | n ∈ N), the
fact that Bn ∈ Σ guarantees that ∪nBn ∈ Σ. Because Bn ⊆ A for every n ∈ N, we know that ∪nBn ⊆ A, which
implies ∪nBn ∈ ΣA.

Second, we will show that the non-negative function µA : ΣA → [0,∞] is a measure on the measurable space
(A,ΣA). Because ∅ ∈ Σ and ∅ ∈ ΣA, we know that µA(∅) = µ(∅) = 0. For any sequence (Bn ∈ ΣA | n ∈ N) such
that Bn ∩Bm = ∅ for every n ̸= m, we know that ∪nBn ∈ Σ and ∪nBn ∈ ΣA and

µA

(⋃
n

Bn

)
= µ

(⋃
n

Bn

)
=
∑
n

µ(Bn) =
∑
n

µA(Bn).

Proposition 5.17. Consider the measure space (S,Σ, µ) and a Σ-measurable function f : S → R. Consider also the
measure space (A,ΣA, µA) restricted to A ∈ Σ and the function f |A : A → R restricted to A given by f |A(a) = f(a)
for every a ∈ A. The function f |A is ΣA-measurable because, for every B ∈ B(R),

(f |A)−1(B) = {a ∈ A | f(a) ∈ B} = {s ∈ S | f(s) ∈ B} ∩A = f−1(B) ∩A.

Proposition 5.18. Consider the measure space (S,Σ, µ), a Σ-measurable function f : S → R, and a set A ∈ Σ.
Then f |A is µA-integrable if and only if fIA is µ-integrable, in which case µA(f |A) = µ(fIA) = µ(f ;A).

Proof. First, suppose f = IB for some set B ∈ Σ. Clearly, µ(fIA) = µ(IBIA) = µ(IB∩A) = µ(B ∩ A) and
µA(f |A) = µA(IB |A) = µA(IB∩A) = µA(B∩A). Because B∩A ⊆ A, we have µA(B∩A) = µ(B∩A), which implies
µA(f |A) = µ(fIA). Because µ(|fIA|) = µ(fIA) = µA(f |A) = µA(|f |A|), we know that f |A is µA-integrable if and
only if fIA is µ-integrable.

Next, suppose f is a simple function that can be written as f =
∑m

k=1 akIAk
for some fixed a1, a2, . . . , am ∈ [0,∞]

and A1, A2, . . . , Am ∈ Σ. In that case, the integral with respect to µ of the function fIA is given by

µ(fIA) = µ

(
m∑

k=1

akIAk
IA

)
= µ

(
m∑

k=1

akIAk∩A

)
=

m∑
k=1

akµ(Ak ∩A).

Furthermore, the integral of the function f |A with respect to µA is given by

µA(f |A) = µA

((
m∑

k=1

akIAk

)∣∣∣∣∣
A

)
= µA

(
m∑

k=1

akIAk∩A

)
=

m∑
k=1

akµA(IAk∩A) =

m∑
k=1

akµA(Ak ∩A).

Because Ak ∩A ⊆ A for every k ≤ m, we have µA(Ak ∩ A) = µ(Ak ∩ A), which implies µA(f |A) = µ(fIA).
Because µ(|fIA|) = µ(fIA) = µA(f |A) = µA(|f |A|), we know that f |A is µA-integrable if and only if fIA is
µ-integrable.

Next, suppose f is non-negative. For any n ∈ N, let fn = αn◦f , where αn is the n-th staircase function. Because
(fnIA | n ∈ N) is a sequence of Σ-measurable functions such that fnIA ↑ fIA, we know that µ(fnIA) ↑ µ(fIA).
Because (fn|A | n ∈ N) is a sequence of ΣA-measurable functions such that fn|A ↑ f |A, we know that µA(fn|A) ↑
µA(f |A). For every n ∈ N, the fact that fn is a simple function implies µ(fnIA) = µA(fn|A). Therefore, µA(fn|A) ↑
µ(fIA), and µ(fnIA) ↑ µA(f |A), and µ(fIA) = µA(f |A). Because µ(|fIA|) = µ(fIA) = µA(f |A) = µA(|f |A|), we
know that f |A is µA-integrable if and only if fIA is µ-integrable.

Finally, suppose f : S → R. By definition,

µ(|fIA|) = µ((fIA)+) + µ((fIA)−) = µ(f+IA) + µ(f−IA) = µA(f
+|A) + µA(f

−|A) = µA((f |A)+) + µA((f |A)−) = µ(|f |A|).

Therefore, f |A is µA-integrable if and only if fIA is µ-integrable. In that case,

µ(fIA) = µ((fIA)+)− µ((fIA)−) = µ(f+IA)− µ(f−IA) = µA(f
+|A)− µA(f

−|A) = µA((f |A)+)− µA((f |A)−) = µ(f |A).

Proposition 5.19. Consider a Σ-measurable function f : S → [0,∞] and the function (fµ) : Σ → [0,∞] defined
by

(fµ)(A) = µ(f ;A) = µ(fIA) = µA(f |A).

In that case, (fµ) is a measure on (S,Σ).
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Proof. Clearly, (fµ)(∅) = µ(fI∅) = µ(0) = 0. Consider a sequence (Bn ∈ Σ | n ∈ N) such that Bn ∩ Bm = ∅ for
n ̸= m. First, suppose f is a simple function that can be written as f =

∑m
k=1 akIAk

for some fixed a1, a2, . . . , am ∈
[0,∞] and A1, A2, . . . , Am ∈ Σ. In that case,

(fµ)(∪nBn) = µ(fI∪nBn
) = µ

(
m∑

k=1

akIAk
I∪nBn

)
= µ

(
m∑

k=1

akIAk∩(∪nBn)

)
= µ

(
m∑

k=1

akI∪n(Ak∩Bn)

)
.

By the definition of integral with respect to µ of a simple function and countable additivity,

(fµ)(∪nBn) =

m∑
k=1

akµ (∪n(Ak ∩Bn)) =

m∑
k=1

ak
∑
n

µ (Ak ∩Bn) =
∑
n

m∑
k=1

akµ (Ak ∩Bn) .

By the definition of integral with respect to µ of a simple function,

(fµ)(∪nBn) =
∑
n

µ

(
m∑

k=1

akIAk∩Bn

)
=
∑
n

µ

(
m∑

k=1

akIAk
IBn

)
=
∑
n

µ (fIBn
) =

∑
n

(fµ)(Bn).

Now suppose f is non-negative. For any n ∈ N, let fn = αn ◦ f , where αn is the n-th staircase function. For
every set B ∈ Σ, we know that (fnIB : S → [0,∞] | n ∈ N) is a sequence of Σ-measurable functions such that
fnIB ↑ fIB , which implies that µ(fnIB) ↑ µ(fIB). Therefore,

(fµ)(∪jBj) = µ(fI∪jBj ) = lim
n→∞

µ(fnI∪jBj ) = lim
n→∞

∑
j

µ(fnIBj ) =
∑
j

lim
n→∞

µ(fnIBj ) =
∑
j

µ(fIBj ) =
∑
j

(fµ)(Bj).

Proposition 5.20. Consider a Σ-measurable function f : S → [0,∞] and the measure space (S,Σ, (fµ)). By
definition, the integral with respect to (fµ) of a Σ-measurable function h : S → R over the set A is given by

(fµ)(hIA) = (fµ)(h;A) = (h(fµ))(A).

In that case, (fµ)(hIA) = µ(fhIA).

Proof. First, suppose h = IB for some set B ∈ Σ. In that case, the integral with respect to (fµ) of h over the set
A is given by

(fµ)(hIA) = (fµ)(IBIA) = (fµ)(IB∩A) = (fµ)(B ∩A) = µ(fIB∩A) = µ(fIBIA) = µ(fhIA).

Next, suppose h is a simple function that can be written as h =
∑m

k=1 akIAk
for some fixed a1, a2, . . . , am ∈ [0,∞]

and A1, A2, . . . , Am ∈ Σ. In that case, the integral with respect to (fµ) of h over the set A is given by

(fµ)(hIA) = (fµ)

(
m∑

k=1

akIAk
IA

)
= (fµ)

(
m∑

k=1

akIAk∩A

)
=

m∑
k=1

ak(fµ)(Ak ∩A) =

m∑
k=1

akµ(fIAk∩A).

By the linearity of the integral with respect to µ,

(fµ)(hIA) = µ

(
m∑

k=1

akfIAk∩A

)
= µ

(
fIA

m∑
k=1

akIAk

)
= µ(fhIA).

Next, suppose h is non-negative. For any n ∈ N, let hn = αn ◦ h, where αn is the n-th staircase function.
Because (hnIA : S → [0,∞] | n ∈ N) is a sequence of Σ-measurable functions such that hnIA ↑ hIA, we know
that (fµ)(hnIA) ↑ (fµ)(hIA). Furthermore, because (fhnIA : S → [0,∞] | n ∈ N) is a sequence of Σ-measurable
functions such that fhnIA ↑ fhIA, we know that µ(fhnIA) ↑ µ(fhIA). Therefore, the integral with respect to (fµ)
of h over the set A is given by

(fµ)(hIA) = lim
n→∞

(fµ)(hnIA) = lim
n→∞

µ(fhnIA) = µ(fhIA).

Finally, suppose h : S → R. By definition,
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(fµ)(|hIA|) = (fµ)((hIA)+) + (fµ)((hIA)−) = (fµ)(h+IA) + (fµ)(h−IA) = µ(fh+IA) + µ(fh−IA)

By the linearity of the integral with respect to µ,

(fµ)(|hIA|) = µ(fh+IA + fh−IA) = µ(fIA(h+ + h−)) = µ(f |h|IA) = µ(|fhIA|).

Therefore, hIA is (fµ)-integrable if and only if fhIA is µ-integrable. In that case,

(fµ)(hIA) = (fµ)((hIA)+)− (fµ)((hIA)−) = (fµ)(h+IA)− (fµ)(h−IA) = µ(fh+IA)− µ(fh−IA)

By the linearity of the integral with respect to µ,

(fµ)(hIA) = µ(fh+IA − fh−IA) = µ(fIA(h+ − h−)) = µ(fhIA).

Proposition 5.21. By considering integrals over the set S, if f : S → [0,∞] and h : S → R are Σ-measurable
functions, then h is (fµ)-measurable if and only if fh is µ-measurable, in which case (fµ)(h) = µ(fh).

Definition 5.13. Consider a measure space (S,Σ, µ), a Σ-measurable function f : S → [0,∞], and the measure
λ = (fµ) on (S,Σ). We say that λ has density f relative to µ, which is denoted by dλ/dµ = f .

Proposition 5.22. In that case, for every A ∈ Σ, if µ(A) = 0, then λ(A) = (fµ)(A) = µ(fIA) = 0.

Proof. The fact that {fIA ̸= 0} ⊆ A implies µ({fIA ̸= 0}) ≤ µ(A) = 0. Because fIA and 0 are Σ-measurable
functions such that µ({fIA ̸= 0}) = 0, we know that µ(fIA) = µ(0) = 0.

Theorem 5.3 (Radon-Nykodým theorem). If µ and λ are σ-finite measures on (S,Σ) such that if µ(A) = 0 then
λ(A) = 0 for every A ∈ Σ, then λ = (fµ) for some Σ-measurable function f : S → [0,∞].

6 Expectation
Definition 6.1. Consider a probability triple (Ω,F ,P). The expectation E(X) of a P-integrable random variable
X : Ω → R is defined as the integral of X with respect to the probability measure P. Therefore,

E(X) = P(X) =

∫
Ω

XdP =

∫
Ω

X(ω)P(dω).

Definition 6.2. The expectation E(X) of a non-negative random variable X : Ω → [0,∞] is also defined as the
integral of X with respect to the probability measure P.

Consider a sequence of random variables (Xn : Ω → R | n ∈ N) and a random variable X : Ω → R such that

P
(
lim
n→∞

Xn = X
)
= P

(
{ω ∈ Ω | lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

The integration results discussed in the previous section can be restated as follows.

Theorem 6.1 (Monotone-convergence theorem). If Xn ≥ 0 and Xn ≤ Xn+1 for every n ∈ N, then E(Xn) ↑ E(X).

Lemma 6.1 (Fatou lemma). If Xn ≥ 0 for every n ∈ N, then E (X) ≤ lim infn→∞ E[Xn].

Theorem 6.2 (Dominated convergence theorem). If there is a P-integrable non-negative function Y : Ω → [0,∞]
such that |Xn| ≤ Y for every n ∈ N, then X is P-integrable and limn→∞ E(Xn) = E(X).

Lemma 6.2 (Scheffé’s lemma). If X and Xn are P-integrable for every n ∈ N, then limn→∞ E(|Xn − X|) = 0 if
and only if limn→∞ E(|Xn|) = E(|X|).

Theorem 6.3 (Bounded convergence theorem). If there is a K ∈ [0,∞) such that |Xn| ≤ K for every n ∈ N, then
limn→∞ E(Xn) = E(X) and limn→∞ E(|Xn −X|) = 0.
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Proof. Note that the simple function Y = K is P-integrable, since P(|Y |) = P(Y ) = P(KIΩ) = KP(Ω) = K.
Therefore, X is P-integrable and limn→∞ E(Xn) = E(X). The dominated convergence theorem also guarantees
that limn→∞ E(|Xn −X|) = 0.

Definition 6.3. The expectation E(X;F ) of the P-integrable random variable X : Ω → R over the set F ∈ F is
defined as

E(X;F ) = E(XIF ) = P(X;F ) = P(XIF ) =
∫
F

XdP =

∫
F

X(ω)P(dω).

Proposition 6.1. Consider a random variable Z : Ω → R and a B(R)-measurable non-negative function g : R →
[0,∞] such that a ≤ b implies g(a) ≤ g(b). Recall that the function g(Z) : Ω → [0,∞] defined by g(Z) = g ◦ Z is
also a random variable. For every c ∈ R, Markov’s inequality states that

E(g(Z)) ≥ g(c)P(Z ≥ c),

since g(Z) ≥ g(Z)I{Z≥c} ≥ g(c)I{Z≥c} implies E(g(Z)) ≥ E(g(c)I{Z≥c}) = g(c)P(Z ≥ c).

Proposition 6.2. Consider a non-negative random variable Z : Ω → [0,∞] and let g(c) = max(c, 0). For c ≥ 0,
Markov’s inequality implies that E(Z) ≥ cP(Z ≥ c).

Proposition 6.3. Consider a random variable Z : Ω → R and let g(c) = eθc for some θ > 0. Markov’s inequality
implies that E(eθZ) ≥ eθcP(Z ≥ c).

Proposition 6.4. Consider a non-negative random variable X : Ω → [0,∞]. If E(X) < ∞, then P(X < ∞) = 1.
Note that ∞I{X=∞} ≤ X, such that ∞P(X = ∞) ≤ E(X). Therefore, P(X = ∞) > 0 implies E[X] = ∞.

Proposition 6.5. Consider a sequence (Zn : Ω → [0,∞] | n ∈ N) of non-negative random variables. In that case,

E

(∑
k

Zk

)
=
∑
k

E(Zk).

Proof. For any n ∈ N, let Yn =
∑n

k=0 Zk, such that E(Yn) =
∑n

k=0 E(Zk). Clearly, Yn ≥ 0, Yn ≤ Yn+1, and
limn→∞ Yn =

∑
k Zk. Therefore, Yn ↑

∑
k Zk. By the monotone-convergence theorem, E(Yn) ↑ E(

∑
k Zk).

Proposition 6.6. Consider a sequence (Zn : Ω → [0,∞] | n ∈ N) of non-negative random variables such that∑
k E(Zk) < ∞. In that case,

∑
k Zk < ∞ almost surely and limn→∞ Zn = 0 almost surely, where 0 denotes the

zero function.

Proof. Because E(
∑

k Zk) < ∞, we know that P(
∑

k Zk < ∞) = 1. Because the n-th term test implies that
{
∑

k Zk < ∞} ⊆ {limn→∞ Zn = 0}, we know that 1 = P(
∑

k Zk < ∞) ≤ P(limn→∞ Zn = 0).

Lemma 6.3 (Borel-Cantelli lemma). Consider a sequence of events (Fn ∈ F | n ∈ N) such that
∑

n P(Fn) < ∞.
Let (IFn | n ∈ N) be the corresponding sequence of indicator functions. Because E(IFk

) = P(Fk), we know that∑
n E(IFn

) < ∞, which implies
∑

n IFn
< ∞ almost surely. Because

∑
n IFn

(ω) is the number of times that the
outcome ω ∈ Ω belongs to an event in the sequence, we know that the outcome ω almost surely belongs to a finite
number of events in the sequence, which implies that P (lim supn→∞ Fn) = 0.

Definition 6.4. A function ϕ : R → R is convex if λϕ(x)+ (1−λ)ϕ(y) ≥ ϕ(λx+(1−λ)y), for every x ∈ R, y ∈ R,
and λ ∈ [0, 1]. If ϕ : R → R is convex, it is also continuous and therefore B(R)-measurable.

Important examples of convex functions include x 7→ |x|, x 7→ x2, and x 7→ eθx for θ ∈ R.

Proposition 6.7. If ϕ : R → R is a convex function, for every z ∈ R there is a function g : R → R given by
g(x) = ax+ b for every x ∈ R and some a ∈ R and b ∈ R such that g(z) = ϕ(z) and g(x) ≤ ϕ(x) for every x ∈ R.

In other words, for every point in the domain of a convex function, there is a linear function that never surpasses
the convex function such that the value of the linear function at that point matches the value of the convex function
at that point.

Proposition 6.8 (Jensen’s inequality). Consider a random variable X : Ω → R such that E(X) < ∞ and a convex
function ϕ : R → R. In that case, E(ϕ(X)) ≥ ϕ(E(X)).
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Proof. Consider a function g : R → R such that g(E(X)) = ϕ(E(X)) and g(x) = ax+ b ≤ ϕ(x) for every x ∈ R and
some a, b ∈ R. Clearly g(X) = g ◦X ≤ ϕ ◦X = ϕ(X). Therefore,

E(ϕ(X)) ≥ E(g(X)) = E[aX + b] = aE(X) + b = g(E(X)) = ϕ(E(X)).

Definition 6.5. For every p ∈ [1,∞), the set Lp(Ω,F ,P) contains exactly each random variable X : Ω → R such
that E(|X|p) < ∞.

Definition 6.6. If X ∈ Lp(Ω,F ,P), the p-norm ∥X∥p of the random variable X is given by ∥X∥p = E(|X|p)1/p.

Proposition 6.9 (Monotonicity of norm). For every p ∈ [1,∞) and r ∈ [1,∞) such that p ≤ r, if Y ∈ Lr(Ω,F ,P)
then Y ∈ Lp(Ω,F ,P) and ∥Y ∥p ≤ ∥Y ∥r.

Proof. For every n ∈ N, consider the function Xn = min(|Y |, n)p. Clearly, 0 ≤ Xn ≤ np, so 0 ≤ E(|Xn|) = E(Xn) ≤
np. Consider also the convex function ϕ : R → R given by ϕ(x) = |x|r/p such that ϕ(Xn) = |Xn|r/p = X

r/p
n .

Clearly, 0 ≤ X
r/p
n = min(|Y |, n)r ≤ nr, so 0 ≤ E(|Xr/p

n |) = E(Xr/p
n ) ≤ nr. Using Jensen’s inequality,

E(Xr/p
n ) = E(ϕ(Xn)) ≥ ϕ(E(Xn)) = |E(Xn)|r/p = E(Xn)

r/p.

Because Xr/p
n ≥ 0 and X

r/p
n ↑ |Y |r, the monotone-convergence theorem guarantees that E(Xr/p

n ) ↑ E(|Y |r). Because
Xn ≥ 0 and Xn ↑ |Y |p, the monotone-convergence theorem guarantees that E(Xn) ↑ E(|Y |p). By taking the limit
of both sides of the previous inequation,

E(|Y |r) = lim
n→∞

E(Xr/p
n ) ≥ lim

n→∞
E(Xn)

r/p =
(
lim

n→∞
E(Xn)

)r/p
= E(|Y |p)r/p.

By taking the r-th root of both sides of the previous inequation,

∞ > E(|Y |r)1/r ≥ E(|Y |p)1/p.

Proposition 6.10. For every p ∈ [1,∞), the set Lp(Ω,F ,P) is a vector space over the field R.

Proof. First, recall that the set of all functions from Ω to R is a vector space over the field R when scalar multi-
plication and addition are performed pointwise. Because such set includes Lp(Ω,F ,P), it is sufficient to show that
Lp(Ω,F ,P) is non-empty and closed under scalar multiplication and addition. Because 0 : Ω → R is a random
variable and E(|0|p) = E(0) = 0, we know that 0 ∈ Lp(Ω,F ,P). If X ∈ Lp(Ω,F ,P) and c ∈ R, then cX : Ω → R
is a random variable and E(|cX|p) = E(|c|p|X|p) = |c|pE(|X|p), we know that cX ∈ Lp(Ω,F ,P). Finally, if
X ∈ Lp(Ω,F ,P) and Y ∈ Lp(Ω,F ,P), then

|X + Y |p ≤ (|X|+ |Y |)p ≤ (2max(|X|, |Y |)p ≤ 2p(|X|p + |Y |p),

which implies X + Y ∈ Lp(Ω,F ,P) since

E(|X + Y |p) ≤ E(2p(|X|p + |Y |p)) = 2pE(|X|p) + 2pE(|Y |p) < ∞.

Proposition 6.11 (Schwarz inequality). Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). In
that case, XY ∈ L1(Ω,F ,P) and E(|XY |) ≤ ∥X∥2∥Y ∥2.

Proof. First, consider the case where ∥X∥2 ̸= 0 and ∥Y ∥2 ̸= 0. Let Z = |X|/∥X∥2 and W = |Y |/∥Y ∥2. Clearly,
E(Z2) = E(|X|2)/∥X∥22 = 1. Analogously, E(W 2) = 1. Because (Z −W )2 ≥ 0, we know that

0 ≤ E((Z −W )2) = E(Z2) + E(W 2)− E(2ZW ) = 2− E(2ZW ).

Because the previous inequation implies that E(ZW ) ≤ 1,

1 ≥ E(ZW ) = E(|X||Y |/∥X∥2∥Y ∥2) = E(|XY |)/∥X∥2∥Y ∥2.
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Using the fact that X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P),

E(|XY |) ≤ ∥X∥2∥Y ∥2 < ∞.

Finally, consider the case where ∥X∥2 = E(X2)1/2 = 0, which will prove analogous to the case where ∥Y ∥2 = 0.
Because X2 is a non-negative random variable, the fact that E(X2) = 0 implies that P(X2 > 0) = P(X ̸= 0) = 0.
Therefore, P(X = 0) = 1. Because {X = 0} ⊆ {XY = 0}, we know that P(X = 0) ≤ P(XY = 0), which implies
P(XY = 0) = P(|XY | = 0) = 1. Because {|XY | = 0} happens almost surely, we know that E(|XY |) = E(0) = 0.
Therefore, XY ∈ L1(Ω,F ,P) and 0 = E(|XY |) ≤ ∥X∥2∥Y ∥2 = 0.

Proposition 6.12 (Triangle law). Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). Because
L2(Ω,F ,P) is a vector space over R, we know that X + Y ∈ L2(Ω,F ,P). In that case, ∥X + Y ∥2 ≤ ∥X∥2 + ∥Y ∥2.

Proof. Since |X + Y | ≤ |X|+ |Y |, we know that |X + Y |2 ≤ (|X|+ |Y |)2 = |X|2 + 2|X||Y |+ |Y |2. Therefore,

E(|X + Y |2) ≤ E(|X|2) + 2E(|X||Y |) + E(|Y |2) = E(|X|2) + 2E(|XY |) + E(|Y |2).

Using the Schwarz inequality,

E(|X + Y |2) ≤ E(|X|2) + 2∥X∥2∥Y ∥2 + E(|Y |2) = (∥X∥2 + ∥Y ∥2)2

By taking the square root of both sides,

∥X + Y ∥2 = E(|X + Y |2)1/2 ≤ ∥X∥2 + ∥Y ∥2.

Definition 6.7. Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). Recall that X ∈ L1(Ω,F ,P)
and Y ∈ L1(Ω,F ,P). Let µX = E(X) and µY = E(Y ). Because (X−µX) ∈ L2(Ω,F ,P) and (Y −µY ) ∈ L2(Ω,F ,P),
we know that (X − µX)(Y − µY ) ∈ L1(Ω,F ,P). The covariance Cov(X,Y ) between X and Y is defined by

Cov(X,Y ) = E((X − µX)(Y − µY )) = E(XY )− E(XµY )− E(Y µX) + E(µXµY ) = E(XY )− µXµY .

Definition 6.8. Consider the random variable X ∈ L2(Ω,F ,P). The variance Var(X) of X is defined by

Var(X) = Cov(X,X) = E((X − µX)2) = E(X2)− µ2
X .

Definition 6.9. Consider the random variables U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P). The inner product ⟨U, V ⟩
between U and V is given by ⟨U, V ⟩ = E(UV ).

Definition 6.10. In that case, If ∥U∥2 ̸= 0 and ∥V ∥2 ̸= 0, the cosine of the angle θ between U and V is defined as

cos θ =
⟨U, V ⟩

∥U∥2∥V ∥2
.

Because |⟨U, V ⟩| = |E(UV )| ≤ E(|UV |) ≤ ∥U∥2∥V ∥2, we know that | cos θ| ≤ 1.

Proposition 6.13. Consider the random variables U, V,W,Z ∈ L2(Ω,F ,P). The following are properties of the
inner product:

• ⟨U,U⟩ = E(U2) = ∥U∥22.

• ⟨U, V ⟩ = E(UV ) = E(V U) = ⟨V,U⟩.

• ⟨aU, V ⟩ = E(aUV ) = aE(UV ) = a⟨U, V ⟩, for any a ∈ R.

• ⟨U, aV ⟩ = E(UaV ) = aE(UV ) = a⟨U, V ⟩, for any a ∈ R.

• ⟨U + V,W ⟩ = E((U + V )W ) = E(UW + VW ) = ⟨U,W ⟩+ ⟨V,W ⟩.

• ⟨U, V +W ⟩ = E(U(V +W )) = E(UV + UW ) = ⟨U, V ⟩+ ⟨U,W ⟩.

• ⟨U + V,W + Z⟩ = ⟨U,W + Z⟩+ ⟨V,W + Z⟩ = ⟨U,W ⟩+ ⟨U,Z⟩+ ⟨V,W ⟩+ ⟨V,Z⟩.
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Definition 6.11. Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). Let µX = E(X) and
µY = E(Y ). The correlation ρ between X and Y is defined as the cosine of the angle between X −µX and Y −µY ,
which is given by

ρ =
⟨X − µX , Y − µY ⟩

∥X − µX∥2∥Y − µY ∥2
=

Cov(X,Y )√
Var(X)Var(Y )

.

Proposition 6.14. Consider the random variables U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P). Because U + V ∈
L2(Ω,F ,P),

∥U + V ∥22 = E(|U + V |2) = E((U + V )2) = E(U2) + 2E(UV ) + E(V 2) = ∥U∥22 + ∥V ∥22 + 2⟨U, V ⟩.

Definition 6.12. If ⟨U, V ⟩ = 0, we say that U and V are orthogonal, which is denoted by U ⊥ V . In that case,

∥U + V ∥22 = ∥U∥22 + ∥V ∥22.

Proposition 6.15. Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). Note that X + Y ∈
L2(Ω,F ,P) and

Var(X + Y ) = E((X + Y )2)− E(X + Y )2 = E(X2 + 2XY + Y 2)− (E(X)2 + 2E(X)E(Y ) + E(Y )2).

By the linearity of expectation and reorganizing terms,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

Therefore, if Cov(X,Y ) = 0, then Var(X + Y ) = Var(X) + Var(Y ).

Proposition 6.16. More generally, if X1, . . . , Xn ∈ L2(Ω,F ,P), then

Var

(
n∑

k=1

Xk

)
=

n∑
k=1

Var(Xk) + 2

n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj).

Proposition 6.17 (Parallelogram law). Consider the random variables U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P). In
that case,

∥U + V ∥22 + ∥U − V ∥22 = 2∥U∥22 + 2∥V ∥22.

Proof. Using the relationship between the inner product and the 2-norm,

∥U + V ∥22 + ∥U − V ∥22 = ⟨U + V,U + V ⟩+ ⟨U − V,U − V ⟩.

By the bilinearity of the inner product,

∥U + V ∥22 + ∥U − V ∥22 = ⟨U,U⟩+ ⟨U, V ⟩+ ⟨V,U⟩+ ⟨V, V ⟩+ ⟨U,U⟩+ ⟨U,−V ⟩+ ⟨−V,U⟩+ ⟨−V,−V ⟩.

By cancelling terms,

∥U + V ∥22 + ∥U − V ∥22 = 2⟨U,U⟩+ 2⟨V, V ⟩ = 2∥U∥22 + 2∥V ∥22.

Proposition 6.18. For some p ∈ [1,∞), consider a sequence of random variables (Xn ∈ Lp(Ω,F ,P) | n ∈ N) such
that

lim
k→∞

sup
r,s≥k

∥Xr −Xs∥p = 0.

In that case, there is a random variable X ∈ Lp(Ω,F ,P) such that

lim
n→∞

∥Xn −X∥p = 0.
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Proof. By definition, for every ϵ > 0 there is an N ∈ N such that k ≥ N implies supr,s≥k ∥Xr−Xs∥p < ϵ. Therefore,
there is a sequence (kn ∈ N | n ∈ N) such that kn+1 ≥ kn and supr,s≥kn

∥Xr −Xs∥p < 1/2n for every n ∈ N.
For every n ∈ N, the monotonicity of the norm implies that

E(|Xkn+1
−Xkn

|) = ∥Xkn+1
−Xkn

∥1 ≤ ∥Xkn+1
−Xkn

∥p <
1

2n
.

Because |Xkn+1
−Xkn

| is a non-negative random variable for every n ∈ N,

∑
n

E(|Xkn+1
−Xkn

|) = E

(∑
n

|Xkn+1
−Xkn

|

)
≤
∑
n

1

2n
< ∞.

Because the expectation above is finite,

P

(∑
n

|Xkn+1
−Xkn

| < ∞

)
= 1.

Suppose
∑

n |Xkn+1
(ω)−Xkn

(ω)| < ∞ for some ω ∈ Ω. For every ϵ > 0, the Cauchy test guarantees that there
is an N ∈ N such that j > i > N implies∣∣∣∣∣

j∑
n=i

|Xkn+1
(ω)−Xkn

(ω)|

∣∣∣∣∣ =
j∑

n=i

|Xkn+1
(ω)−Xkn

(ω)| < ϵ.

Furthermore, for every j > i,

|Xkj
(ω)−Xki

(ω)| =

∣∣∣∣∣Xkj
(ω)−Xki

(ω) +

j−1∑
n=i+1

Xkn
(ω)−

j−1∑
n=i+1

Xkn
(ω)

∣∣∣∣∣ =
∣∣∣∣∣

j∑
n=i+1

Xkn
(ω)−

j−1∑
n=i

Xkn
(ω)

∣∣∣∣∣ .
By shifting indices and using the triangle inequality, for j > i > N ,

|Xkj
(ω)−Xki

(ω)| =

∣∣∣∣∣
j−1∑
n=i

Xkn+1
(ω)−Xkn

(ω)

∣∣∣∣∣ ≤
j−1∑
n=i

∣∣Xkn+1
(ω)−Xkn

(ω)
∣∣ < ϵ.

For j = i > N , note that |Xkj
(ω) −Xki

(ω)| = 0 < ϵ. Therefore, for every ϵ > 0 there is an N ∈ N such that
j > N and i > N implies |Xkj

(ω)−Xki
(ω)| < ϵ, such that (Xkn

(ω) | n ∈ N) is a Cauchy sequence of real numbers.
Because every Cauchy sequence of real numbers converges to a real number, consider the random variable

X = lim supn→∞ Xkn such that limn→∞ Xkn(ω) = lim supn→∞ Xkn(ω) = X(ω).
Since {

∑
n |Xkn+1

−Xkn
| < ∞} ⊆ {limn→∞ Xkn

= X},

P
(
lim
n→∞

Xkn
= X

)
≥ P

(∑
n

|Xkn+1
−Xkn

| < ∞

)
= 1.

Suppose limn→∞ Xkn(ω) = X(ω) for some ω ∈ Ω. For every r ∈ N,∣∣∣ lim
n→∞

Xkn
(ω)−Xr(ω)

∣∣∣p = lim
n→∞

|Xkn
(ω)−Xr(ω)|p = |X(ω)−Xr(ω)|p.

Because {limn→∞ Xkn
= X} ⊆ {limn→∞ |Xkn

−Xr|p = |X −Xr|p} for every r ∈ N,

P
(
lim

n→∞
|Xkn −Xr|p = |X −Xr|p

)
≥ P

(
lim
n→∞

Xkn = X
)
= 1.

Because |Xkn −Xr|p ≥ 0 for every n ∈ N, by the Fatou lemma,

E(|X −Xr|p) ≤ lim inf
n→∞

E(|Xkn
−Xr|p).

For any t ∈ N, suppose r ≥ kt and recall that kn ≥ kt whenever n ≥ t. In that case,

E(|Xkn −Xr|p) = ∥Xkn −Xr∥pp <
1

2tp
.
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For any ϵ > 0, choose t ∈ N such that 1/2tp < ϵ. In that case, for any r ≥ kt,

E(|X −Xr|p) ≤ lim inf
n→∞

E(|Xkn −Xr|p) ≤
1

2tp
< ϵ.

Because Lp(Ω,F ,P) is a vector space over the field R, the fact that (X−Xr) ∈ Lp(Ω,F ,P) and Xr ∈ Lp(Ω,F ,P)
implies that X ∈ Lp(Ω,F ,P). The previous inequality also shows that

lim
r→∞

E(|X −Xr|p) = lim
r→∞

∥X −Xr∥pp = 0.

Definition 6.13. A vector space K ⊆ Lp(Ω,F ,P) is said to be complete if for every sequence (Vn ∈ K | n ∈ N)
such that

lim
k→∞

sup
r,s≥k

∥Vr − Vs∥p = 0

there is a V ∈ K such that

lim
n→∞

∥Vn − V ∥p = 0.

Proposition 6.19. If the vector space K ⊆ L2(Ω,F ,P) is complete, then for every X ∈ L2(Ω,F ,P) there is a
so-called version Y ∈ K of the orthogonal projection of X onto K such that ∥X − Y ∥2 = inf{∥X −W∥2 | W ∈ K}
and X − Y ⊥ Z for every Z ∈ K. Furthermore, if Y and Ỹ are versions of the orthogonal projection of X onto K,
then P(Y = Ỹ ) = 1.

Proof. For some X ∈ L2(Ω,F ,P), let ∆ = inf{∥X−W∥2 | W ∈ K}. First, we will show that it is possible to choose
a sequence (Yn ∈ K | n ∈ N) such that limn→∞ ∥X − Yn∥2 = ∆. Recall that for every ϵ > 0 there is a W ∈ K such
that ∥X −W∥2 < ∆+ ϵ. Choose Yn such that ∥X − Yn∥ < ∆+ 1

n+1 . For every ϵ > 0, there is an N ∈ N such that
n ≥ N implies that ∥X − Yn∥2 < ∆+ ϵ, which is equivalent to |∥X − Yn∥2 −∆| < ϵ since ∆ ≤ ∥X − Yn∥2.

Let U = X − 1
2 (Yr + Ys) and V = 1

2 (Yr − Ys) such that U + V = X − Ys and U − V = X − Yr. Because
U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P), the parallelogram law guarantees that

∥X − Ys∥22 + ∥X − Yr∥22 = 2

∥∥∥∥X − 1

2
(Yr + Ys)

∥∥∥∥2
2

+ 2

∥∥∥∥12(Yr − Ys)

∥∥∥∥2
2

.

Therefore,

2

∥∥∥∥12(Yr − Ys)

∥∥∥∥2
2

= 2

〈
1

2
(Yr − Ys),

1

2
(Yr − Ys)

〉
= ∥X − Ys∥22 + ∥X − Yr∥22 − 2

∥∥∥∥X − 1

2
(Yr + Ys)

∥∥∥∥2
2

.

Using properties of the inner product and reorganizing terms,

∥Yr − Ys∥22 = 2∥X − Ys∥22 + 2∥X − Yr∥22 − 4

∥∥∥∥X − 1

2
(Yr + Ys)

∥∥∥∥2
2

.

Because (Yr + Ys)/2 ∈ K, we know that ∥X − (Yr + Ys)/2∥22 ≥ ∆2. Therefore,

∥Yr − Ys∥22 ≤ 2∥X − Ys∥22 + 2∥X − Yr∥22 − 4∆2.

For every ϵ > 0, since limn→∞ ∥X − Yn∥22 = ∆2, there is a k such that n ≥ k implies |∥X − Yn∥22 −∆2| < ϵ
4 ,

which is equivalent to ∥X − Yn∥22 < ϵ
4 +∆2. Therefore, whenever r, s ≥ k,

∥Yr − Ys∥22 ≤ 2∥X − Ys∥22 + 2∥X − Yr∥22 − 4∆2 < 2
( ϵ
4
+ ∆2

)
+ 2

( ϵ
4
+ ∆2

)
− 4∆2 = ϵ,

which implies

lim
k→∞

sup
r,s≥k

∥Yr − Ys∥2 = 0.
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Because K is complete, there is an Y ∈ K such that

lim
n→∞

∥Yn − Y ∥2 = 0.

Let U = X − Yn and V = Yn − Y such that U + V = X − Y . Because U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P),

∆ ≤ ∥X − Y ∥2 ≤ ∥X − Yn∥2 + ∥Yn − Y ∥2.

Using the squeeze theorem when n → ∞ shows that ∥X − Y ∥2 = ∆ = inf{∥X −W∥2 | W ∈ K}.
For some Z ∈ K and t ∈ R, let U = X−Y and V = −tZ such that U+V = X−Y −tZ. Because U ∈ L2(Ω,F ,P)

and V ∈ L2(Ω,F ,P) and considering the bilinearity of the inner product,

∥X − Y − tZ∥22 = ∥X − Y ∥22 + ∥ − tZ∥22 + 2⟨X − Y,−tZ⟩ = ∥X − Y ∥22 + t2∥Z∥22 − 2t⟨X − Y,Z⟩.

Because (Y + tZ) ∈ K, we know that ∥X − Y ∥22 ≤ ∥X − (Y + tZ)∥22. Therefore, for every Z ∈ K and t ∈ R,

t2∥Z∥22 ≥ 2t⟨X − Y, Z⟩.

We will now show that the previous inequation can only be true for every Z ∈ K and t ∈ R if ⟨X − Y,Z⟩ = 0
for every Z ∈ K, which implies X − Y ⊥ Z for every Z ∈ K.

In order to find a contradiction, suppose that ⟨X − Y,Z⟩ ̸= 0 for some Z ∈ K. Because (X − Y ) ∈ L2(Ω,F ,P)
and Z ∈ L2(Ω,F ,P), the Schwarz inequality implies that

∥X − Y ∥2∥Z∥2 ≥ E(|(X − Y )Z|) ≥ |E((X − Y )Z)| ≥ 0.

Clearly, |E((X−Y )Z)| = 0 when ∥Z∥2 = 0, which implies E((X−Y )Z) = ⟨X−Y, Z⟩ = 0. Therefore, we can suppose
that ∥Z∥2 > 0. If ⟨X −Y, Z⟩ > 0, then choose a t ∈ R such that 0 < t < 2⟨X −Y, Z⟩/∥Z∥22. If ⟨X −Y, Z⟩ < 0, then
choose a t ∈ R such that 2⟨X−Y, Z⟩/∥Z∥22 < t < 0. In either case, t2∥Z∥22 < 2t⟨X−Y,Z⟩, which is a contradiction.

Suppose that Y and Ỹ are versions of the orthogonal projection of X onto K. Because (Ỹ − Y ) ∈ K,

⟨X − Y, Ỹ − Y ⟩ = ⟨X − Ỹ , Ỹ − Y ⟩ = 0.

By the bilinearity of the inner product,

⟨X, Ỹ − Y ⟩+ ⟨−Y, Ỹ − Y ⟩ − ⟨X, Ỹ − Y ⟩ − ⟨−Ỹ , Ỹ − Y ⟩ = ⟨−Y, Ỹ − Y ⟩ − ⟨−Ỹ , Ỹ − Y ⟩ = ⟨Ỹ − Y, Ỹ − Y ⟩ = 0

Because ⟨Ỹ − Y, Ỹ − Y ⟩ = E((Ỹ − Y )2) = 0 and (Ỹ − Y )2 is a non-negative random variable, we know that
P((Ỹ − Y )2 ̸= 0) = 0, which implies that P(Ỹ = Y ) = 1.

Proposition 6.20. Consider a probability triple (Ω,F ,P) and a random variable X : Ω → R. Recall that
(R,B(R),ΛX) is also a probability triple, where ΛX : B(R) → [0, 1] is the law of X given by ΛX(B) = P(X−1(B))
for every B ∈ B(R). If h : R → R is a Borel function, then (h◦X) ∈ L1(Ω,F ,P) if and only if h ∈ L1(R,B(R),ΛX).
Furthermore, in that case, ∫

Ω

(h ◦X) dP = P(h ◦X) = ΛX(h) =

∫
R
h dΛX .

Proof. First, suppose h = IB for some B ∈ B(R). For every ω ∈ Ω,

(h ◦X)(ω) = IB(X(ω)) = IX−1(B)(ω) =

{
1, if X(ω) ∈ B,
0, if X(ω) /∈ B.

Therefore, P(h◦X) = P(IX−1(B)) = P(X−1(B)) = ΛX(B) = ΛX(IB) = ΛX(h) < ∞. Because h is B(R)-measurable
and (h ◦X) is F-measurable, this step is complete.

Next, suppose h is a simple function that can be written as h =
∑m

k=1 akIAk
for some fixed a1, a2, . . . , am ∈ [0,∞]

and A1, A2, . . . , Am ∈ B(R). For every ω ∈ Ω,

(h ◦X)(ω) =

m∑
k=1

akIAk
(X(ω)) =

m∑
k=1

akIX−1(Ak)(ω).
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Therefore, P(h ◦ X) =
∑m

k=1 akP(X−1(Ak)) =
∑m

k=1 akΛX(Ak) = ΛX(
∑m

k=1 akIAk
) = ΛX(h). Because h is

B(R)-measurable and (h ◦X) is F-measurable, this step is complete since ΛX(h) < ∞ if and only if P(h ◦X) < ∞.
Next, suppose h is a non-negative Borel function. For any n ∈ N, consider the simple function hn = αn◦h, where

αn is the n-th staircase function. Because hn ↑ h, the monotone-convergence theorem implies that ΛX(hn) ↑ ΛX(h).
Similarly, consider the simple function αn◦(h◦X) = (αn◦h)◦X = hn◦X. Because (hn◦X) ↑ (h◦X), the monotone-
convergence theorem implies that P(hn◦X) ↑ P(h◦X). Because our previous result implies that P(hn◦X) = ΛX(hn),
the limit when n → ∞ shows that P(h ◦X) = ΛX(h). Because h is Borel and (h ◦X) is F-measurable, this step is
complete since ΛX(h) < ∞ if and only if P(h ◦X) < ∞.

Finally, suppose h is a Borel function. Recall that h = h+ − h−, where h+ and h− are non-negative Borel
functions. Therefore, if either P(|h ◦X|) < ∞ or ΛX(|h|) < ∞, then

P(h ◦X) = P((h ◦X)+)− P((h ◦X)−) = P(h+ ◦X)− P(h− ◦X) = ΛX(h+)− ΛX(h−) = ΛX(h) < ∞,

where the second equality follows from associativity. Because h is B(R)-measurable and (h ◦X) is F-measurable,
this completes the proof, since P(|h◦X|) = ΛX(|h|) = ∞ implies (h◦X) /∈ L1(Ω,F ,P) and h /∈ L1(R,B(R),ΛX).

Definition 6.14. Consider a probability triple (Ω,F ,P). A random variable X : Ω → R has a probability density
function fX if fX : R → [0,∞] is a Borel function such that the law ΛX of X is given by

ΛX(B) = P(X−1(B)) = Leb(fX ;B) = Leb(fXIB) =
∫
B

fX dLeb,

for every B ∈ B(R), where Leb is the Lebesgue measure on the measurable space (R,B(R)).

Proposition 6.21. In that case, since (R,B(R),Leb) is a measure space and fX : R → [0,∞] is B(R)-measurable,
recall that the measure (fX Leb) on the measurable space (R,B(R)) is given by (fX Leb)(B) = Leb(fX ;B) for every
B ∈ B(R), so that ΛX = (fX Leb). Therefore, using the terminology introduced in the previous section, the law
ΛX of X has density fX relative to the Lebesgue measure Leb, which is denoted by

dΛX

dLeb
= fX .

Proposition 6.22. Consider a random variable X : Ω → R that has a probability density function fX : R → [0,∞].
Furthermore, consider a Borel function gX : R → [0,∞] such that Leb({fX ̸= gX}) = 0. Because these two functions
are non-negative and Leb({fXIB ̸= gXIB}) = 0, we know that Leb(fXIB) = Leb(gXIB), which implies that the
random variable X also has a probability density function gX .

Proposition 6.23. Consider a measure space (S,Σ, µ), a Σ-measurable function f : S → [0,∞], and the measure
λ = (fµ) on (S,Σ). Recall that we say that λ has density f relative to µ, which is denoted by dλ/dµ = f . If
h : S → R is a Σ-measurable function, then h ∈ L1(S,Σ, λ) if and only if hf ∈ L1(S,Σ, µ). Furthermore, in that
case, ∫

S

h dλ = λ(h) = µ(hf) =

∫
S

hf dµ.

Proof. First, note that if h is Σ-measurable then hf is also Σ-measurable.
Next, let h = IA for some A ∈ Σ. In that case, µ(hf) = µ(IAf) = µ(f ;A) = λ(A) = λ(IA) = λ(h). This step is

complete since µ(|hf |) < ∞ if and only if λ(|h|) < ∞.
Next, suppose h is a simple function that can be written as h =

∑m
k=1 akIAk

for some fixed a1, a2, . . . , am ∈ [0,∞]
and A1, A2, . . . , Am ∈ Σ. By the linearity of the integral and considering the previous step,

µ(hf) = µ

(
m∑

k=1

akIAk
f

)
=

m∑
k=1

akµ(IAk
f) =

m∑
k=1

akλ(IAk
) = λ

(
m∑

k=1

akIAk

)
= λ(h).

This step is complete since µ(|hf |) < ∞ if and only if λ(|h|) < ∞.
Next, suppose h is a non-negative Σ-measurable function. For any n ∈ N, consider the simple function hn =

αn ◦ h, where αn is the n-th staircase function. Because hn ↑ h, the monotone-convergence theorem implies that
λ(hn) ↑ λ(h). Similarly, because hnf ↑ hf , the monotone-convergence theorem implies that µ(hnf) ↑ µ(hf).
Because our previous result implies that λ(hn) = µ(hnf), the limit when n → ∞ shows that µ(hf) = λ(h). This
step is complete since µ(|hf |) < ∞ if and only if λ(|h|) < ∞.
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Finally, suppose h : S → R is a Σ-measurable function. Recall that h = h+ − h−, where h+ and h− are
non-negative Σ-measurable functions. If either λ(|h|) < ∞ or µ(|hf |) < ∞, then

µ(hf) = µ((h+ − h−)f) = µ(h+f)− µ(h−f) = λ(h+)− λ(h−) = λ(h) < ∞.

Since λ(|h|) = µ(|hf |) = ∞ implies h /∈ L1(S,Σ, λ) and hf /∈ L1(S,Σ, µ), the proof is complete.

Proposition 6.24. Consider a probability triple (Ω,F ,P) and a random variable X : Ω → R with a probability
density function fX : R → [0,∞]. Recall that the law ΛX = (fX Leb) of X has density fX relative to Leb, which
is denoted by dΛX/dLeb = fX . If h : R → R is a Borel function, the fact that (R,B(R),Leb) is a measure space
implies that h ∈ L1(R,B(R),ΛX) if and only if hfX ∈ L1(R,B(R),Leb). Furthermore, in that case,∫

R
h dΛX = ΛX(h) = Leb(hfX) =

∫
R
hfX dLeb .

Definition 6.15. Consider a measure space (S,Σ, µ). For every p ∈ [1,∞), the set Lp(S,Σ, µ) contains exactly
each Σ-measurable function f : S → R such that µ(|f |p) < ∞. If f ∈ Lp(S,Σ, µ), the p-norm ∥f∥p of the function
f is given by ∥f∥p = µ(|f |p)1/p.

Proposition 6.25. Suppose that p > 1 and p−1 + q−1 = 1. Furthermore, suppose f, g ∈ Lp(S,Σ, µ) and h ∈
Lq(S,Σ, µ). Hölder’s inequality states that fh ∈ L1(S,Σ, µ) and µ(|fh|) ≤ ∥f∥p∥h∥q. Minkowski’s inequality states
that ∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Proof. First, note that fh ∈ L1(S,Σ, µ) and µ(|fh|) ≤ ∥f∥p∥h∥q if and only if |f ||h| ∈ L1(S,Σ, µ) and µ(||f ||h||) ≤
∥|f |∥p∥|h|∥q. Therefore, we only need to consider the case where f and h are non-negative. In that case, if µ(fp) = 0,
then 0 = µ({fp > 0}) = µ({f ̸= 0}) ≥ µ({fh ̸= 0}) and µ(fh) = 0, so that Hölder’s inequality is trivial.

Consider the case where f and h are non-negative and 0 < µ(fp) < ∞. Let P : Σ → [0, 1] be given by

P(A) =
(fpµ)(A)

µ(fp)
=

µ(fp;A)

µ(fp)
=

µ(fpIA)
µ(fp)

= µ

(
fp

µ(fp)
IA
)

= µ

(
fp

µ(fp)
;A

)
.

The function P is a probability measure on (S,Σ). Clearly, P(S) = 1 and P(∅) = 0. Because (fpµ) is a measure
on (S,Σ), for any sequence (An ∈ Σ | n ∈ N) such that An ∩Am = ∅ for n ̸= m,

P

(⋃
n

An

)
=

(fpµ)(∪nAn)

µ(fp)
=

∑
n(f

pµ)(An)

µ(fp)
=
∑
n

(fpµ)(An)

µ(fp)
=
∑
n

P(An).

Note that the probability measure P has density fp/µ(fp) relative to µ, so that dP/dµ = fp/µ(fp). Therefore,
if v : S → R is a Σ-measurable function, then v ∈ L1(S,Σ,P) if and only if vfp/µ(fp) ∈ L1(S,Σ, µ). In that case,∫

S

v dP = P(v) = µ

(
vfp

µ(fp)

)
=

∫
S

vfp

µ(fp)
dµ.

Consider the Σ-measurable function u : S → [0,∞] given by

u(s) =

{
h(s)

f(s)p−1 , if f(s) > 0,

0, if f(s) = 0.

By inspecting the pointwise definition of ufp,

P(u) = µ

(
ufp

µ(fp)

)
=

µ (ufp)

µ(fp)
=

µ(hf)

µ(fp)
.

Similarly, by inspecting the pointwise definition of uqfp and using the fact that q(p− 1) = p,

P(uq) = µ

(
uqfp

µ(fp)

)
=

µ (uqfp)

µ(fp)
=

µ(hqI{f>0})

µ(fp)
.

Suppose P(u) = ∞. In that case, P(u) = P(uI{u<1})+P(uI{u≥1}) = ∞. The fact that P(uI{u<1}) ≤ P(I{u<1}) =
P({u < 1}) ≤ 1 implies that P(uI{u≥1}) = ∞. Consequently, P(uq) ≥ P(uqI{u≥1}) ≥ P(uI{u≥1}) = ∞, so that
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P(uq) ≥ P(u)q. In contrast, suppose P(u) < ∞. Consider the convex function ϕ : R → R given by ϕ(x) = |x|q.
Jensen’s inequality also guarantees that P(uq) ≥ P(u)q. Therefore,

µ(hqI{f>0})

µ(fp)
≥ µ(hf)q

µ(fp)q
.

By multiplying both sides of the previous inequality by µ(fp)q,

µ(hqI{f>0})
µ(fp)q

µ(fp)
= µ(hqI{f>0})µ(f

p)q−1 ≥ µ(hf)q.

Because µ(hq) ≥ µ(hqI{f>0}),

µ(hq)µ(fp)q−1 ≥ µ(hf)q.

From the definition of norm and using the fact that p(q − 1) = q,

∥h∥qq∥f∥qp ≥ µ(hf)q,

which completes the proof of Hölder’s inequality.
In order to show Minkowski’s inequality, recall that |f + g| ≤ |f |+ |g|. Therefore,

|f + g|p = |f + g||f + g|p−1 ≤ |f ||f + g|p−1 + |g||f + g|p−1.

By integrating both sides of the previous inequality with respect to µ and employing Hölder’s inequality,

µ(|f + g|p) ≤ µ(|f ||f + g|p−1) + µ(|g||f + g|p−1) ≤ ∥f∥p∥|f + g|p−1∥q + ∥g∥p∥|f + g|p−1∥q.

Note that ∥|f + g|p−1∥q = µ(||f + g|p−1|q)1/q = µ(|f + g|p)1/q < ∞ because q(p− 1) = p. Therefore,

µ(|f + g|p) ≤ (∥f∥p + ∥g∥p)µ(|f + g|p)1/q.

By dividing both sides of the previous inequality by µ(|f + g|p)1/q and using the fact that p−1 = 1− q−1,

∥f + g∥p = µ(|f + g|p)1/p ≤ ∥f∥p + ∥g∥p.

7 Strong law
Proposition 7.1. Consider a probability triple (Ω,F ,P), a random variable X ∈ L1(Ω,F ,P) and a random variable
Y ∈ L1(Ω,F ,P). If X and Y are independent, then XY ∈ L1(Ω,F ,P) and E(XY ) = E(X)E(Y ).

Proof. First, suppose that X and Y are non-negative and let αn denote the n-th staircase function. For any
n ∈ N, consider the simple function Xn = αn ◦ X =

∑mx

kx=1 akxIAkx
, where a1, . . . , amx ∈ [0, n] are distinct and

A1, . . . , Amx
∈ F partition Ω. Similarly, consider the simple function Yn = αn ◦ Y =

∑my

ky=1 bky
IBky

, where
b1, . . . , bmy

∈ [0, n] are distinct and B1, . . . , Bmy
∈ F partition Ω. In that case,

E(Xn) = E

(
mx∑

kx=1

akx
IAkx

)
=

mx∑
kx=1

akx
P(Akx

),

E(Yn) = E

 my∑
ky=1

bky
IBky

 =

my∑
ky=1

bky
P(Bky

).

Because Xn ↑ X, the monotone-convergence theorem guarantees that E(Xn) ↑ E(X). Similarly, because Yn ↑ Y ,
the monotone-convergence theorem guarantees that E(Yn) ↑ E(Y ). Because E(X) < ∞ and E(Y ) < ∞, we also
know that E(Xn)E(Yn) ↑ E(X)E(Y ). By distributing terms and using the fact that IAkx

IBky
= IAkx∩Bky

,

E(XnYn) = E

( mx∑
kx=1

akxIAkx

) my∑
ky=1

bky IBky

 = E

 mx∑
kx=1

my∑
ky=1

akx
bky

IAkx∩Bky

 =

mx∑
kx=1

my∑
ky=1

akx
bky

P(Akx
∩Bky

).

38



Recall that if f : R → R is a Borel function and Z : Ω → R is a random variable, then

σ(f ◦ Z) = {(f ◦ Z)−1(B) | B ∈ B(R)} = {Z−1(f−1(B)) | B ∈ B(R)} ⊆ {Z−1(A) | A ∈ B(R)} = σ(Z).

Recall that X and Y are independent if and only if P(A ∩ B) = P(A)P(B) for every A ∈ σ(X) and B ∈ σ(Y ).
Therefore, Xn and Yn are also independent. Because Akx = X−1

n ({akx}), we know that Akx ∈ σ(Xn). Because
Bky

= Y −1
n ({bky

}), we know that Bky
∈ σ(Yn). Therefore,

E(XnYn) =

mx∑
kx=1

my∑
ky=1

akx
bky

P(Akx
)P(Bky

) =

(
mx∑

kx=1

akx
P(Akx

)

) my∑
ky=1

bky
P(Bky

)

 = E(Xn)E(Yn).

Since Xn ↑ X and Yn ↑ Y imply XnYn ↑ XY , the monotone-convergence theorem guarantees that E(XnYn) ↑
E(XY ). Since E(XnYn) = E(Xn)E(Yn), taking the limit when n → ∞ shows that E(XY ) = E(X)E(Y ) < ∞,
which completes the proof when X and Y are non-negative.

Finally, let X = X+ −X−, where X+ ∈ L1(Ω,F ,P) and X− ∈ L1(Ω,F ,P) are non-negative. Analogously, let
Y = Y + − Y −. Because the absolute value function is Borel, we know that XY ∈ L1(Ω,F ,P). Therefore,

E(XY ) = E
(
(X+ −X−)(Y + − Y −)

)
= E(X+Y +)− E(X+Y −)− E(X−Y +) + E(X−Y −).

Since X and Y are independent, each pair of variables inside an expectation above is independent. Therefore,

E(XY ) = E(X+)E(Y +)− E(X+)E(Y −)− E(X−)E(Y +) + E(X−)E(Y −) = (E(X+)− E(X−))(E(Y +)− E(Y −)),

which completes the proof.

Proposition 7.2. Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). If X and Y are indepen-
dent, the previous result guarantees that Cov(X,Y ) = 0 and Var(X + Y ) = Var(X) + Var(Y ).

Proposition 7.3. Consider a probability triple (Ω,F ,P), a random variable X : Ω → R, and the random variables
Y1, . . . , Yn, where n ∈ N+. Suppose that X,Y1, . . . , Yn are independent. If f : Rn → R is a Borel function and
Z : Ω → R is a random variable given by Z(ω) = f(Y1(ω), . . . , Yn(ω)), then X and Z are independent.

Proof. First, recall that a previous result establishes that Z is σ({Y1, . . . , Yn})-measurable, so that

σ(Z) ⊆ σ({Y1, . . . , Yn}) = σ({Y −1
i (B) | i ∈ {1, . . . , n}, B ∈ B(R)}) = σ

(
n⋃

i=1

σ(Yi)

)
.

Therefore, if σ(X) and σ({Y1, . . . , Yn}) are independent, then X and Z are independent.
Consider the set I = {∩n

i=1Ai | (A1, . . . , An) ∈ σ(Y1)× · · · × σ(Yn)}. If B ∈ I and C ∈ I, then B = ∩n
i=1Ai and

C = ∩n
i=1A

′
i, where Ai ∈ σ(Yi) and A′

i ∈ σ(Yi) for every i ∈ {1, . . . , n}. Because

B ∩ C =

(
n⋂

i=1

Ai

)
∩

(
n⋂

i=1

A′
i

)
=

n⋂
i=1

(Ai ∩A′
i)

and (Ai ∩A′
i) ∈ σ(Yi) for every i ∈ {1, . . . , n}, we know that (B ∩ C) ∈ I. Therefore, I is a π-system on Ω.

Let J = σ(X) and note that J is also a π-system on Ω. Consider a set (∩n
i=1Ai) ∈ I, where Ai ∈ σ(Yi) for

every i ∈ {1, . . . , n}, and a set B ∈ J . Since X,Y1, . . . , Yn are independent,

P

((
n⋂

i=1

Ai

)
∩B

)
=

(
n∏

i=1

P(Ai)

)
P(B) = P

(
n⋂

i=1

Ai

)
P(B),

which implies that I and J are independent. Because σ(I) and σ(J ) are then independent from a previous result
and σ(J ) = σ(X), the proof will be complete if σ(I) = σ({Y1, . . . , Yn}), which we will now show.

Note that Ω ∈ σ(Yi) for every i ∈ {1, . . . , n}, which implies σ(Yi) ⊆ I for every i ∈ {1, . . . , n}. Therefore,
∪n
i=1σ(Yi) ⊆ I and σ(∪n

i=1σ(Yi)) = σ({Y1, . . . , Yn}) ⊆ σ(I).
Consider a set (∩n

i=1Ai) ∈ I, where Ai ∈ σ(Yi) for every i ∈ {1, . . . , n}. Clearly, Ai ∈ ∪n
j=1σ(Yj). Because

σ(∪n
j=1σ(Yj)) = σ({Y1, . . . , Yn}) is a σ-algebra, we know that (∩n

i=1Ai) ∈ σ({Y1, . . . , Yn}), which implies I ⊆
σ({Y1, . . . , Yn}) and σ(I) ⊆ σ({Y1, . . . , Yn}).
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Theorem 7.1 (Strong law of large numbers for a finite fourth moment). Consider a probability triple (Ω,F ,P)
and a sequence of independent random variables (Xk : Ω → R | k ∈ N+). Furthermore, suppose E(Xk) = 0 and
E(X4

k) ≤ K for some K ∈ [0,∞), for every k ∈ N+. In that case,

P

(
lim
n→∞

1

n

n∑
k=1

Xk = 0

)
= 1.

Proof. Consider the random variable Sn =
∑n

k=1 Xk. From the multinomial theorem,

S4
n =

(
n∑

k=1

Xk

)4

=
∑

(k1,...,kn)∈I
(n)
4

4!

k1! · · · kn!

n∏
t=1

Xkt
t ,

where I(n)p = {(k1, . . . , kn) | ki ∈ {0, . . . , p} for every i ∈ {1, . . . , n} and
∑

i ki = p}. By the linearity of expectation,

E(S4
n) =

∑
(k1,...,kn)∈I

(n)
4

4!

k1! · · · kn!
E

(
n∏

t=1

Xkt
t

)
.

From the restrictions imposed on (k1, . . . , kn) ∈ I
(n)
4 , the expectation E

(∏n
t=1 X

kt
t

)
can be written as either

E(X4
i ), E(X3

i Xj), E(X2
i X

2
j ), E(X2

i XjXk), or E(XiXjXkXl), where i, j, k, l ∈ {1, . . . , n} are distinct indices.
Consider the expectation E(X3

i Xj). Because Xi and Xj are independent, X3
i and Xj are independent. By the

monotonicity of the norm, X3
i ∈ L1(Ω,F ,P) and Xj ∈ L1(Ω,F ,P). Therefore, E(X3

i Xj) = E(X3
i )E(Xj) = 0.

Consider the expectation E(X2
i XjXk). Because X2

i , Xj , Xk are independent, X2
i Xj and Xk are independent. By

the monotonicity of the norm, X2
i ∈ L1(Ω,F ,P), Xj ∈ L1(Ω,F ,P), and Xk ∈ L1(Ω,F ,P). Due to independence,

X2
i Xj ∈ L1(Ω,F ,P). Therefore, E(X2

i XjXk) = E(X2
i Xj)E(Xk) = 0.

Consider the expectation E(XiXjXkXl). Because Xi, Xj , Xk, Xl are independent, XiXjXk and Xl are in-
dependent. By the monotonicity of the norm, Xi, Xj , Xk, Xl ∈ L1(Ω,F ,P). Because Xi and Xj are inde-
pendent, XiXj ∈ L1(Ω,F ,P). Because XiXj and Xk are independent, XiXjXk ∈ L1(Ω,F ,P). Therefore,
E(XiXjXkXl) = E(XiXjXk)E(Xl) = 0.

These observations allow rewriting the expectation E(S4
n) as

E(S4
n) =

n∑
i=1

E(X4
i ) + 6

n−1∑
i=1

n∑
j=i+1

E(X2
i X

2
j ).

For every k ∈ N+, recall that ∥Xk∥2 = E(X2
k)

1/2 ≤ E(X4
k)

1/4 = ∥Xk∥4. Therefore, E(X2
k) ≤ E(X4

k)
1/2 ≤ K1/2.

For every i ̸= j, X2
i and X2

j are independent and X2
i , X

2
j ∈ L1(Ω,F ,P) by the monotonicity of the norm. Therefore,

E(X2
i X

2
j ) = E(X2

i )E(X2
j ) ≤ E(X4

i )
1/2E(X4

j )
1/2 ≤ K.

Consequently,

E(S4
n) ≤

n∑
i=1

K + 6

n−1∑
i=1

n∑
j=i+1

K = nK + 3n(n− 1)K = K(3n2 − 2n) ≤ 3Kn2.

Because E(S4
n/n

4) ≤ 3K/n2 for every n ∈ N+,
k∑

n=1

E
(
S4
n

n4

)
≤ 3K

k∑
n=1

1

n2
.

Because the summation on the right of the inequality above converges to a real number when k → ∞,∑
n

E
(
S4
n

n4

)
< ∞.

Since S4
n/n

4 is a non-negative random variable for every n ∈ N+, a previous result guarantees that

P
(

lim
n→∞

S4
n

n4
= 0

)
= P

(
lim

n→∞

Sn

n
= 0

)
= P

(
lim
n→∞

1

n

n∑
k=1

Xk = 0

)
= 1.
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Proposition 7.4. Consider a probability triple (Ω,F ,P) and a sequence of independent random variables (Xk :
Ω → R | k ∈ N+). Furthermore, suppose E(Xk) = µ and E(X4

k) ≤ K for some µ ∈ R and K ∈ [0,∞), for every
k ∈ N+. As a corollary, the strong law of large numbers for a finite fourth moment guarantees that

P

(
lim
n→∞

1

n

n∑
k=1

Xk = µ

)
= 1.

Proof. For every k ∈ N+, let Yk = Xk − µ. By the monotonicity of the norm, Xk ∈ L1(Ω,F ,P), so that E(Yk) =
E(Xk) − µ = 0. Furthermore, (Yk : Ω → R | k ∈ N+) is a sequence of independent random variables, since
σ(Yk) ⊆ σ(Xk). Using Minkowski’s inequality and the fact that Xk ∈ L4(Ω,F ,P),

∞ > ∥Xk∥4 + |µ| = ∥Xk∥4 + ∥ − µIΩ∥4 ≥ ∥Xk − µIΩ∥4 = ∥Xk − µ∥4 = ∥Yk∥4.

Therefore, E(Y 4
k ) ≤ K ′ for some K ′ ∈ [0,∞). Using the strong law of large numbers for a finite fourth moment,

P

(
lim
n→∞

1

n

n∑
k=1

Yk = 0

)
= P

(
lim

n→∞

1

n

n∑
k=1

Xk = µ

)
= 1

Proposition 7.5 (Chebyshev’s inequality). Consider a random variable X ∈ L2(Ω,F ,P) and let µ = E(X). For
c ≥ 0,

Var(X) = E(|X − µ|2) ≥ c2P(|X − µ| ≥ c),

which is a consequence of Markov’s inequality.

Example 7.1. Consider the probability triple (Ω,F ,P) and a sequence of independent and identically distributed
random variables (Xk : Ω → {0, 1} | k ∈ N+). Let p = E(Xk) = E(I{Xk=1}) = P(Xk = 1). Since X2

k = Xk,
Xk ∈ L2(Ω,F ,P) and Var(Xk) = E(X2

k)− E(Xk)
2 = p− p2, so that Var(Xk) ≤ 1/4.

Let Sn =
∑n

k=1 Xk. so that E(Sn) =
∑n

k=1 E(Xk) = np. Due to independence,

Var (Sn) = Var

(
n∑

k=1

Xk

)
=

n∑
k=1

Var(Xk) =

n∑
k=1

p− p2 = n(p− p2) ≤ n

4
.

For any Y ∈ L2(Ω,F ,P) and a ∈ R, Var(aY ) = E((aY )2) − E(aY )2 = a2E(Y 2) − a2E(Y )2 = a2 Var(Y ).
Therefore, E(Sn/n) = p and Var(Sn/n) ≤ 1/4n. Using Chebyshev’s inequality, for any δ > 0,

P

(∣∣∣∣∣
(
1

n

n∑
k=1

Xk

)
− p

∣∣∣∣∣ ≥ δ

)
≤ 1

4nδ2
.

8 Product measure
Consider a measurable space (S1,Σ1) and a measurable space (S2,Σ2). Let S = S1 × S2.

Proposition 8.1. Consider the functions ρ1 : S → S1 and ρ2 : S → S2 given by ρ1(s1, s2) = s1 and ρ2(s1, s2) = s2.
For B1 ∈ Σ1 and B2 ∈ Σ2, let

ρ−1
1 (B1) = {(s1, s2) ∈ S | ρ1(s1, s2) ∈ B1} = {(s1, s2) ∈ S | s1 ∈ B1} = B1 × S2,

ρ−1
2 (B2) = {(s1, s2) ∈ S | ρ2(s1, s2) ∈ B2} = {(s1, s2) ∈ S | s2 ∈ B2} = S1 ×B2.

For i ∈ {1, 2}, let Ai = {ρ−1
i (Bi) | Bi ∈ Σi}. In that case, Ai is a σ-algebra on S.

Proof. First, note that ρ−1
i (Si) = S and Si ∈ Σi. Therefore, S ∈ Ai. Consider an element ρ−1

i (Bi) ∈ Ai.
Note that Bc

i ∈ Σi and ρ−1
i (Bc

i ) = ρ−1
i (Bi)

c. Therefore, ρ−1
i (Bi)

c ∈ Ai. Finally, consider a sequence of sets
(ρ−1

i (Bi,j) ∈ Ai | j ∈ N). Note that ∪jBi,j ∈ Σi and ρ−1
i (∪jBi,j) = ∪jρ

−1
i (Bi,j). Therefore, ∪jρ

−1
i (Bi,j) ∈ Ai.
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Definition 8.1. Considering the previous result, let σ(ρ1) and σ(ρ2) denote the σ-algebras on S given by

σ(ρ1) = A1 = {ρ−1
1 (B1) | B1 ∈ Σ1} = {B1 × S2 | B1 ∈ Σ1},

σ(ρ2) = A2 = {ρ−1
2 (B2) | B2 ∈ Σ2} = {S1 ×B2 | B2 ∈ Σ2}.

Definition 8.2. The product Σ between the σ-algebras Σ1 and Σ2 is a σ-algebra on S denoted by Σ1 × Σ2 but
defined by

Σ = Σ1 × Σ2 = σ({ρ1, ρ2}) = σ(σ(ρ1) ∪ σ(ρ2)),

which should not be confused with the Cartesian product between Σ1 and Σ2.

Proposition 8.2. If I = {B1 ×B2 | B1 ∈ Σ1 and B2 ∈ Σ2} and Σ = Σ1 × Σ2, then σ(I) = Σ.

Proof. For any B1 ∈ Σ1 and B2 ∈ Σ2, note that

B1 ×B2 = (B1 ∩ S1)× (S2 ∩B2) = (B1 × S2) ∩ (S1 ×B2).

Suppose B1 ×B2 ∈ I and B′
1 ×B′

2 ∈ I. In that case, (B1 ×B2)∩ (B′
1 ×B′

2) = (B1 ∩B′
1)× (B2 ∩B′

2). Because
(B1 ∩B′

1) ∈ Σ1 and (B2 ∩B′
2) ∈ Σ2, this implies that I is a π-system on S.

For any B1 × B2 ∈ I, we know that B1 × B2 ∈ Σ because (B1 × S2) ∈ σ(ρ1) and (S1 × B2) ∈ σ(ρ1). Since Σ
is a σ-algebra, σ(I) ⊆ Σ. For any B1 ∈ Σ1 and B2 ∈ Σ2, we know that B1 × S2 ∈ I and S1 × B2 ∈ I. Therefore,
σ(ρ1) ∪ σ(ρ2) ⊆ I. Because σ(I) is a σ-algebra, Σ ⊆ σ(I).

Proposition 8.3. Consider a measurable space (S1,Σ1) and a measurable space (S2,Σ2). Furthermore, consider
the measurable space (S,Σ), where S = S1 × S2 and Σ = Σ1 × Σ2. Let H denote a set that contains exactly
each bounded Σ-measurable function f : S → R for which there is a Σ2-measurable function fs1 : S2 → R and a
Σ1-measurable function fs2 : S1 → R such that f(s1, s2) = fs1(s2) = fs2(s1) for every s1 ∈ S1 and s2 ∈ S2. In that
case, H contains every bounded Σ-measurable function on S, so that H = bΣ.

Proof. Note that the set of bounded Σ-measurable functions bΣ is a vector space over the field R when scalar
multiplication and addition are performed pointwise, Because H ⊆ bΣ, showing that H is a vector space only
requires showing that H is non-empty and closed under scalar multiplication and addition. For every s1 ∈ S1 and
s2 ∈ S2, let f = IS , fs1 = IS2

, and fs2 = IS1
, so that that IS(s1, s2) = IS2

(s2) = IS1
(s1) = 1. Clearly, f ∈ H.

Now suppose f ∈ H and a ∈ R. Note that af ∈ bΣ. For every s1 ∈ S1 and s2 ∈ S2, also note that afs1 is
Σ2-measurable, afs2 is Σ1-measurable, and (af)(s1, s2) = (afs1)(s2) = (afs2)(s1). Therefore, af ∈ H. Finally,
suppose that g, h ∈ H. Note that g+ h ∈ bΣ. For every s1 ∈ S1 and s2 ∈ S2, note that gs1 + hs1 is Σ2-measurable,
gs2 + hs2 is Σ1-measurable, and (g + h)(s1, s2) = (gs1 + hs1)(s2) = (gs2 + hs2)(s1). Therefore, g + h ∈ H.

Suppose (fn ∈ H | n ∈ N) is a sequence of non-negative functions in H such that fn ↑ f , where f : S → [0,∞) is
a bounded function. Note that f ∈ bΣ, since f is the limit of a sequence of (bounded) Σ-measurable functions. For
every s1 ∈ S1 and s2 ∈ S2, note that fs1 = limn→∞ fn,s1 is Σ2-measurable, fs2 = limn→∞ fn,s2 is Σ1-measurable,
and f(s1, s2) = fs1(s2) = fs2(s1). Therefore, f ∈ H.

Consider the π-system I = {B1 × B2 | B1 ∈ Σ1 and B2 ∈ Σ2} and the indicator function f = IB1×B2
of a set

B1 ×B2 ∈ I. Note that f is a bounded Σ-measurable function, since B1 ×B2 ∈ Σ. For every s1 ∈ S1 and s2 ∈ S2,
note that fs1 = IB1(s1)IB2 is Σ2-measurable, fs2 = IB2(s2)IB1 is Σ1-measurable, and f(s1, s2) = fs1(s2) = fs2(s1).
Therefore, f ∈ H. Since σ(I) = Σ, the monotone-class theorem completes the proof.

Proposition 8.4. Consider a measure space (S1,Σ1, µ1), a measure space (S2,Σ2, µ2), and the measurable space
(S,Σ), where S = S1 × S2 and Σ = Σ1 × Σ2. Furthermore, suppose µ1 and µ2 are finite measures.

For any bounded Σ-measurable function f : S → R, let If1 : S1 → R and If2 : S2 → R be given by

If1 (s1) =

∫
S2

f(s1, s2)µ2(ds2) =

∫
S2

fs1(s2)µ2(ds2) = µ2(fs1),

If2 (s2) =

∫
S1

f(s1, s2)µ1(ds1) =

∫
S1

fs2(s1)µ1(ds1) = µ1(fs2),

where fs1 : S2 → R is a Σ2-measurable function, fs2 : S1 → R is a Σ1-measurable function, and f(s1, s2) =
fs1(s2) = fs2(s1), for every s1 ∈ S1 and s2 ∈ S2. Note that µ2(|fs1 |) < ∞ because µ2 is finite and |fs1 | ∈ bΣ2.
Similarly, µ1(|fs2 |) < ∞ because µ1 is finite and |fs2 | ∈ bΣ1. Therefore, If1 and If2 are bounded.
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Let H denote a set that contains exactly each function f ∈ bΣ such that If1 ∈ bΣ1 and If2 ∈ bΣ2 and

µ1(I
f
1 ) =

∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2) = µ2(I
f
2 ).

In that case, H contains every bounded Σ-measurable function on S, so that H = bΣ.

Proof. Because H ⊆ bΣ, showing that H is a vector space only requires showing that H is non-empty and closed
under scalar multiplication and addition. For every s1 ∈ S1 and s2 ∈ S2, let f = IS , fs1 = IS2

, and fs2 = IS1
, so

that If1 (s1) = µ2(IS2
) = µ2(S2)IS1

(s1) and If2 (s2) = µ1(IS1
) = µ1(S1)IS2

(s2). Because S1 ∈ Σ1, we have If1 ∈ bΣ1.
Similarly, because S2 ∈ Σ2, we have If2 ∈ bΣ2. In that case, f ∈ H, since

µ1(I
f
1 ) =

∫
S1

µ2(S2)IS1(s1)µ1(ds1) = µ1(S1)µ2(S2) =

∫
S2

µ1(S1)IS2(s2)µ2(ds2) = µ2(I
f
2 ).

Now suppose that f ∈ H and a ∈ R. Note that af ∈ bΣ. For every s1 ∈ S1 and s2 ∈ S2, note that
Iaf1 (s1) = µ2(afs1) = aµ2(fs1) = aIf1 (s1) and Iaf2 (s2) = µ1(afs2) = aµ1(fs2) = aIf2 (s2). Clearly, Iaf1 ∈ bΣ1 and
Iaf2 ∈ bΣ2. Therefore, af ∈ H, since the fact that µ1(I

f
1 ) = µ2(I

f
2 ) implies

µ1(I
af
1 ) =

∫
S1

aIf1 (s1)µ1(ds1) = aµ1(I
f
1 ) = aµ2(I

f
2 ) =

∫
S2

aIf2 (s2)µ2(ds2) = µ2(I
af
2 ).

Finally, suppose that g, h ∈ H. Note that g + h ∈ bΣ. For every s1 ∈ S1 and s2 ∈ S2, note that Ig+h
1 (s1) =

µ2(gs1+hs1) = µ2(gs1)+µ2(hs1) = Ig1 (s1)+Ih1 (s1) and Ig+h
2 (s2) = µ1(gs2+hs2) = µ1(gs2)+µ1(hs2) = Ig2 (s2)+Ih2 (s2).

Clearly, Ig+h
1 ∈ bΣ1 and Ig+h

2 ∈ bΣ2. Therefore, g + h ∈ H, since µ1(I
g
1 ) = µ2(I

g
2 ) and µ1(I

h
1 ) = µ2(I

h
2 ) imply∫

S1

[
Ig1 (s1) + Ih1 (s1)

]
µ1(ds1) = µ1(I

g
1 ) + µ1(I

h
1 ) = µ2(I

g
2 ) + µ2(I

h
2 ) =

∫
S2

[
Ig2 (s2) + Ih2 (s2)

]
µ2(ds2).

Suppose (fn ∈ H | n ∈ N) is a sequence of non-negative functions in H such that fn ↑ f , where f : S → [0,∞)
is a bounded function. Note that f ∈ bΣ, since f is the limit of a sequence of (bounded) Σ-measurable functions.

For every s1 ∈ S1 and s2 ∈ S2, note that fn,s1 ↑ fs1 and fn,s2 ↑ fs2 , so that the monotone-convergence theorem
implies that µ2(fn,s1) ↑ µ2(fs1) and µ1(fn,s2) ↑ µ1(fs2). Therefore,

If1 (s1) = µ2(fs1) = lim
n→∞

µ2(fn,s1) = lim
n→∞

Ifn1 (s1),

If2 (s2) = µ1(fs2) = lim
n→∞

µ1(fn,s2) = lim
n→∞

Ifn2 (s2).

Because If1 is the limit of (bounded) Σ1-measurable functions, If1 ∈ bΣ1. Similarly, because If2 is the limit of
(bounded) Σ2-measurable functions, If2 ∈ bΣ2. Furthermore, Ifn1 ↑ If1 and Ifn2 ↑ If2 , since fn+1 ≥ fn implies

I
fn+1

1 (s1) = µ2(fn+1,s1) ≥ µ2(fn,s1) = Ifn1 (s1),

I
fn+1

2 (s2) = µ1(fn+1,s2) ≥ µ1(fn,s2) = Ifn2 (s2).

Therefore, f ∈ H, since the monotone-convergence theorem implies that

µ1(I
f
1 ) = lim

n→∞
µ1(I

fn
1 ) = lim

n→∞
µ2(I

fn
2 ) = µ2(I

f
2 ).

Consider the π-system I = {B1 × B2 | B1 ∈ Σ1 and B2 ∈ Σ2} and the indicator function f = IB1×B2
of a

set B1 × B2 ∈ I. Note that f is a bounded Σ-measurable function, since B1 × B2 ∈ Σ. For every s1 ∈ S1 and
s2 ∈ S2, note that If1 (s1) = µ2(IB1(s1)IB2) = IB1(s1)µ2(B2) and If2 (s2) = µ1(IB2(s2)IB1) = IB2(s2)µ1(B1). Clearly,
If1 ∈ bΣ1 and If2 ∈ bΣ2. Therefore, f ∈ H, since

µ1(I
f
1 ) = µ1(µ2(B2)IB1

) = µ1(B1)µ2(B2) = µ2(µ1(B1)IB2
) = µ2(I

f
2 ).

Because σ(I) = Σ, the monotone-class theorem completes the proof.
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Consider a measure space (S1,Σ1, µ1), a measure space (S2,Σ2, µ2), and the measurable space (S,Σ), where
S = S1 × S2 and Σ = Σ1 × Σ2. Furthermore, suppose µ1 and µ2 are finite measures.

Definition 8.3. For any F ∈ Σ, define µ(F ) by

µ(F ) = µ1(I
IF
1 ) =

∫
S1

IIF1 (s1)µ1(ds1) =

∫
S2

IIF2 (s2)µ2(ds2) = µ2(I
IF
2 ).

The function µ is called the product measure of µ1 and µ2 and denoted by µ = µ1 × µ2.

Proposition 8.5. The function µ = µ1×µ2 is the unique measure on (S,Σ) such that µ(B1×B2) = µ1(B1)µ2(B2)
for every B1 ∈ Σ1 and B2 ∈ Σ2.

Proof. Consider the π-system I = {B1 × B2 | B1 ∈ Σ1 and B2 ∈ Σ2}, the indicator function f = IB1×B2
of a set

B1 ×B2 ∈ I, and recall that µ1(I
f
1 ) = µ1(B1)µ2(B2) = µ2(I

f
2 ). Therefore, µ(∅) = µ1(∅)µ2(∅) = 0.

Consider a sequence (Fn ∈ Σ | n ∈ N) such that Fn ∩ Fm = ∅ for n ̸= m. Furthermore, consider the sequence of
non-negative (bounded) Σ-measurable functions (fn : S → {0, 1} | n ∈ N) given by

fn = I∪n
k=0Fk

=

n∑
k=0

IFk
.

Let f = I∪kFk
so that fn ↑ f . Because f is a bounded function,

µ

(⋃
k

Fk

)
= µ1(I

f
1 ) = lim

n→∞
µ1(I

fn
1 ) = lim

n→∞
µ2(I

fn
2 ) = µ2(I

f
2 ).

By the linearity of the integral with respect to µ2,

Ifn1 (s1) =

∫
S2

n∑
k=0

IFk
(s1, s2)µ2(ds2) =

n∑
k=0

∫
S2

IFk
(s1, s2)µ2(ds2) =

n∑
k=0

I
IFk
1 (s1).

By the linearity of the integral with respect to µ1,

µ

(⋃
k

Fk

)
= lim

n→∞
µ1(I

fn
1 ) = lim

n→∞

∫
S1

n∑
k=0

I
IFk
1 (s1)µ1(ds1) = lim

n→∞

n∑
k=0

∫
S1

I
IFk
1 (s1)µ1(ds1) =

∑
k

µ(Fk),

which completes the proof that µ is a measure on (S,Σ). The measure µ is also finite since µ(S1×S2) = µ1(S1)µ2(S2).
Notably, µ is the unique measure on (S,Σ) such that µ(B1 × B2) = µ1(B1)µ2(B2) for every B1 ∈ Σ1 and

B2 ∈ Σ2, since I is a π-system on S such that σ(I) = Σ and µ is a finite measure on (S,Σ).

Proposition 8.6. If f : S → R is a bounded Σ-measurable function, then

µ(f) = µ1(I
f
1 ) =

∫
S1

If1 (s1)µ(ds1) =

∫
S2

If2 (s2)µ2(ds2) = µ2(I
f
2 ).

Proof. Let H denote a set that contains exactly each function f ∈ bΣ such that µ(f) = µ1(I
f
1 ) = µ2(I

f
2 ).

Consider the π-system I = {B1 × B2 | B1 ∈ Σ1 and B2 ∈ Σ2}. Suppose that f = IB1×B2
is the indicator

function of a set B1 × B2 ∈ I. In that case, µ(f) = µ(B1 × B2) = µ1(I
f
1 ) = µ2(I

f
2 ), so that f ∈ H. In particular,

IS ∈ H, since S1 × S2 ∈ I.
Because H ⊆ bΣ and H is non-empty, showing that H is a vector space only requires showing that H is closed

under scalar multiplication and addition.
Suppose that f ∈ H and a ∈ R. Note that af ∈ bΣ and af ∈ L1(S,Σ, µ), so that µ(af) = aµ(f). Because

f ∈ H, we have µ(af) = µ1(aI
f
1 ) = µ1(I

af
1 ) and µ(af) = µ2(aI

f
2 ) = µ2(I

af
2 ), so that af ∈ H.

Now suppose that g, h ∈ H. Note that g + h ∈ bΣ and g + h ∈ L1(S,Σ, µ), so that µ(g + h) = µ(g) + µ(h).
Because g, h ∈ H, we have µ(g + h) = µ1(I

g
1 + Ih1 ) = µ1(I

g+h
1 ) and µ(g + h) = µ2(I

g
2 + Ih2 ) = µ2(I

g+h
2 ), so that

g + h ∈ H.
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Finally, suppose (fn ∈ H | n ∈ N) is a sequence of non-negative functions in H such that fn ↑ f , where
f : S → [0,∞) is a bounded function. By the monotone-convergence theorem, µ(fn) ↑ µ(f). Since fn ∈ H,

µ(f) = lim
n→∞

µ(fn) = lim
n→∞

µ1(I
fn
1 ) = lim

n→∞
µ2(I

fn
2 ) = µ1(I

f
1 ) = µ2(I

f
2 ),

which implies f ∈ H. Because σ(I) = Σ, the monotone-class theorem completes the proof.

Proposition 8.7. If f : S → [0,∞] is a Σ-measurable function, then

µ(f) = µ1(I
f
1 ) =

∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2) = µ2(I
f
2 ),

where the Σ1-measurable function If1 : S1 → [0,∞] and the Σ2-measurable function If2 : S2 → [0,∞] are given by

If1 (s1) =

∫
S2

f(s1, s2)µ2(ds2) =

∫
S2

fs1(s2)µ2(ds2) = µ2(fs1),

If2 (s2) =

∫
S1

f(s1, s2)µ1(ds1) =

∫
S1

fs2(s1)µ1(ds1) = µ1(fs2),

where fs1 : S2 → [0,∞] is a Σ2-measurable function, fs2 : S1 → [0,∞] is a Σ1-measurable function, and f(s1, s2) =
fs1(s2) = fs2(s1), for every s1 ∈ S1 and s2 ∈ S2.

Proof. For any n ∈ N, let fn = αn ◦ f , where αn is the n-th staircase function. Because fn : S → [0, n] is bounded
and Σ-measurable, there is a bounded Σ2-measurable function fn,s1 : S2 → [0, n] and a bounded Σ1-measurable
function fn,s2 : S1 → [0, n] such that fn(s1, s2) = fn,s1(s2) = fn,s2(s1) for every s1 ∈ S1 and s2 ∈ S2. Since fn ↑ f ,
consider the Σ2-measurable function fs1 = limn→∞ fn,s1 and the Σ1-measurable function fs2 = limn→∞ fn,s2 . Note
that f(s1, s2) = fs1(s2) = fs2(s1).

For every s1 ∈ S1 and s2 ∈ S2, note that fn,s1 ↑ fs1 and fn,s2 ↑ fs2 , so that the monotone-convergence theorem
implies that µ2(fn,s1) ↑ µ2(fs1) and µ1(fn,s2) ↑ µ1(fs2). Therefore,

If1 (s1) = µ2(fs1) = lim
n→∞

µ2(fn,s1) = lim
n→∞

Ifn1 (s1),

If2 (s2) = µ1(fs2) = lim
n→∞

µ1(fn,s2) = lim
n→∞

Ifn2 (s2).

Since fn ∈ bΣ, recall that Ifn1 ∈ bΣ1 and Ifn2 ∈ bΣ2. Because If1 is the limit of Σ1-measurable functions,
If1 ∈ mΣ1. Similarly, because If2 is the limit of Σ2-measurable functions, If2 ∈ mΣ2. Furthermore, Ifn1 ↑ If1 and
Ifn2 ↑ If2 , since fn+1 ≥ fn implies

I
fn+1

1 (s1) = µ2(fn+1,s1) ≥ µ2(fn,s1) = Ifn1 (s1),

I
fn+1

2 (s2) = µ1(fn+1,s2) ≥ µ1(fn,s2) = Ifn2 (s2).

Because fn ↑ f , the monotone-convergence theorem implies that µ(fn) ↑ µ(f). Because Ifn1 ↑ If1 and Ifn2 ↑ If2 ,
the monotone-convergence theorem implies that µ1(I

fn
1 ) ↑ µ1(I

f
1 ) and µ2(I

fn
2 ) ↑ µ2(I

f
2 ). Because fn ∈ bΣ,

µ(f) = lim
n→∞

µ(fn) = lim
n→∞

µ1(I
fn
1 ) = µ1(I

f
1 ) = lim

n→∞
µ2(I

fn
2 ) = µ2(I

f
2 ).

Consider the measure spaces (S1,Σ1, µ1) and (S2,Σ2, µ2) and suppose that µ1 and µ2 are finite measures. Let
(S,Σ, µ) = (S1,Σ1, µ1)× (S2,Σ2, µ2) denote the measure space where S = S1 × S2, Σ = Σ1 ×Σ2, and µ = µ1 × µ2.

Theorem 8.1 (Fubini’s theorem). Consider a function f ∈ L1(S,Σ, µ), and recall that f = f+ − f− and |f | =
f++f−, where f+ : S → [0,∞] and f− : S → [0,∞] are non-negative Σ-measurable functions. Therefore, for every
s1 ∈ S1 and s2 ∈ S2,

f(s1, s2) = f+(s1, s2)− f−(s1, s2) = f+
s1(s2)− f−

s1(s2) = f+
s2(s1)− f−

s2(s1),

|f(s1, s2)| = f+(s1, s2) + f−(s1, s2) = f+
s1(s2) + f−

s1(s2) = f+
s2(s1) + f−

s2(s1),
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where f+
s1 : S2 → [0,∞] and f−

s1 : S2 → [0,∞] are non-negative Σ2-measurable functions and f+
s2 : S1 → [0,∞] and

f−
s2 : S1 → [0,∞] are non-negative Σ1-measurable functions.

For every s1 ∈ S1 and s2 ∈ S2, let fs1 = f+
s1 − f−

s1 and fs2 = f+
s2 − f−

s2 , so that f(s1, s2) = fs1(s2) = fs2(s1).
Note that fs1 is Σ2-measurable and fs2 is Σ1-measurable. Furthermore, |fs1 | = f+

s1 + f−
s1 and |fs2 | = f+

s2 + f−
s2 .

Finally, let F f
1 = {s1 ∈ S1 | µ2(|fs1 |) < ∞} and F f

2 = {s2 ∈ S2 | µ1(|fs2 |) < ∞}. In that case,

µ(f) = µ1(I
f
1 ;F

f
1 ) =

∫
F f

1

If1 (s1)µ1(ds1) =

∫
F f

2

If2 (s2)µ2(ds2) = µ2(I
f
2 ;F

f
2 ),

where If1 : S1 → R and If2 : S2 → R are given by

If1 (s1) =

∫
S2

f(s1, s2)µ2(ds2) =

∫
S2

fs1(s2)µ2(ds2) = µ2(fs1),

If2 (s2) =

∫
S1

f(s1, s2)µ1(ds1) =

∫
S1

fs2(s1)µ1(ds1) = µ1(fs2),

for every s1 ∈ F f
1 and s2 ∈ F f

2 .

Proof. Because |f | : S → [0,∞] is a non-negative Σ-measurable function such that µ(|f |) < ∞,

µ(|f |) = µ1(I
|f |
1 ) = µ1(I

f++f−

1 ) = µ1(I
f+

1 + If
−

1 ) < ∞,

µ(|f |) = µ2(I
|f |
2 ) = µ2(I

f++f−

2 ) = µ2(I
f+

2 + If
−

2 ) < ∞.

For every s1 ∈ S1, note that If
+

1 (s1) + If
−

1 (s1) = µ2(f
+
s1) + µ2(f

−
s1) = µ2(|fs1 |). Because µ1(I

f+

1 + If
−

1 ) < ∞,
we know that µ1(S1 \ F f

1 ) = µ1({s1 ∈ S1 | µ2(|fs1 |) = ∞}) = 0. Similarly, for every s2 ∈ S2, note that
If

+

2 (s2) + If
−

2 (s2) = µ1(f
+
s2) + µ1(f

−
s2) = µ1(|fs2 |). Because µ2(I

f+

2 + If
−

2 ) < ∞, we know that µ2(S2 \ F f
2 ) =

µ2({s2 ∈ S2 | µ1(|fs2 |) = ∞}) = 0. Therefore, by the linearity of the integral,

µ(f) = µ(f+)− µ(f−) = µ1(I
f+

1 )− µ1(I
f−

1 ) = µ1(I
f+

1 IF f
1
)− µ1(I

f−

1 IF f
1
) = µ1((I

f+

1 − If
−

1 )IF f
1
) = µ1(I

f
1 ;F

f
1 ),

µ(f) = µ(f+)− µ(f−) = µ2(I
f+

2 )− µ2(I
f−

2 ) = µ2(I
f+

2 IF f
2
)− µ2(I

f−

2 IF f
2
) = µ2((I

f+

2 − If
−

2 )IF f
2
) = µ2(I

f
2 ;F

f
2 ).

Proposition 8.8. Fubini’s theorem is also valid when µ1 and µ2 are σ-finite measures.

Proposition 8.9. Consider the measure space (S,Σ, µ) = (Ω,F ,P)× ([0,∞),B([0,∞)),Leb), where (Ω,F ,P) is a
probability triple. Furthermore, consider a random variable X : Ω → [0,∞]. In that case,

E(X) =

∫
[0,∞)

P(X ≥ x) Leb(dx).

Proof. First, let A = {(ω, x) ∈ S | x ≤ X(ω)} and f(ω, x) = x − X(ω) = ρ2(ω, x) − X(ρ1(ω, x)). Because f is
Σ-measurable and f−1((−∞, 0]) = A, we know that A ∈ Σ. For every (ω, x) ∈ S, note that

IA(ω, x) = I{ω∈Ω|x≤X(ω)}(ω) = I{x∈[0,∞)|x≤X(ω)}(x).

Because IA is a bounded Σ-measurable function,

IIA1 (ω) = Leb({x ∈ [0,∞) | x ≤ X(ω)}) = X(ω),

IIA2 (x) = P({ω ∈ Ω | x ≤ X(ω)}) = P(X ≥ x).

By the definition of the product measure µ,

µ(A) = P(IIA1 ) = E(X) = Leb(IIA2 ) =

∫
[0,∞)

P (X ≥ x) Leb(dx).
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Definition 8.4. Let C denote the set of open subsets of R2. The Borel σ-algebra B(R2) on R2 is defined as
B(R2) = σ(C).

Proposition 8.10. Let B(R)2 = B(R) × B(R) denote the product between the Borel σ-algebra B(R) on R and
itself. In that case, B(R2) = B(R)2.

Proof. Because the functions ρ1 : R2 → R and ρ2 : R2 → R given by ρ1(x, y) = x and ρ2(x, y) = y for every
(x, y) ∈ R2 are continuous, recall that ρ−1

1 (A) ∈ C and ρ−1
2 (A) ∈ C for every open set A ⊆ R, so that a previous

result guarantees that ρ1 and ρ2 are B(R2)-measurable. Therefore, σ(ρ1) ∪ σ(ρ2) ⊆ B(R2). Because B(R)2 =
σ(σ(ρ1) ∪ σ(ρ2)), we know that B(R)2 ⊆ B(R2).

Recall that every open subset C ⊆ R2 can be written as C = ∪n(an, bn)× (cn, dn), where an ≤ bn and cn ≤ dn
for every n ∈ N. Because B(R) contains every open interval and B(R)2 = σ({B1 × B2 | B1, B2 ∈ B(R)}), we know
that C ⊆ B(R)2, so that B(R2) ⊆ B(R2). Therefore, B(R2) = B(R)2.

Proposition 8.11. The set I = {(−∞, x]× (−∞, y] | x, y ∈ R} is a π-system on R2 such that σ(I) = B(R)2.

Proof. Let A1 = (−∞, x1]× (−∞, y1] and A2 = (−∞, x2]× (−∞, y2] be elements of I. In that case,

A1 ∩A2 = ((−∞, x1] ∩ (−∞, x2])× ((−∞, y1] ∩ (−∞, y2]) = (−∞,min(x1, x2)]× (−∞,min(y1, y2)],

so that A1 ∩A2 ∈ I. Therefore, I is a π-system.
Because (−∞, x] ∈ B(R) and (−∞, y] ∈ B(R) for every x, y ∈ R and B(R)2 = σ({B1 × B2 | B1, B2 ∈ B(R)}),

we know that I ⊆ B(R)2, so that σ(I) ⊆ B(R)2.
Note that (a, b]× (c, d] ∈ σ(I) for every a ≤ b and c ≤ d, since

(a, b]× (c, d] = ((−∞, b]× (−∞, d]) ∩ (((−∞, b]× (−∞, c]) ∪ ((−∞, a]× (−∞, d]))c.

Also note that (a, b)× (c, d] ∈ σ(I) for every a ≤ b and c ≤ d, since

(a, b)× (c, d] =

( ⋃
n∈N+

(a, b− ϵ1n
−1]

)
× (c, d] =

⋃
n∈N+

(a, b− ϵ1n
−1]× (c, d],

where ϵ1 = (b− a)/2.
Finally, note that (a, b)× (c, d) ∈ σ(I) for every a ≤ b and c ≤ d, since

(a, b)× (c, d) = (a, b)×
⋃

n∈N+

(c, d− ϵ2n
−1] =

⋃
n∈N+

(a, b)× (c, d− ϵ2n
−1],

where ϵ2 = (d− c)/2.
Because every open set C ∈ C can be written as C = ∪n(an, bn)× (cn, dn), where an ≤ bn and cn ≤ dn for every

n ∈ N, we know that C ⊆ σ(I). Since σ(C) = B(R2) = B(R)2, we know that B(R)2 ⊆ σ(I).

Proposition 8.12. Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R.
Let Z : Ω → R2 be given by Z(ω) = (X(ω), Y (ω)). The function Z is F/B(R)2-measurable.

Proof. Let ρ1 : R2 → R be given by ρ1(x, y) = x and ρ2 : R2 → R be given by ρ2(x, y) = y. Note that X = ρ1 ◦ Z
and Y = ρ2 ◦ Z, so that X−1(B) = (ρ1 ◦ Z)−1(B) = Z−1(ρ−1

1 (B)) and Y −1(B) = (ρ2 ◦ Z)−1(B) = Z−1(ρ−1
2 (B))

for every B ∈ B(R). Because X and Y are F-measurable, Z−1(C) ∈ F for every C ∈ (σ(ρ1) ∪ σ(ρ2)).
Note that E = {Γ ∈ B(R)2 | Z−1(Γ) ∈ F} is a σ-algebra on R2. Because (σ(ρ1)∪ σ(ρ2)) ⊆ B(R)2, we know that

σ(σ(ρ1) ∪ σ(ρ2)) = B(R)2 ⊆ E , so that E = B(R)2. Therefore, Z is F/B(R)2-measurable.

Definition 8.5. Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R. For
any Γ ∈ B(R)2, the joint law LX,Y : B(R)2 → [0, 1] of X and Y is defined by

LX,Y (Γ) = P({ω ∈ Ω | (X(ω), Y (ω)) ∈ Γ}) = P((X,Y ) ∈ Γ).

Proposition 8.13. The function LX,Y defined above is a probability measure on (R2,B(R)2).
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Proof. Clearly, LX,Y (R2) = P(Ω) = 1 and LX,Y (∅) = P(∅) = 0. Furthermore, for any sequence of sets (Γn ∈ B(R)2 |
n ∈ N) such that Γn ∩ Γm = ∅ for n ̸= m,

LX,Y

(⋃
n

Γn

)
= P

({
ω ∈ Ω | (X(ω), Y (ω)) ∈

⋃
n

Γn

})
= P

(⋃
n

{ω ∈ Ω | (X(ω), Y (ω)) ∈ Γn}

)
=
∑
n

LX,Y (Γn).

Definition 8.6. The joint distribution FX,Y : R2 → [0, 1] of X and Y is defined by

FX,Y (x, y) = P({ω ∈ Ω | X(ω) ≤ x and Y (ω) ≤ y}) = P(X ≤ x, Y ≤ y) = LX,Y ((−∞, x]× (−∞, y]).

Proposition 8.14. Because the π-system I = {(−∞, x]×(−∞, y] | x, y ∈ R} generates B(R)2, the joint law LX,Y of
X and Y is the unique measure on the measurable space (R2,B(R)2) such that LX,Y ((−∞, x]×(−∞, y]) = FX,Y (x, y)
for every (x, y) ∈ R2. Therefore, the joint distribution FX,Y completely determines the joint law LX,Y .

Definition 8.7. Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R.
Consider also the measure space (R2,B(R)2,Leb2) = (R,B(R),Leb)2. The random variables X and Y have a joint
probability density function fX,Y if fX,Y : R2 → [0,∞] is a B(R)2-measurable function such that the joint law LX,Y

is given by

LX,Y (Γ) =

∫
Γ

fX,Y (z) Leb
2(dz) =

∫
R2

IΓ(z)fX,Y (z) Leb
2(dz).

In that case, the joint law LX,Y has density fX,Y relative to Leb2, which is denoted by dLX,Y /dLeb
2 = fX,Y .

Furthermore, because IΓfX,Y is a non-negative B(R)2-measurable function,

LX,Y (Γ) =

∫
R

[∫
R
IΓ(x, y)fX,Y (x, y) Leb(dy)

]
Leb(dx) =

∫
R

[∫
R
IΓ(x, y)fX,Y (x, y) Leb(dx)

]
Leb(dy).

Proposition 8.15. Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R.
Note that

LX(B) = P(X−1(B)) = P({ω ∈ Ω | X(ω) ∈ B}) = P({ω ∈ Ω | (X(ω), Y (ω)) ∈ (B × R)}) = LX,Y (B × R),
LY (B) = P(Y −1(B)) = P({ω ∈ Ω | Y (ω) ∈ B}) = P({ω ∈ Ω | (X(ω), Y (ω)) ∈ (R×B)}) = LX,Y (R×B),

for every B ∈ B(R), where LX is the law of X and LY is the law of Y . Therefore,

LX(B) =

∫
R

[∫
R
IB×R(x, y)fX,Y (x, y) Leb(dy)

]
Leb(dx) =

∫
R

[∫
R
IB(x)fX,Y (x, y) Leb(dy)

]
Leb(dx),

LY (B) =

∫
R

[∫
R
IR×B(x, y)fX,Y (x, y) Leb(dx)

]
Leb(dy) =

∫
R

[∫
R
IB(y)fX,Y (x, y) Leb(dx)

]
Leb(dy),

for every B ∈ B(R). By the linearity of the integral with respect to Leb,

LX(B) =

∫
R
IB(x)

[∫
R
fX,Y (x, y) Leb(dy)

]
Leb(dx) =

∫
R
IB(x)fX(x) Leb(dx) =

∫
B

fX(x) Leb(dx),

LY (B) =

∫
R
IB(y)

[∫
R
fX,Y (x, y) Leb(dx)

]
Leb(dy) =

∫
R
IB(y)fY (y) Leb(dy) =

∫
B

fY (y) Leb(dy),

where fX : R → [0,∞] and fY : R → [0,∞] are Borel functions given by

fX(x) =

∫
R
fX,Y (x, y) Leb(dy),

fY (y) =

∫
R
fX,Y (x, y) Leb(dx).

By definition, fX is a probability density function for X and fY is a probability density function for Y .
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Proposition 8.16. Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R.
Let LX,Y denote the joint law of X and Y , LX denote the law of X, LY denote the law of Y , FX,Y denote the
joint distribution function of X and Y , FX denote the distribution function of X, and FY denote the distribution
function of Y . The following are equivalent: X and Y are independent; LX,Y = LX × LY ; and FX,Y = FXFY .

Proof. Suppose X and Y are independent. In that case, for every B1, B2 ∈ B(R),

LX,Y (B1 ×B2) = P({ω ∈ Ω | (X(ω), Y (ω)) ∈ (B1 ×B2)}) = P(X−1(B1) ∩ Y −1(B2)) = LX(B1)LY (B2).

Because LX × LY is the unique measure on (R2,B(R)2) such that (LX × LY )(B1 × B2) = LX(B1)LY (B2) for
every B1, B2 ∈ B(R) and LX,Y is a measure on (R2,B(R)2), we know that LX,Y = LX × LY .

Suppose LX,Y = LX × LY . In that case, for every x, y ∈ R,

FX,Y (x, y) = (LX × LY )((−∞, x]× (−∞, y]) = LX((−∞, x])LY ((−∞, y]) = FX(x)FY (y).

Finally, suppose that FX,Y = FXFY . In that case, for every x, y ∈ R,

P(X ≤ x, Y ≤ y) = FX,Y (x, y) = FX(x)FY (y) = P(X ≤ x)P(Y ≤ y),

so that a previous result implies that X and Y are independent, which completes the proof.

Proposition 8.17. Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R.
Suppose fX,Y is a joint probability density function for X and Y , fX is a probability density function for X, and
fY is a probability density function for Y . Furthermore, let F = {(x, y) ∈ R2 | fX(x)fY (y) ̸= fX,Y (x, y)}. In that
case, Leb2(F ) = 0 if and only if X and Y are independent random variables.

Proof. Suppose Leb2(F ) = 0. For every Γ ∈ B(R)2, let FΓ = {z ∈ R2 | IΓ(z)fX(ρ1(z))fY (ρ2(z)) ̸= IΓ(z)fX,Y (z)},
so that FΓ ⊆ Γ. Because FΓ ⊆ FR2 = F , we know that Leb2(FΓ) = 0. Therefore, because IΓ(fX ◦ ρ1)(fY ◦ ρ2) and
IΓfX,Y are non-negative B(R)2-measurable functions,

LX,Y (Γ) =

∫
R2

IΓ(z)fX,Y (z) Leb
2(dz) =

∫
R2

IΓ(z)fX(ρ1(z))fY (ρ2(z)) Leb
2(dz).

For every B1, B2 ∈ B(R), since IΓ(fX ◦ ρ1)(fY ◦ ρ2) is a non-negative B(R)2-measurable function,

LX,Y (B1 ×B2) =

∫
R

[∫
R
IB1×B2

(x, y)fX(x)fY (y) Leb(dy)

]
Leb(dx).

Using the fact that IB1×B2
(x, y) = IB1

(x)IB2
(y) and the linearity of the integral with respect to Leb,

LX,Y (B1 ×B2) =

[∫
R
IB1

(x)fX(x) Leb(dx)

] [∫
R
IB2

(y)fY (y) Leb(dy)

]
= LX(B1)LY (B2).

Because LX × LY is the unique measure on (R2,B(R)2) such that (LX × LY )(B1 × B2) = LX(B1)LY (B2) for
every B1, B2 ∈ B(R) and LX,Y is a measure on (R2,B(R)2), we know that X and Y are independent.

Suppose X and Y are independent. Let f = (fX ◦ ρ1)(fY ◦ ρ2). Because f is a B(R)2-measurable non-negative
function, recall that (f Leb2) is a measure on (R2,B(R)2) given by

(f Leb2)(Γ) =

∫
Γ

fdLeb2 =

∫
R2

IΓ(z)fX(ρ1(z))fY (ρ2(z)) Leb
2(dz) =

∫
R

[∫
R
IΓ(x, y)fX(x)fY (y) Leb(dy)

]
Leb(dx).

By the linearity of the integral with respect to Leb, for every B1, B2 ∈ B(R),

LX(B1)LY (B2) =

∫
R

[∫
R
IB1×B2

(x, y)fX(x)fY (y) Leb(dy)

]
Leb(dx) = (f Leb2)(B1 ×B2).

Because LX × LY is the unique measure on (R2,B(R)2) such that (LX × LY )(B1 × B2) = LX(B1)LY (B2) for
every B1, B2 ∈ B(R) and (f Leb2) is a measure on (R2,B(R)2), we know that LX × LY = (f Leb2). Since X and
Y are independent, LX,Y = (f Leb2). Therefore, f is a joint probability density function for X and Y .

Let F1 = {z ∈ R2 | f(z) − fX,Y (z) > 0} and F2 = {z ∈ R2 | fX,Y (z) − f(z) > 0}, so that F = F1 ∪ F2. Since
F1 ∩ F2 = ∅, we have Leb2(F ) = Leb2(F1) + Leb2(F2). In order to find a contradiction, suppose Leb2(F ) > 0, so
that Leb2(F1) > 0 or Leb2(F2) > 0. Because (f − fX,Y )IF1 and (fX,Y − f)IF2 are non-negative B(R)2-measurable
functions, a previous result then implies that Leb2((f − fX,Y )IF1

) > 0 or Leb2((fX,Y − f)IF2
) > 0. The linearity

of the integral with respect to Leb2 then implies that LX,Y (F1) = Leb2(fIF1
) > Leb2(fX,Y IF1

) = LX,Y (F1) or
LX,Y (F2) = Leb2(fX,Y IF2

) > Leb2(fIF2
) = LX,Y (F2), which is a contradiction. Therefore, Leb2(F ) = 0.
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The results in this section can be generalized to products between any number of measure spaces.

Theorem 8.2 (Kolmogorov’s extension theorem). Consider the measurable space (R,B(R)) and a sequence of
probability measures (Λn | n ∈ N). Let Ω =

∏
n R, so that each ω ∈ Ω corresponds to a sequence (ωn ∈ R | n ∈ N).

For every n ∈ N, let Xn : Ω → R be given by Xn(ω) = ωn. Furthermore, consider the σ-algebra F on Ω given by
F = σ(∪nσ(Xn)). In that case, there is a unique probability measure P on the measurable space (Ω,F) such that,
for every sequence (Bn ∈ B(R) | n ∈ N),

P

(∏
n

Bn

)
=
∏
n

Λn(Bn).

The measure space (Ω,F ,P) is denoted by (Ω,F ,P) =
∏

n(R,B(R),Λn). The sequence (Xn : Ω → R | n ∈ N) is
composed of independent random variables on (Ω,F ,P) so that Λn is the law of Xn.

9 Probability kernels
Consider the measurable spaces (S1,Σ1), (S2,Σ2), and (S,Σ) = (S1 × S2,Σ1 × Σ2).

Definition 9.1. A probability kernel K from S1 to S2 is a function K : S1 × Σ2 → [0, 1] such that

• For every s1 ∈ S1, the function K(s1, ·) : Σ2 → [0, 1] is a probability measure on (S2,Σ2);

• For every B2 ∈ Σ2, the function K(·, B2) : S1 → [0, 1] is Σ1-measurable.

Proposition 9.1. Consider a π-system I on S2 such that σ(I) = Σ2. Let K : S1 × Σ2 → [0, 1] be a function
such that the function K(s1, ·) : Σ2 → [0, 1] is a probability measure on (S2,Σ2) for every s1 ∈ S1. If the function
K(·, B2) : S1 → [0, 1] is Σ1-measurable for every B2 ∈ I, then K is a probability kernel from S1 to S2.

Proof. Let D = {B2 ∈ Σ2 | σ(K(·, B2)) ⊆ Σ1}. By assumption, I ⊆ D. Furthermore, D is a d-system on S2:

• S2 ∈ D, since S2 ∈ Σ2 and K(·, S2) = 1 = IS1 and IS1 is Σ1-measurable.

• If B1, B2 ∈ D and B1 ⊆ B2, then B2 \B1 ∈ D. In order to see this, note that B2 \B1 ∈ Σ2 and

K(·, B2 \B1) = K(·, B2 ∩Bc
1) = 1−K(·, Bc

2 ∪B1) = 1−K(·, Bc
2)−K(·, B1) = K(·, B2)−K(·, B1).

Since K(·, B2) and K(·, B1) are Σ1-measurable, we know that K(·, B2 \B1) is Σ1-measurable.

• For any sequence (Bn ∈ D | n ∈ N), if Bn ⊆ Bn+1 for every n ∈ N, then ∪nBn ∈ D. In order to see this, first
note that ∪nBn ∈ Σ2. By the monotone-convergence property of measure,

K (·,∪nBn) = lim
n→∞

K(·, Bn).

Because K(·, Bn) is Σ1-measurable for every n ∈ N, we know that K (·,∪nBn) is Σ1-measurable.

Because I is a π-system on S2 and D is a d-system on S2 such that I ⊆ D, Dynkin’s lemma shows that Σ2 ⊆ D.
Since D ⊆ Σ2, we know that D = Σ2. Therefore, for every B2 ∈ Σ2, the function K(·, B2) is Σ1-measurable.

Proposition 9.2. Consider a probability kernel K : S1 × Σ2 → [0, 1] and a Σ-measurable function f : S → [0,∞].
The function Jf

1 is Σ1-measurable, where Jf
1 : S1 → [0,∞] is given by

Jf
1 (s1) =

∫
S2

f(s1, s2)K(s1, ds2).

Proof. Recall that there is a Σ2-measurable function fs1 : S2 → [0,∞] such that fs1(s2) = f(s1, s2) for every
s1 ∈ S1 and s2 ∈ S2, so that Jf

1 is indeed well-defined.
Let I = {B1 ×B2 | B1 ∈ Σ1 and B2 ∈ Σ2}, so that σ(I) = Σ. For every B1 ×B2 ∈ I,

J
IB1×B2
1 (s1) =

∫
S2

IB1×B2(s1, s2)K(s1, ds2) = IB1(s1)

∫
S2

IB2(s2)K(s1, ds2) = IB1(s1)K(s1, B2).

Therefore, for every B1×B2 ∈ I, the function J
IB1×B2
1 is Σ1-measurable, since IB1

and K(·, B2) are Σ1-measurable.
Let D = {A ∈ Σ | σ(J IA

1 ) ⊆ Σ1}, so that I ⊆ D. Note that D is a d-system on S:
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• S ∈ D, since S ∈ Σ and S = S1 × S2 and J IS
1 (s1) = IS1(s1)K(s1, S2) = IS1(s1) = 1 and IS1 is Σ1-measurable.

• If A1, A2 ∈ D and A1 ⊆ A2, then A2 \A1 ∈ D. In order to see this, note that A2 \A1 ∈ Σ and

IA2\A1
= IA2∩Ac

1
= IA2

IAc
1
= IA2

(1− IA1
) = IA2

− IA1
IA2

= IA2
− IA1∩A2

= IA2
− IA1

,

so that

J
IA2\A1
1 (s1) =

∫
S2

IA2(s1, s2)K(s1, ds2)−
∫
S2

IA1(s1, s2)K(s1, ds2) = J
IA2
1 (s1)− J

IA1
1 (s1).

Because J
IA2
1 and J

IA1
1 are Σ1-measurable, J IA2\A1

1 is Σ1-measurable.

• For any sequence (An ∈ D | n ∈ N), if An ⊆ An+1 for every n ∈ N, then ∪nAn ∈ D. In order to see this, note
that ∪nAn ∈ Σ and IAn

(s1, ·) ≤ IAn+1
(s1, ·) for every n ∈ N and s1 ∈ S1, so that IAk

(s1, ·) ↑ I∪nAn
(s1, ·). By

the monotone-convergence theorem,

J
I∪nAn
1 (s1) =

∫
S2

I∪nAn(s1, s2)K(s1, ds2) = lim
n→∞

∫
S2

IAn(s1, s2)K(s1, ds2) = lim
n→∞

J
IAn
1 (s1).

Because J
IAn
1 is Σ1-measurable for every n ∈ N, J I∪nAn

1 is Σ1-measurable.

Because I is a π-system on S and D is a d-system on S such that I ⊆ D, Dynkin’s lemma shows that Σ ⊆ D.
Since D ⊆ Σ, we know that D = Σ. Therefore, for every A ∈ Σ, the function J IA

1 is Σ1-measurable.
Next, suppose f : S → [0,∞] is a simple function that can be written as f =

∑m
k=1 akIAk

for some fixed
a1, a2, . . . , am ∈ [0,∞] and A1, A2, . . . Am ∈ Σ. In that case,

Jf
1 (s1) =

∫
S2

m∑
k=1

akIAk
(s1, s2)K(s1, ds2) =

m∑
k=1

ak

∫
S2

IAk
(s1, s2)K(s1, ds2) =

m∑
k=1

akJ
IAk
1 (s1).

Because J
IAk
1 is Σ1-measurable for every A1, A2, . . . Am ∈ Σ, the function Jf

1 is Σ1-measurable.
Finally, consider a Σ-measurable function f : S → [0,∞]. For any n ∈ N, let fn = αn ◦ f , where αn is the

n-th staircase function. For every n ∈ N, because fn : S → [0, n] is bounded and Σ-measurable, there is a bounded
Σ2-measurable function fn,s1 : S2 → [0, n] such that fn(s1, s2) = fn,s1(s2) for every s1 ∈ S1 and s2 ∈ S2. Since
fn ↑ f , consider the Σ2-measurable function fs1 = limn→∞ fn,s1 and note that f(s1, s2) = fs1(s2) for every s1 ∈ S1

and s2 ∈ S2. Since fn,s1 ↑ fs1 for every s1 ∈ S1, by the monotone-convergence theorem,

Jf
1 (s1) =

∫
S2

fs1(s2)K(s1, ds2) = lim
n→∞

∫
S2

fn,s1(s2)K(s1, ds2) = lim
n→∞

Jfn
1 (s1).

Because fn is a simple function for every n ∈ N, the function Jfn
1 is Σ1-measurable for every n ∈ N, so that the

function Jf
1 is Σ1-measurable for every Σ-measurable function f : S → [0,∞].

Theorem 9.1. Consider a probability kernel K : S1 ×Σ2 → [0, 1] and a probability measure µ1 on the measurable
space (S1,Σ1). There is a unique probability measure µ on (S,Σ) such that, for every B1 ∈ Σ1 and B2 ∈ Σ2,

µ(B1 ×B2) =

∫
B1

K(s1, B2)µ1(ds1).

Proof. Consider the function µ : Σ → [0,∞] given by

µ(A) =

∫
S1

∫
S2

IA(s1, s2)K(s1, ds2)µ1(ds1) =

∫
S1

J IA
1 (s1)µ1(ds1),

where J IA
1 : S1 → [0,∞] is a Σ1-measurable function given by J IA

1 (s1) =
∫
S2

IA(s1, s2)K(s1, ds2).
Clearly, µ(∅) = 0 and µ(S) = 1. For any sequence (An ∈ Σ | n ∈ N) such that An ∩Am = ∅ for n ̸= m,

µ

(⋃
n

An

)
=

∫
S1

∫
S2

I∪nAn(s1, s2)K(s1, ds2)µ1(ds1) =

∫
S1

∫
S2

∑
n

IAn(s1, s2)K(s1, ds2)µ1(ds1) =
∑
n

µ(An),
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where the last step relies on the fact that IAn ≥ 0 for every n ∈ N. Therefore, µ is a probability measure on (S,Σ).
Finally, let I = {B1 ×B2 | B1 ∈ Σ1 and B2 ∈ Σ2}. Because I is a π-system on S such that σ(I) = Σ, µ is the

unique probability measure on (S,Σ) such that, for every B1 ×B2 ∈ I,

µ(B1 ×B2) =

∫
S1

J
IB1×B2
1 (s1)µ1(ds1) =

∫
S1

IB1
(s1)K(s1, B2)µ1(ds1) =

∫
B1

K(s1, B2)µ1(ds1).

10 Conditional expectation
Consider a probability triple (Ω,F ,P) and a random variable X : Ω → R. For every ω ∈ Ω, note that knowing
I{X=x}(ω) for every x ∈ R is equivalent to knowing X(ω). Furthermore, from a previous result,

σ(X) =

{
X−1

(⋃
x∈B

{x}

)
| B ∈ B(R)

}
=

{⋃
x∈B

X−1({x}) | B ∈ B(R)

}
=

{⋃
x∈B

{X = x} | B ∈ B(R)

}
.

Let F = ∪x∈B{X = x} for some B ∈ B(R). For every ω ∈ Ω, note that IF (ω) =
∑

x∈B I{X=x}(ω), since F is a
union of disjoint sets. Finally, note that {X = x} ∈ σ(X) for every x ∈ R. Therefore, for every ω ∈ Ω, knowing
I{X=x}(ω) for every x ∈ R is also equivalent to knowing IF (ω) for every F ∈ σ(X).

In conclusion, for every ω ∈ Ω, knowing X(ω) is equivalent to knowing IF (ω) for every F ∈ σ(X).
More generally, consider a probability triple (Ω,F ,P) and a set of random variables {Yγ | γ ∈ C} where

Yγ : Ω → R for every γ ∈ C. Suppose that an unknown outcome ω ∈ Ω results in a known value Yγ(ω) ∈ R for every
γ ∈ C. The σ-algebra σ({Yγ | γ ∈ C}) contains exactly each event F ∈ F such that it is possible to state whether
ω ∈ F . In other words, for every ω ∈ Ω, knowing Yγ(ω) ∈ R for every γ ∈ C is equivalent to knowing IF (ω) for
every F ∈ σ({Yγ | γ ∈ C}).

Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R. Suppose
σ(Y ) ⊆ σ(X). For every ω ∈ Ω, knowing X(ω) allows knowing IF (ω) for every F ∈ σ(Y ). Therefore, knowing
X(ω) allows knowing Y (ω).

Proposition 10.1. For every function Z : Ω → R, a function Y : Ω → R is σ(Z)-measurable if and only if there is
a Borel function f : R → R such that Y = f ◦ Z. Furthermore, if Z1, Z2, . . . , Zn are functions from Ω to R, then a
function Y : Ω → R is σ({Z1, Z2, . . . , Zn})-measurable if and only if there is a Borel function f : Rn → R such that
Y (ω) = f(Z1(ω), Z2(ω), . . . , Zn(ω)) for every ω ∈ Ω.

Definition 10.1. Consider the probability triple (Ω,F ,P), a random variable X : Ω → R such that E(|X|) < ∞,
and a σ-algebra G ⊆ F . A random variable Y : Ω → R is called a version of the conditional expectation E(X | G)
of X given G if and only if Y is G-measurable, E(|Y |) < ∞, and, for every set G ∈ G,∫

G

Y dP =

∫
G

XdP.

In that case, we say that Y = E(X | G) almost surely.

Proposition 10.2. Given the definition above, a version Y of the conditional expectation E(X | G) of X given G
always exists. Furthermore, if Y and Ỹ are such versions, then P(Y = Ỹ ) = 1.

Proof. First, suppose X ∈ L2(Ω,F ,P) and recall that L2(Ω,G,P) is a complete vector space. Because L2(Ω,G,P) ⊆
L2(Ω,F ,P), there is a version Y ∈ L2(Ω,G,P) of the orthogonal projection of X onto L2(Ω,G,P) such that
∥X − Y ∥2 = inf{∥X − W∥2 | W ∈ L2(Ω,G,P)} and E((X − Y )Z) = 0, for every Z ∈ L2(Ω,G,P). Clearly, Y is
G-measurable. By the monotonicity of norm, E(|Y |) < ∞. For every G ∈ G, we have IG ∈ L2(Ω,G,P), so that
E((X − Y )IG) = 0. Therefore, by the linearity of expectation, E(XIG) = E(Y IG), which completes this step.

Suppose that X is a bounded non-negative random variable, so that X ∈ L2(Ω,F ,P). As an auxiliary step, we
will now show that if Y = E(X | G) almost surely, then P(Y ≥ 0) = 1. In order to find a contradiction, suppose
that P(Y ≥ 0) < 1, so that P(Y < 0) > 0. Let An = {Y < −n−1} = Y −1((−∞,−n−1)), so that An ⊆ An+1

and ∪nAn = {Y < 0}. Since An ↑ {Y < 0}, the monotone-convergence property of measure guarantees that
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P(An) ↑ P(Y < 0). Because we supposed that P(Y < 0) > 0, there is an n ∈ N such that P(An) = P(Y < −n−1) > 0.
Consider the random variable Y IAn given by

(Y IAn
)(ω) = Y (ω)IAn

(ω) =

{
Y (ω), if Y (ω) < −n−1,
0, if Y (ω) ≥ −n−1.

Because Y IAn < −n−1IAn , we know that E(Y IAn) ≤ −n−1P(An) < 0. Because X ≥ 0, we know that E(XIAn) ≥ 0.
However, An ∈ G, so that E(XIAn

) = E(Y IAn
). Because this is a contradiction, we know that P(Y ≥ 0) = 1.

Next, suppose X ∈ L1(Ω,F ,P) is non-negative. For every n ∈ N, let Xn = αn◦X, where αn is the n-th staircase
function, so that Xn ∈ L2(Ω,F ,P). Furthermore, let Yn = E(Xn | G) almost surely. Because Xn is a bounded
non-negative random variable, we know that P(Yn ≥ 0) = 1. For every n ∈ N and G ∈ G, note that

E((Yn+1 − Yn)IG) = E(Yn+1IG)− E(YnIG) = E(Xn+1IG)− E(XnIG) = E((Xn+1 −Xn)IG).

Because Yn ∈ L1(Ω,G,P) and Yn+1 ∈ L1(Ω,G,P), we know that Yn+1 − Yn = E(Xn+1 −Xn | G) almost surely.
Because Xn+1 −Xn is non-negative and bounded for every n ∈ N, we know that P(Yn+1 − Yn ≥ 0) = 1.

Consider the set Ac =
⋃

n{Yn < 0} ∪ {Yn+1 − Yn < 0}. Note that A ∈ G and P(A) = 1, since

P(Ac) = P

(⋃
n

{Yn < 0} ∪ {Yn+1 − Yn < 0}

)
≤
∑
n

P(Yn < 0) + P(Yn+1 − Yn < 0) = 0.

For every n ∈ N, note that YnIA ≥ 0 and Yn+1IA ≥ YnIA. Let Y = lim supn→∞ YnIA. For every G ∈ G, because
every non-decreasing sequence of real numbers converges (possibly to infinity), we know that YnIAIG ↑ Y IG. By
the monotone-convergence theorem, we know that E(YnIAIG) ↑ E(Y IG).

For every n ∈ N and G ∈ G, we have (A ∩G) ∈ G and P(XnIGIAc ̸= 0) = 0, so that

E(YnIAIG) = E(YnIA∩G) = E(XnIA∩G) = E(XnIAIG) + E(XnIAcIG) = E(XnIG),

which implies E(XnIG) ↑ E(Y IG). Since XnIG ↑ XIG, we also know that E(XnIG) ↑ E(XIG), so that E(Y IG) =
E(XIG). Because Y is G-measurable and Ω ∈ G, we know that Y = E(X | G) almost surely.

Finally, suppose X ∈ L1(Ω,F ,P). Let X = X+ − X−, where X+ : Ω → [0,∞] and X− : Ω → [0,∞]. Let
Y + = E(X+ | G) almost surely and Y − = E(X− | G) almost surely. For every G ∈ G,

E(XIG) = E((X+ −X−)IG) = E(X+IG)− E(X−IG) = E(Y +IG)− E(Y −IG) = E((Y + − Y −)IG),

so that Y + − Y − = E(X | G) almost surely.
It remains to show that if Y = E(X | G) almost surely and Ỹ = E(X | G) almost surely then P(Y = Ỹ ) = 1.

For the purpose of finding a contradiction, suppose that P(Y = Ỹ ) < 1, so that P(Y ̸= Ỹ ) > 0. In that case,
P(Y > Ỹ ) + P(Ỹ > Y ) > 0, so that P(Y > Ỹ ) > 0 or P(Ỹ > Y ) > 0. Suppose P(Y > Ỹ ) > 0. Let An = {Y >
Ỹ + n−1} = (Y − Ỹ )−1((n−1,∞)), so that An ⊆ An+1 and ∪nAn = {Y > Ỹ }. By the monotone-convergence
property of measure, we know that P(An) ↑ P(Y > Ỹ ). Because P(Y > Ỹ ) > 0, there is an n ∈ N such that
P(An) = P(Y > Ỹ + n−1) > 0. Note that (Y − Ỹ )IAn > n−1IAn , since

(Y − Ỹ )(ω)IAn
(ω) =

{
(Y − Ỹ )(ω), if (Y − Ỹ )(ω) > n−1,
0, if (Y − Ỹ )(ω) ≤ n−1.

Therefore, E((Y − Ỹ )IAn
) ≥ E(n−1IAn

) = n−1P(An) > 0. However, for every G ∈ G, note that E(Y IG) =
E(Ỹ IG), so that E((Y − Ỹ )IG) = 0. Because An ∈ G, we arrived at a contradiction. An analogous contradiction is
found by supposing that P(Ỹ > Y ) > 0. Therefore, P(Y = Ỹ ) = 1.

Definition 10.2. Consider the probability triple (Ω,F ,P), a random variable X : Ω → R such that E(|X|) < ∞,
and a random variable Z : Ω → R. A random variable Y : Ω → R is called a version of the conditional expectation
E(X | Z) of X given Z if and only if it is a version of the conditional expectation E(X | σ(Z)) of X given σ(Z).
An analogous definition applies when Z is a set of random variables.

Suppose X ∈ L2(Ω,F ,P) and Z : Ω → R are random variables and let Y = E(X | Z) almost surely. Recall that
for every W ∈ L2(Ω, σ(Z),P) there is a Borel function f : R → R such that W = f ◦ Z and that E((X − Y )2) ≤
E((X −W )2). In this sense, if g : R → R is a Borel function such that Y = g ◦ Z, then Y (ω) = g(Z(ω)) is almost
surely the best prediction about X(ω) that can be made given Z(ω).

The next three examples illustrate the definition of conditional expectation.
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Proposition 10.3. Consider a probability triple (Ω,F ,P) and the random variables X : Ω → X and Z : Ω → Z,
where X = {x1, . . . , xm} and Z = {z1, . . . , zn}. Furthermore, suppose P(Z = z) > 0 for every z ∈ Z.

Let P(Z) denote the set of all subsets of Z and consider the P(Z)-measurable function E : Z → R given by

E(z) =
∑
i

xi
P(X = xi, Z = z)

P(Z = z)
.

In that case, Y = E ◦ Z is a σ(Z)-measurable function such that∫
G

Y dP =

∫
G

XdP,

for every G ∈ σ(Z), so that Y = E(X | Z) almost surely.

Proof. For every B ∈ B(R), recall that Y −1(B) = Z−1(E−1(B)). Because E−1(B) ∈ P(Z) and P(Z) ⊆ B(R), we
know that Y −1(B) ∈ σ(Z). Therefore, Y is σ(Z)-measurable.

Because Y is a bounded F-measurable function and {Z = z} ∈ F for every z ∈ Z,∫
{Z=z}

Y dP =

∫
Ω

I{Z=z}(ω)E(Z(ω))P(dω) =
∫
Ω

I{Z=z}(ω)E(z)P(dω) = E(z)P(Z = z) =
∑
i

xiP(X = xi, Z = z).

By the definition of the integral of a simple function with respect to P,∫
{Z=z}

Y dP =

∫
Ω

(∑
i

xiI{X=xi,Z=z}

)
dP =

∫
Ω

(
I{Z=z}

∑
i

xiI{X=xi}

)
dP =

∫
Ω

I{Z=z}XdP =

∫
{Z=z}

XdP.

Because Z(ω) ∈ Z for every ω ∈ Ω and P(Z) ⊆ B(R),

σ(Z) =

{⋃
z∈B

{Z = z} | B ∈ B(R)

}
=

{⋃
z∈B

{Z = z} | B ∈ P(Z)

}
.

Let G =
⋃

z∈B{Z = z} for some B ∈ P(Z). For every ω ∈ Ω, note that IG(ω) =
∑

z∈B I{Z=z}(ω), since G is a
union of disjoint sets. Therefore, because Y is a bounded F-measurable function and G ∈ F ,∫

G

Y dP =

∫
Ω

∑
z∈B

I{Z=z}(ω)Y (ω)P(dω) =
∑
z∈B

∫
Ω

I{Z=z}(ω)Y (ω)P(dω) =
∑
z∈B

∫
Ω

I{Z=z}(ω)X(ω)P(dω).

By the linearity of the integral with respect to P and the fact that IG(ω) =
∑

z∈B I{Z=z}(ω),∫
G

Y dP =

∫
Ω

IG(ω)X(ω)P(dω) =
∫
G

XdP.

Proposition 10.4. Consider the probability triple (Ω,F ,P) = ([0, 1],B([0, 1]),Leb)× ([0, 1],B([0, 1]),Leb) and the
bounded random variables X : Ω → R and Z : Ω → [0, 1], where Z(a, b) = a. Furthermore, consider the bounded
B([0, 1])-measurable function IX1 : [0, 1] → R given by

IX1 (a) =

∫
[0,1]

X(a, b) Leb(db).

In that case, Y = IX1 ◦ Z is a σ(Z)-measurable function such that∫
G

Y dP =

∫
G

XdP,

for every G ∈ σ(Z), so that Y = E(X | Z) almost surely.
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Proof. Recall that σ(Z) = {A× [0, 1] | A ∈ B([0, 1])}. For every B ∈ B(R), note that Y −1(B) = Z−1((IX1 )−1(B)).
Because (IX1 )−1(B) ∈ B([0, 1]), we know that Y is σ(Z)-measurable.

Let G = A× [0, 1] for some A ∈ B([0, 1]). Because Y is a bounded F-measurable function and G ∈ F ,∫
G

Y dP =

∫
[0,1]

[∫
[0,1]

IA×[0,1](a, b)Y (a, b) Leb(db)

]
Leb(da) =

∫
[0,1]

[∫
[0,1]

IA(a)IX1 (a) Leb(db)

]
Leb(da).

By the linearity of the integral with respect to Leb and using the fact that Leb([0, 1]) = 1,∫
G

Y dP =

[∫
[0,1]

Leb(db)

][∫
[0,1]

IA(a)IX1 (a) Leb(da)

]
=

∫
[0,1]

IA(a)

[∫
[0,1]

X(a, b) Leb(db)

]
Leb(da).

Therefore, using the fact that IA(a) = IA×[0,1](a, b) = IG(a, b),∫
G

Y dP =

∫
[0,1]

[∫
[0,1]

IG(a, b)X(a, b) Leb(db)

]
Leb(da) =

∫
G

XdP.

Proposition 10.5. Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Z : Ω → R.
Suppose that fX,Z : R2 → [0,∞] is a joint probability density function for X and Z. Let fX : R → [0,∞] be a
probability density function for X and fZ : R → [0,∞] be a probability density function for Z such that

fX(x) =

∫
R
fX,Z(x, z) Leb(dz),

fZ(z) =

∫
R
fX,Z(x, z) Leb(dx).

Furthermore, consider the elementary conditional probability density function fX|Z : R2 → [0,∞] given by

fX|Z(x, z) =


0, if fZ(z) = 0,
fX,Z(x, z)/fZ(z), if 0 < fZ(z) < ∞,
0, if fZ(z) = ∞.

Let h : R → R be a Borel function such that E(|h ◦X|) < ∞, so that

E(h ◦X) =

∫
Ω

(h ◦X)dP =

∫
R
h dLX =

∫
R
h(x)fX(x) Leb(dx),

where LX is the law of X. Finally, consider the function g : R → R given by

g(z) =

{
0, if z /∈ F g

2 ,∫
R h(x)fX|Z(x, z) Leb(dx), if z ∈ F g

2 ,

where F g
2 = {z ∈ R |

∫
R |h(x)fX|Z(x, z)|Leb(dx) < ∞}.

In that case, Y = g ◦ Z is a σ(Z)-measurable function such that E(|Y |) < ∞ and∫
G

Y dP =

∫
G

(h ◦X)dP

for every G ∈ σ(Z), so that Y = E((h ◦X) | Z) almost surely.

Proof. First, we will show that (h ◦ ρ1)fX|Z is B(R)2-measurable. Let A1 = {z ∈ R | fZ(z) > 0} ∩ {z ∈ R | fZ(z) <
∞}. Because fZ is Borel, we know that R×A1 ∈ B(R)2. Furthermore, note that

fX|Z(x, z) = IR×A1
(x, z)

fX,Z(x, z)

fZ(ρ2(x, z)) + IR×Ac
1
(x, z)

.
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Because the function u : (0,∞] → [0,∞) given by u(r) = 1/r is Borel, we know that fX|Z is B(R)2-measurable.
Because h is Borel, we also know that (h ◦ ρ1)fX|Z is B(R)2-measurable.

We will now show that g is Borel. Because |(h ◦ ρ1)fX|Z | is non-negative and B(R)2-measurable, we know that
the function I2 : R → [0,∞] given by I2(z) =

∫
R |h(x)fX|Z(x, z)|Leb(dx) is Borel, so that F g

2 ∈ B(R). Furthermore,

g(z) = IF g
2
(z)

∫
R
((h ◦ ρ1)fX|Z)

+(x, z) Leb(dx)− IF g
2
(z)

∫
R
((h ◦ ρ1)fX|Z)

−(x, z) Leb(dx).

Since ((h ◦ ρ1)fX|Z)
+ and ((h ◦ ρ1)fX|Z)

− are non-negative and B(R)2-measurable, we know that g is Borel, which
also implies that Y = g ◦ Z is a σ(Z)-measurable function.

We will now show that E(|Y |) < ∞. Because |g(z)| ≤ I2(z) for every z ∈ R,

|g(z)|fZ(z) ≤ I2(z)fZ(z) =

∫
R
|h(x)fX|Z(x, z)|fZ(z) Leb(dx) =

∫
R
|h(x)|IA1(z)fX,Z(x, z) Leb(dx).

Because |g|fZ and I2fZ are non-negative and Borel,∫
R
|g(z)|fZ(z) Leb(dz) ≤

∫
R

[∫
R
|h(x)|IA1

(z)fX,Z(x, z) Leb(dx)

]
Leb(dz).

Because a previous result for probability density functions extends to joint probability density functions,∫
R
|g(z)|fZ(z) Leb(dz) ≤

∫
R2

|h ◦ ρ1|(IA1
◦ ρ2)fX,Z dLeb2 = E(|h ◦X|IZ−1(A1)) < ∞,

since (IA1 ◦ Z) = IZ−1(A1). Because Leb(|g|fZ) = E(|g ◦ Z|), we know that Y ∈ L1(Ω,F ,P).
Let LX,Z : B(R)2 → [0, 1] denote the joint law of X and Z.
We will now show that LX,Z(IR×Ac

1
) = 0. Because a previous result for laws extends to joint laws,∫

R2

IR×Ac
1
dLX,Z =

∫
R2

IR×Ac
1
fX,Z dLeb2 =

∫
R

[∫
R
IAc

1
(z)fX,Z(x, z) Leb(dx)

]
Leb(dz).

By rearranging terms,∫
R2

IR×Ac
1
dLX,Z =

∫
R
IAc

1
(z)

[∫
R
fX,Z(x, z) Leb(dx)

]
Leb(dz) =

∫
R
IAc

1
(z)fZ(z) Leb(dz).

Because Ac
1 = {fZ = 0} ∪ {fZ = ∞} is a union of disjoint sets, we know that IAc

1
= I{fZ=0} + I{fZ=∞}. Therefore,∫

R2

IR×Ac
1
dLX,Z =

∫
R
I{fZ=0}(z)fZ(z) Leb(dz) +

∫
R
I{fZ=∞}(z)fZ(z) Leb(dz) = 0,

since I{fZ=0}fZ = 0 and Leb(fZ) < ∞.
Let A2 = {z ∈ R |

∫
R |h(x)|fX,Z(x, z) Leb(dx) < ∞}, so that A2 ∈ B(R). We will now show that LX,Z(IR×Ac

2
) =

0. From a previous result about probability density functions,

E(|h ◦X|) =
∫
R
|h(x)|fX(x) Leb(dx) =

∫
R

[∫
R
|h(x)|fX,Z(x, z) Leb(dz)

]
Leb(dx) =

∫
R2

|h ◦ ρ1|fX,Z dLeb2 .

Because E(|h◦X|) < ∞, we know that Leb(Ac
2) = 0. Because a previous result about laws extends to joint laws,∫

R2

IR×Ac
2
dLX,Z =

∫
R2

IR×Ac
2
fX,Z dLeb2 =

∫
R

[∫
R
IAc

2
(z)fX,Z(x, z) Leb(dx)

]
Leb(dz).

By rearranging terms and the using fact that Leb(IAc
2
) = 0 implies Leb({IAc

2
fZ > 0}) ≤ Leb({IAc

2
> 0}) = 0,∫

R2

IR×Ac
2
dLX,Z =

∫
R
IAc

2
(z)fZ(z) Leb(dz) = 0.

Finally, we will show that E(Y IG) = E((h ◦X)IG) for every G ∈ σ(Z). Note that, for every G ∈ σ(Z),

IG(ω) = IZ−1(B)(ω) = (IB ◦ Z)(ω) =

{
1, if Z(ω) ∈ B,

0, if Z(ω) /∈ B,
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for some B ∈ B(R). Let S = (R×A1)∩ (R×A2), so that Sc = (R×Ac
1)∪ (R×Ac

2) and LX,Z(ISc) = 0. Note that∫
Ω

(h ◦X)IG dP =

∫
Ω

(h ◦X)(IB ◦ Z) dP =

∫
R2

(h ◦ ρ1)(IB ◦ ρ2) dLX,Z =

∫
R2

(h ◦ ρ1)(IB ◦ ρ2)IS dLX,Z ,

since (h ◦ ρ1)(IB ◦ ρ2) and (h ◦ ρ1)(IB ◦ ρ2)IS are LX,Z-integrable and equal almost everywhere.
Because a previous result for probability density functions extends to joint probability density functions,∫

Ω

(h ◦X)IG dP =

∫
R2

(h ◦ ρ1)(IB ◦ ρ2)ISfX,Z dLeb2 .

Because IS(x, z) = IA1(z)IA2(z) for every (x, z) ∈ R2,∫
Ω

(h ◦X)IG dP =

∫
F

[∫
R
h(x)IB(z)IA1

(z)IA2
(z)fX,Z(x, z) Leb(dx)

]
Leb(dz),

where F = {z ∈ R |
∫
R |h(x)|IB(z)IA1

(z)IA2
(z)fX,Z(x, z) Leb(dx) < ∞}.

Because A2 ⊆ F , we know that IF IA2
= IA2

. Therefore,∫
Ω

(h ◦X)IG dP =

∫
R

[∫
R
h(x)IB(z)IA1(z)IA2(z)fX,Z(x, z) Leb(dx)

]
Leb(dz).

Because fX,Z(x, z)IA1(z) = fX|Z(x, z)fZ(z)IA1(z) for every (x, z) ∈ R2,∫
Ω

(h ◦X)IG dP =

∫
R

[∫
R
h(x)IB(z)IA1(z)IA2(z)fX|Z(x, z)fZ(z) Leb(dx)

]
Leb(dz).

By rearranging terms,∫
Ω

(h ◦X)IG dP =

∫
R
IB(z)fZ(z)IA1∩A2

(z)

[∫
R
h(x)fX|Z(x, z) Leb(dx)

]
Leb(dz).

For any z ∈ (A1 ∩A2), by the linearity of the integral with respect to Leb,

IA1
(z)

∫
R
|h(x)|fX,Z(x, z) Leb(dx) = fZ(z)

∫
R
|h(x)|fX|Z(x, z) Leb(dx) < ∞.

Because fZ(z) > 0, we know that
∫
R |h(x)|fX|Z(x, z) Leb(dx) < ∞, so that z ∈ F g

2 .
Because (A1 ∩A2) ⊆ F g

2 implies IA1∩A2
= IA1∩A2

IF g
2
,∫

Ω

(h ◦X)IG dP =

∫
R
IB(z)fZ(z)IA1∩A2(z)IF g

2
(z)

[∫
R
h(x)fX|Z(x, z) Leb(dx)

]
Leb(dz).

By the definition of g, ∫
Ω

(h ◦X)IG dP =

∫
R
IB(z)fZ(z)IA1∩A2

(z)g(z) Leb(dz).

By once again applying results about probability density functions and joint laws,∫
Ω

(h ◦X)IG dP =

∫
Ω

(IB ◦ Z)(IA1∩A2
◦ Z)(g ◦ Z) dP =

∫
R2

(IB ◦ ρ2)(IA1∩A2
◦ ρ2)(g ◦ ρ2) dLX,Z .

Because IS(x, z) = IA1
(z)IA2

(z) for every (x, z) ∈ R2,∫
Ω

(h ◦X)IG dP =

∫
R2

(g ◦ ρ2)(IB ◦ ρ2)IS dLX,Z .

Because (g ◦ ρ2)(IB ◦ ρ2) and (g ◦ ρ2)(IB ◦ ρ2)IS are LX,Z-integrable functions that are equal almost everywhere,∫
Ω

(h ◦X)IG dP =

∫
R2

(g ◦ ρ2)(IB ◦ ρ2) dLX,Z =

∫
Ω

(g ◦ Z)(IB ◦ Z) dP =

∫
Ω

Y IG dP.
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Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . For the remainder of this text, we let
E(X | G) denote an arbitrary version of the conditional expectation of X given G.

Proposition 10.6. Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . Note that E(E(X | G)) =
E(E(X | G)IΩ) = E(XIΩ) = E(X).

Proposition 10.7. Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . Note that if X is
G-measurable, then X = E(X | G) almost surely.

Proposition 10.8. Consider a random variable X ∈ L1(Ω,F ,P) and let Y = E(X)IΩ. In that case, Y = E(X |
{∅,Ω}) almost surely.

Proof. For every B ∈ B(R), we have Y −1(B) = ∅ if E(X) /∈ B and Y −1(B) = Ω if E(X) ∈ B. Furthermore,
E(|Y |) = E(|E(X)IΩ|) = E(|X|) < ∞. Therefore, Y ∈ L1(Ω, {∅,Ω},P). Finally, E(Y IΩ) = E(E(X)IΩIΩ) = E(XIΩ)
and E(Y I∅) = 0 = E(XI∅).

Proposition 10.9. Consider the probability triple (Ω,F ,P), a random variable X : Ω → R, and a σ-algebra G ⊆ F .
If X = 0 almost surely, then 0 = E(X | G) almost surely, where 0 denotes the zero function.

Proof. Clearly, 0 ∈ L1(Ω,G,P). For every G ∈ G, because P(XIG = 0) = 1, we know that E(XIG) = 0 = E(0IG).

Proposition 10.10. Consider the random variables X1 ∈ L1(Ω,F ,P) and X2 ∈ L1(Ω,F ,P) and a σ-algebra
G ⊆ F . In that case, a1E(X1 | G) + a2E(X2 | G) = E(a1X1 + a2X2 | G) almost surely for every a1, a2 ∈ R.

Proof. Because L1(Ω,G,P) is a vector space, we know that a1E(X1 | G) + a2E(X2 | G) ∈ L1(Ω,G,P). For every
G ∈ G,

E((a1E(X1 | G) + a2E(X2 | G))IG) = a1E(E(X1 | G)IG) + a2E(E(X2 | G)IG).

From the definition of a version of the conditional expectation,

E((a1E(X1 | G) + a2E(X2 | G))IG) = a1E(X1IG) + a2E(X2IG) = E((a1X1 + a2X2)IG).

Proposition 10.11. Consider the random variables X1 ∈ L1(Ω,F ,P) and X2 ∈ L1(Ω,F ,P) and a σ-algebra
G ⊆ F . If X1 = X2 almost surely, then E(X1 | G) = E(X2 | G) almost surely.

Proof. Because P(X1 − X2 = 0) = 1, we know that P(E(X1 − X2 | G) = 0) = 1. Therefore, by linearity,
P(E(X1 | G) = E(X2 | G)) = 1.

Proposition 10.12. Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . If X ≥ 0, then
P(E(X | G) ≥ 0) = 1.

Proof. In order to find a contradiction, suppose that P(E(X | G) ≥ 0) < 1, so that P(E(X | G) < 0) > 0. Let
An = {E(X | G) < −n−1} = E(X | G)−1((−∞,−n−1)), so that An ⊆ An+1 and ∪nAn = {E(X | G) < 0}. Since
An ↑ {E(X | G) < 0}, the monotone-convergence property of measure guarantees that P(An) ↑ P(E(X | G) < 0).
Because we supposed that P(E(X | G) < 0) > 0, there is an n ∈ N such that P(An) = P(E(X | G) < −n−1) > 0.
Consider the random variable E(X | G)IAn

given by

(E(X | G)IAn
)(ω) = E(X | G)(ω)IAn

(ω) =

{
E(X | G)(ω), if E(X | G)(ω) < −n−1,
0, if E(X | G)(ω) ≥ −n−1.

Because E(X | G)IAn
< −n−1IAn

, we know that E(E(X | G)IAn
) ≤ −n−1P(An) < 0. Because X ≥ 0, we know that

E(XIAn) ≥ 0. However, An ∈ G, so that E(XIAn) = E(E(X | G)IAn). Because this is a contradiction, we know
that P(E(X | G) ≥ 0) = 1.

Proposition 10.13. Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . In that case, |E(X |
G)| ≤ E(|X| | G) almost surely.
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Proof. By the linearity of conditional expectation,

P
(
|E(X | G)| =

∣∣E(X+ −X− | G)
∣∣ = ∣∣E(X+ | G)− E(X− | G)

∣∣) = 1,

P
(
E(|X| | G) = E(X+ +X− | G) = E(X+ | G) + E(X− | G)

)
= 1.

By the triangle inequality, |E(X+ | G)− E(X− | G)| ≤ |E(X+ | G)|+ |E(X− | G)|.
Because P(|E(X+ | G)| = E(X+ | G)) = 1 and P(|E(X− | G)| = E(X− | G)) = 1,

P
(
|E(X | G)| ≤

∣∣E(X+ | G)
∣∣+ ∣∣E(X− | G)

∣∣ = E(X+ | G) + E(X− | G) = E(|X| | G)
)
= 1.

Theorem 10.1 (Conditional monotone-convergence theorem). Consider a sequence of non-negative random vari-
ables (Xn ∈ L1(Ω,F ,P) | n ∈ N), a non-negative random variable X ∈ L1(Ω,F ,P), and a σ-algebra G ⊆ F . If
Xn ↑ X, then P(E(Xn | G)IA ↑ E(X | G)) = 1, where A ∈ G is a set such that P(A) = 1.

Proof. Because Xn is a non-negative random variable, P(E(Xn | G) ≥ 0) = 1. For every n ∈ N, because Xn+1−Xn is
non-negative and E(Xn+1 | G)−E(Xn | G) = E(Xn+1−Xn | G) almost surely, P(E(Xn+1 | G)−E(Xn | G) ≥ 0) = 1.

Let Ac =
⋃

n{E(Xn | G) < 0} ∪ {E(Xn+1 | G)− E(Xn | G) < 0}. Note that A ∈ G and P(A) = 1, since

P(Ac) ≤
∑
n

P(E(Xn | G) < 0) + P(E(Xn+1 | G)− E(Xn | G) < 0) = 0.

For every n ∈ N, note that E(Xn | G)IA ≥ 0 and E(Xn+1 | G)IA ≥ E(Xn | G)IA.
Let Y = lim supn→∞ E(Xn | G)IA. For every G ∈ G, because every non-decreasing sequence of real numbers

converges (possibly to infinity), we know that E(Xn | G)IAIG ↑ Y IG, which also implies E(Xn | G)IA ↑ Y . By the
monotone-convergence theorem, we know that E(E(Xn | G)IAIG) ↑ E(Y IG).

For every n ∈ N and G ∈ G, we have (A ∩G) ∈ G and P(XnIGIAc ̸= 0) = 0, so that

E(E(Xn | G)IAIG) = E(E(Xn | G)IA∩G) = E(XnIA∩G) = E(XnIAIG) + E(XnIAcIG) = E(XnIG),

which implies E(XnIG) ↑ E(Y IG). Since XnIG ↑ XIG, we also know that E(XnIG) ↑ E(XIG), so that E(Y IG) =
E(XIG). Because Y is G-measurable and Ω ∈ G, we know that Y = E(X | G) almost surely.

Lemma 10.1 (Conditional Fatou lemma). Consider a sequence of non-negative random variables (Xn ∈ L1(Ω,F ,P) |
n ∈ N) and a σ-algebra G ⊆ F . If E(lim infn→∞ Xn) < ∞, then

P
(
E
(
lim inf
n→∞

Xn | G
)
≤ lim inf

n→∞
E(Xn | G)

)
= 1.

Proof. For any m ∈ N, consider the function Zm = infn≥m Xn, such that

lim inf
n→∞

Xn = lim
m→∞

inf
n≥m

Xn = lim
m→∞

Zm.

Because Zm ≤ Zm+1 for every m ∈ N, we have Zm ↑ lim infn→∞ Xn. Furthermore, Zm ≥ 0 and Zm ∈ L1(Ω,F ,P)
for every m ∈ N. Therefore, by the conditional monotone-convergence theorem,

P
(
E(Zm | G)IA ↑ E

(
lim inf
n→∞

Xn | G
))

= 1,

where A ∈ G and P(A) = 1.
For any n ≥ m, note that Xn ≥ Zm. Therefore, P (E(Xn − Zm | G) ≥ 0) = 1 and P (E(Xn | G) ≥ E(Zm | G)) = 1.

Furthermore, for every m ∈ N, because P(Ac) = 0,

P
(

inf
n≥m

E(Xn | G) ≥ E(Zm | G)IA
)

= 1.

By taking the limit of both sides of the previous inequation when m → ∞,

P
(
lim inf
n→∞

E(Xn | G) ≥ E
(
lim inf
n→∞

Xn | G
))

= 1.
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Lemma 10.2 (Reverse conditional Fatou lemma). Consider a sequence of non-negative random variables (Xn ∈
L1(Ω,F ,P) | n ∈ N), a σ-algebra G ⊆ F , and a non-negative random variable Y ∈ L1(Ω,F ,P) such that Xn ≤ Y
for every n ∈ N. In that case,

P
(
E
(
lim sup
n→∞

Xn | G
)

≥ lim sup
n→∞

E(Xn | G)
)

= 1.

Proof. Because Xn ≤ Y for every n ∈ N, we know that E(lim supn→∞ Xn) ≤ E(Y ) < ∞.
For every n ∈ N, consider the non-negative function Zn = Y − Xn, so that Zn ∈ L1(Ω,F ,P). From the

conditional Fatou lemma, since E(lim infn→∞ Zn) < ∞,

P
(
E
(
lim inf
n→∞

Y −Xn | G
)
≤ lim inf

n→∞
E(Y −Xn | G)

)
= 1.

For every n ∈ N, by moving constants outside the corresponding limits and linearity,

P
(
E (Y | G) + E

(
lim inf
n→∞

−Xn | G
)
≤ E(Y | G) + lim inf

n→∞
−E(Xn | G)

)
= 1.

By the relationship between limit inferior and limit superior and linearity,

P
(
E (Y | G)− E

(
lim sup
n→∞

Xn | G
)

≤ E(Y | G)− lim sup
n→∞

E(Xn | G)
)

= 1.

The proof is completed by reorganizing terms in the inequation above.

Theorem 10.2 (Conditional dominated convergence theorem). Consider a probability triple (Ω,F ,P), a sequence
of random variables (Xn | n ∈ N), a σ-algebra G ⊆ F , a random variable X, and a non-negative random variable
V ∈ L1(Ω,F ,P) such that |Xn| ≤ V for every n ∈ N. If P (limn→∞ Xn = X) = 1, then X ∈ L1(Ω,F ,P) and

P
(
lim
n→∞

E(Xn | G)IC = E(X | G)
)
= 1.

where C ∈ G is a set such that P(C) = 1.

Proof. Because |Xn| ≤ V for every n ∈ N, we know that E(|Xn|) ≤ E(V ) < ∞, which implies that Xn ∈ L1(Ω,F ,P).
Because the function |·| is continuous, we know that P(limn→∞ |Xn| = |X|) = 1. Because P (limn→∞ |Xn| ≤ V ) = 1,
we know that P (|X| ≤ V ) = 1. Because P(|X| ̸= |X|I{|X|≤V }) = 0, we know that E(|X|) = E(|X|I{|X|≤V }) ≤
E(V ) < ∞, so that X ∈ L1(Ω,F ,P).

Since P(|Xn| ≤ V ) = 1 and P(|X| ≤ V ) = 1, we have P(|Xn|+ |X| ≤ 2V ) = 1. By the triangle inequality,

|Xn −X| = |Xn + (−X)| ≤ |Xn|+ |X|,

which implies that P(|Xn −X| ≤ 2V ) = 1.
Let A = {|Xn −X| ≤ 2V }, so that P(|Xn −X| = |Xn −X|IA) = 1 and E(|Xn −X|) = E(|Xn −X|IA). Because

|Xn − X|IA is an F-measurable function and |Xn − X|IA ≤ 2V for every n ∈ N, where 2V : Ω → [0,∞] is an
F-measurable function such that E(2V ) = 2E(V ) < ∞, the reverse conditional Fatou lemma states that

P
(
E
(
lim sup
n→∞

|Xn −X|IA | G
)

≥ lim sup
n→∞

E (|Xn −X|IA | G)
)

= 1.

Since | · | is continuous, we have P (limn→∞ |Xn −X|IA = 0) = 1, where 0 is the zero function. Therefore,

P
(
lim sup
n→∞

|Xn −X|IA = lim inf
n→∞

|Xn −X|IA = lim
n→∞

|Xn −X|IA = 0

)
= 1.

Because each of the random variables above is almost surely equal to zero,

P
(
E
(
lim sup
n→∞

|Xn −X|IA | G
)

= E
(
lim inf
n→∞

|Xn −X|IA | G
)
= E

(
lim
n→∞

|Xn −X|IA | G
)
= 0

)
= 1.
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Since (Xn − X)IA ∈ L1(Ω,F ,P) for every n ∈ N, we have P (|E((Xn −X)IA | G)| ≤ E (|Xn −X| IA | G)) = 1.
By taking the limit superior of both sides of the previous inequation and employing the previous results,

P
(
0 ≤ lim sup

n→∞
|E((Xn −X)IA | G)| ≤ lim sup

n→∞
E (|Xn −X| IA | G) ≤ E

(
lim sup
n→∞

|Xn −X|IA | G
)

= 0

)
= 1.

Therefore, by the relationship between limits,

P
(
lim inf
n→∞

E((Xn −X)IA | G) = lim sup
n→∞

E((Xn −X)IA | G) = 0

)
= 1.

Because P ((Xn −X)IA = (Xn −X)) = 1 implies P (E((Xn −X)IA | G) = E(Xn −X | G)) = 1.

P
(
lim inf
n→∞

E(Xn −X | G) = lim sup
n→∞

E(Xn −X | G) = 0

)
= 1.

By the linearity of conditional expectation,

P
(
lim inf
n→∞

E(Xn | G) = lim sup
n→∞

E(Xn | G) = E(X | G)
)

= 1.

Let C = {ω ∈ Ω | limn→∞ E(Xn | G)(ω) exists in R}. Because E(Xn | G) is G-measurable for every n ∈ N, recall
that C ∈ G. Because E(|E(X | G)|) < ∞, recall that P (|E(X | G)| < ∞) = 1, so that P(C) = 1. Furthermore,

P
(
lim

n→∞
E(Xn | G)IC = E(X | G)

)
= 1.

Proposition 10.14 (Conditional Jensen’s inequality). Consider a random variable X ∈ L1(Ω,F ,P), a σ-algebra
G ⊆ F , and a convex function ϕ : R → R. If (ϕ ◦X) ∈ L1(Ω,F ,P), then P ((ϕ ◦ E(X | G)) ≤ E((ϕ ◦X) | G)) = 1.

Proof. Because ϕ is a convex function, it is possible to show that there is a sequence ((an, bn) ∈ R2 | n ∈ N) such
that ϕ(x) = supn anx+ bn for every x ∈ R. Therefore, ϕ(x) ≥ anx+ bn for every x ∈ R and n ∈ N. Furthermore, if
(ϕ ◦X) ∈ L1(Ω,F ,P), then (ϕ ◦X)− anX − bn ≥ 0 for every n ∈ N and

P (E((ϕ ◦X)− anX − bn | G) ≥ 0) = 1.

For every n ∈ N, by the linearity of conditional expectation,

P (E((ϕ ◦X) | G) ≥ anE(X | G) + bn) = 1.

By taking the supremum of both sides of the previous inequation,

P
(
E((ϕ ◦X) | G) ≥ sup

n
anE(X | G) + bn = (ϕ ◦ E(X | G))

)
= 1.

Proposition 10.15. Consider a random variable X ∈ Lp(Ω,F ,P), where p ∈ [1,∞), and a σ-algebra G ⊆ F . In
that case, ∥E(X | G)∥p ≤ ∥X∥p.

Proof. From the monotonicity of norm, we know that X ∈ L1(Ω,F ,P). Consider the convex function ϕ : R → R
given by ϕ(x) = |x|p, so that (ϕ ◦X) = |X|p. Because E(|X|p) < ∞, we know that |X|p ∈ L1(Ω,F ,P). From the
conditional Jensen’s inequality, P (|E(X | G)|p ≤ E(|X|p | G)) = 1. Let A = {|E(X | G)|p ≤ E(|X|p | G)}.

Because |E(X | G)|p is non-negative and G-measurable and E(|X|p | G) ∈ L1(Ω,G,P),

E (|E(X | G)|p) = E (|E(X | G)|pIA) ≤ E (E(|X|p | G)IA) = E (E(|X|p | G)) = E(|X|p).

Proposition 10.16 (Tower property). Consider a random variable X ∈ L1(Ω,F ,P), a σ-algebra G ⊆ F , and a
σ-algebra H ⊆ G. In that case, E(E(X | G) | H) = E(X | H) almost surely.
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Proof. Because E(X | G) ∈ L1(Ω,G,P), we know that E(E(X | G) | H) ∈ L1(Ω,H,P). For every H ∈ H, since
H ∈ G, ∫

Ω

E(E(X | G) | H)IH dP =

∫
Ω

E(X | G)IH dP =

∫
Ω

XIH dP.

For the remainder of this text, we let E(X | G | H) denote E(E(X | G) | H).

Proposition 10.17 (Taking out what is known). Consider a random variable X ∈ L1(Ω,F ,P), a σ-algebra G ⊆ F ,
and a G-measurable random variable Z : Ω → R. If E(|ZX|) < ∞, then E(ZX | G) = ZE(X | G) almost surely.

Proof. We will start by assuming that X ≥ 0.
First, suppose that Z = IA, where A ∈ G. For every G ∈ G, since ZX ∈ L1(Ω,F ,P) and A ∩G ∈ G,

E(ZXIG) = E(XIA∩G) = E(E(X | G)IA∩G) = E(ZE(X | G)IG).

Because ZE(X | G) is G-measurable and E(ZE(X | G)) = E(ZX) < ∞, we know that ZE(X | G) = E(ZX | G)
almost surely.

Next, suppose that Z is a simple function that can be written as Z =
∑m

k=1 akIAk
for some fixed a1, a2, . . . , am ∈

[0,∞] and A1, A2, . . . , Am ∈ G. By the linearity of the conditional expectation and the previous step,

P

(
E(ZX | G) = E

(
m∑

k=1

akIAk
X | G

)
=

m∑
k=1

akE (IAk
X | G) =

m∑
k=1

akIAk
E (X | G) = ZE(X | G)

)
= 1,

where we also used the fact that E(IAk
X) ≤ E(X) < ∞.

Next, suppose that Z is a non-negative G-measurable function. For any n ∈ N, consider the simple function
Zn = αn ◦ Z, where αn is the n-th staircase function.

For every G ∈ G, since Zn ↑ Z and XIG ≥ 0, note that ZnXIG ↑ ZXIG. For every G ∈ G, since Zn ↑ Z and
|E(X | G)|IG ≥ 0, note that Zn|E(X | G)|IG ↑ Z|E(X | G)|IG. Therefore, by the monotone-convergence theorem,
we know that E(ZnXIG) ↑ E(ZXIG) and E(Zn|E(X | G)|IG) ↑ E(Z|E(X | G)|IG).

Because Zn is a simple G-measurable function and E(ZnX) ≤ E(ZX) < ∞, note that E(ZnX | G) = ZnE(X | G)
almost surely. Because ZnE(X | G) = Zn|E(X | G)| almost surely, E(ZnXIG) = E(Zn|E(X | G)|IG) for every
G ∈ G. Therefore, the previous result implies that E(ZXIG) = E(Z|E(X | G)|IG) for every G ∈ G, so that
Z|E(X | G)| = E(ZX | G) almost surely. Because Z|E(X | G)| = ZE(X | G) almost surely, this step is complete.

Next, suppose that Z is a G-measurable function. Recall that Z = Z+−Z−, where Z+ and Z− are non-negative
G-measurable functions. By the linearity of the conditional expectation and the previous step,

P
(
E(ZX | G) = E(Z+X | G)− E(Z−X | G) = Z+E(X | G)− Z−E(X | G) = ZE(X | G)

)
= 1,

where we have also used the fact that E(Z+X) + E(Z−X) = E((Z+ + Z−)X) = E(|ZX|) < ∞.
Finally, suppose that X ∈ L1(Ω,F ,P). Recall that X = X+ − X−, where X+ and X− are non-negative

F-measurable functions By the linearity of the conditional expectation,

P
(
E(ZX | G) = E(ZX+ | G)− E(ZX− | G) = ZE(X+ | G)− ZE(X− | G) = ZE(X | G)

)
= 1,

where we have also used the fact that E(|Z|X+) + E(|Z|X−) = E(|Z|(X+ +X−)) = E(|ZX|) < ∞.

Proposition 10.18 (Role of independence). Consider a random variable X ∈ L1(Ω,F ,P), a σ-algebra G ⊆ F , and
a σ-algebra H ⊆ F . If H and σ(σ(X) ∪ G) are independent, then E(X | σ(G ∪ H)) = E(X | G) almost surely.

Proof. We will start by assuming that X ≥ 0.
For every G ∈ G, note that |E(X | G)|IG is G-measurable. Consider the Borel function f : R2 → R given by

f(a, b) = ab. Since (XIG)(ω) = f(X(ω), IG(ω)) for every ω ∈ Ω, we also know that XIG is σ(σ(X)∪G)-measurable.
For every G ∈ G and H ∈ H, we know that XIG and IH are independent, since IH is H-measurable. We also

know that |E(X | G)|IG and IH are independent, since G ⊆ σ(σ(X) ∪ G).
For every G ∈ G and H ∈ H, because XIG ∈ L1(Ω,F ,P), |E(X | G)|IG ∈ L1(Ω,F ,P), and IH ∈ L1(Ω,F ,P),

E(X;G ∩H) = E(XIGIH) = E(XIG)E(IH) = E(|E(X | G)|IG)E(IH) = E(|E(X | G)|IGIH) = E(|E(X | G)|;G ∩H).
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Consider the set I = {G ∩H | G ∈ G and H ∈ H}. Suppose that (G1 ∩H1) ∈ I and (G2 ∩H2) ∈ I, and note
that (G1 ∩H1) ∩ (G2 ∩H2) = (G1 ∩G2) ∩ (H1 ∩H2). Because (G1 ∩G2) ∈ G and (H1 ∩H2) ∈ H, we know that
((G1 ∩H1) ∩ (G2 ∩H2)) ∈ I, so that I is a π-system.

Since Ω ∈ G, we know that H ⊆ I. Since Ω ∈ H, we know that G ⊆ I. Therefore, G ∪ H ⊆ I, so that
σ(G ∪ H) ⊆ σ(I). For every G ∈ G and H ∈ H, we know that (G ∩H) ∈ σ(G ∪ H). Therefore I ⊆ σ(G ∪ H), so
that σ(I) ⊆ σ(G ∪ H). In conclusion, σ(I) = σ(G ∪ H).

Consider the measure (XP) : F → [0,∞] given by (XP)(A) = E(X;A) and the measure (|E(X | G)|P) : F →
[0,∞] given by (|E(X | G)|P)(A) = E(|E(X | G)|;A). For every I ∈ I, we know that (XP)(I) = (|E(X | G)|P)(I).
In particular, we know that (XP)(Ω) = E(X) = (|E(X | G)|P)(Ω) < ∞. Therefore, from a previous result, we
know that E(XIA) = E(|E(X | G)|IA) for every A ∈ σ(G ∪ H). Because |E(X | G)| is σ(G ∪ H)-measurable and
E(|E(X | G)|) = E(X) < ∞, we know that |E(X | G)| = E(X | σ(G∪H)) almost surely. Since |E(X | G)| = E(X | G)
almost surely, this step is complete.

Finally, suppose X ∈ L1(Ω,F ,P). Recall that X = X+ −X−, where X+ ∈ L1(Ω,F ,P) and X− ∈ L1(Ω,F ,P)
are non-negative. By the linearity of the conditional expectation,

P
(
E(X | σ(G ∪ H)) = E(X+ | σ(G ∪ H))− E(X− | σ(G ∪ H)) = E(X+ | G)− E(X− | G) = E(X | G)

)
= 1,

where we used the fact that σ(σ(X+) ∪ G) ⊆ σ(σ(X) ∪ G) and σ(σ(X−) ∪ G) ⊆ σ(σ(X) ∪ G).

Proposition 10.19. Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra H ⊆ F . If H and σ(X) are
independent, then E(X | H) = E(X) almost surely.

Proof. Let G = {∅,Ω}. Using the previous result, we know that E(X | H) = E(X | G) almost surely. Based on a
previous result, we know that E(X) = E(X | G) almost surely.

Definition 10.3. Consider the probability triple (Ω,F ,P) and a σ-algebra G ⊆ F . For every F ∈ F , we let P(F | G)
denote a version of the conditional expectation E(IF | G) of IF given G, so that P(F | G) = E(IF | G) almost surely.
Note that P(F | {∅,Ω}) = E(IF | {∅,Ω}) = E(IF ) = P(F ) almost surely.

Proposition 10.20. Consider a probability triple (Ω,F ,P) and the random variables IF : Ω → {0, 1} and Z :
Ω → Z, where F ∈ F and Z = {z1, . . . , zn}. Furthermore, suppose P(Z = z) > 0 for every z ∈ Z. Recall that if
E : Z → [0, 1] is given by

E(z) =
P(IF = 1, Z = z)

P(Z = z)
=

P(F ∩ {Z = z})
P(Z = z)

,

then E ◦ Z = E(IF | Z) = P(F | Z) almost surely.

Proposition 10.21. Consider a sequence of events (Fn ∈ F | n ∈ N) such that Fn ∩ Fm = ∅ for every n ̸= m. In
that case, P (

⋃
n Fn | G) =

∑
n IAP (Fn | G) almost surely, where A ∈ G is a set such that P(A) = 1.

Proof. For every k ∈ N, by the linearity of conditional expectation,

P

(
P

(
k⋃

i=0

Fi | G

)
= E

(
I⋃k

i=0 Fi
| G
)
= E

(
k∑

i=0

IFi
| G

)
=

k∑
i=0

E (IFi
| G) =

k∑
i=0

P (Fi | G)

)
= 1.

Because I⋃k
i=0 Fi

↑ I⋃
n Fn

with respect to k, by the conditional monotone-convergence theorem,

P

(∑
n

IAP (Fn | G) = lim
k→∞

k∑
i=0

IAP (Fi | G) = lim
k→∞

E
(
I⋃k

i=0 Fi
| G
)
IA = E

(
I⋃

n Fn
| G
)
= P

(⋃
n

Fn | G

))
= 1,

where A ∈ G is a set such that P(A) = 1.

Definition 10.4. Consider the probability triple (Ω,F ,P) and a σ-algebra G ⊆ F . A function PG : Ω×F → [0, 1]
is called a regular conditional probability given G if

• There is a set A ∈ F such that P(A) = 1 and, for every ω ∈ A, the function PG(ω, ·) : F → [0, 1] is a
probability measure on (Ω,F).
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• For every F ∈ F , the function PG(·, F ) : Ω → [0, 1] is a version of the conditional expectation E(IF | G) of IF
given G, so that PG(·, F ) = P(F | G) = E(IF | G) almost surely.

It can be shown that a regular conditional probability given G exists under very permissive assumptions.

Proposition 10.22. Consider the probability triple (Ω,F ,P), a bounded Borel function h : Rn → R, and the
independent random variables X1, X2, . . . , Xn. Let h(X1, X2, . . . , Xn) : Ω → R be given by

h(X1, X2, . . . , Xn)(ω) = h(X1(ω), X2(ω), . . . , Xn(ω)).

Furthermore, for every x1 ∈ R, let h(x1, X2, . . . , Xn) : Ω → R be given by

h(x1, X2, . . . , Xn)(ω) = h(x1, X2(ω), . . . , Xn(ω)).

Finally, let γ : R → R be given by

γ(x1) = E(h(x1, X2, . . . , Xn)).

In that case, γ(X1) = E(h(X1, X2, . . . , Xn) | X1) almost surely, where γ(X1) = γ ◦X1.

Proof. For every (x1, x2, . . . , xn) ∈ Rn, let hx1 : Rn−1 → R be given by hx1(x2, . . . , xn) = h(x1, x2, . . . , xn),
and recall that hx1

is a bounded Borel function. Furthermore, recall that the function Z : Ω → Rn given by
Z(ω) = (X1(ω), X2(ω), . . . , Xn(ω)) is F/B(R)n-measurable and that the function Y : Ω → Rn−1 given by Y (ω) =
(X2(ω), . . . , Xn(ω)) is F/B(R)n−1-measurable.

For every x1 ∈ R, note that h(X1, X2, . . . , Xn) = h ◦ Z and h(x1, X2, . . . , Xn) = hx1
◦ Y . Because h and hx1

are Borel, for every B ∈ B(R), we know that Z−1(h−1(B)) ∈ F and Y −1(h−1
x1

(B)) ∈ F . Because h and hx1 are
bounded, h(X1, X2, . . . , Xn) ∈ L1(Ω,F ,P) and h(x1, X2, . . . , Xn) ∈ L1(Ω,F ,P).

For every k ∈ {1, . . . , n}, let Lk : B(R) → [0, 1] denote the law of Xk. Because the random variables
X1, X2, . . . , Xn are independent, recall that the joint law of Xi, Xi+1, . . . , Xn is given by Li × Li+1 × · · · × Ln.

For every x1 ∈ R, because a previous result for laws extends to joint laws,

γ(x1) =

∫
Ω

h(x1, X2, . . . , Xn) dP =

∫
Ω

(hx1
◦ Y ) dP =

∫
Rn−1

hx1
d(L2 × · · · × Ln).

Because hx1
is a bounded Borel function,

γ(x1) =

∫
R
· · ·
∫
R
h(x1, x2, . . . , xn)Ln(dxn) · · · L2(dx2),

which also implies that γ is B(R)-measurable, so that γ(X1) is σ(X1)-measurable.
For every B ∈ B(R), recall that IX−1

1 (B) = IB(X1). Therefore, for every X−1
1 (B) ∈ σ(X1),∫

Ω

h(X1, X2, . . . , Xn)IX−1
1 (B) dP =

∫
Rn

hIB(ρ1) d(L1 × · · · × Ln).

Because hIB(ρ1) is bounded Borel function,∫
Ω

h(X1, X2, . . . , Xn)IX−1
1 (B) dP =

∫
R
IB(x1)

[∫
R
· · ·
∫
R
h(x1, x2, . . . , xn)Ln(dxn) · · · L2(dx2)

]
L1(dx1).

Using the previous expression for γ(x1) and a previous result for laws,∫
Ω

h(X1, X2, . . . , Xn)IX−1
1 (B) dP =

∫
R
IB(x1)γ(x1)L1(dx1) =

∫
Ω

γ(X1)IX−1
1 (B) dP.

Because E(γ(X1)) = E(h(X1, X2, . . . , Xn)) < ∞, the proof is complete.

Proposition 10.23. Consider a measurable space (Ω,F) and the sequence of σ-algebras (Fn ⊆ F | n ∈ N+). For
every n ∈ N+, let In = {∩n

i=1Fi | Fi ∈ Fi for every i ∈ {1, . . . , n}}. In that case, I = ∪nIn is a π-system on Ω such
that σ(I) = σ(F1,F2, . . .), where σ(F1,F2, . . .) = σ({F1,F2, . . .}) = σ(∪nFn).
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Proof. For some n ∈ N+, consider the sets B ∈ In and C ∈ In such that B = ∩n
i=1Fi and C = ∩n

i=1F
′
i , where

Fi ∈ Fi and F ′
i ∈ Fi for every i ∈ {1, . . . , n}. In that case,

B ∩ C =

(
n⋂

i=1

Fi

)
∩

(
n⋂

i=1

F ′
i

)
=

n⋂
i=1

(Fi ∩ F ′
i ).

Because (Fi ∩ F ′
i ) ∈ Fi for every i ∈ {1, . . . , n}, we know that (B ∩ C) ∈ In. Therefore, In is a π-system on Ω.

Because Ω ∈ Fn for every n ∈ N+, we know that In ⊆ In+1 . Therefore, I = ∪nIn is also a π-system on Ω.
Since Ω ∈ Fn for every n ∈ N+, we also know that Fn ⊆ I for every n ∈ N+. Therefore, ∪nFn ⊆ I and

σ(∪nFn) ⊆ σ(I). Consider a set (∩m
i=1Fi) ∈ I, where m ∈ N+ and Fi ∈ Fi for every i ∈ {1, . . . ,m}. Clearly,

Fi ∈ ∪nFn for every i ∈ {1, . . . ,m}. Because σ(∪nFn) is a σ-algebra, we know that (∩m
i=1Fi) ∈ σ(∪nFn), which

implies I ⊆ σ(∪nFn) and σ(I) ⊆ σ(∪nFn).

Proposition 10.24. Consider a probability triple (Ω,F ,P) and the sequence of independent σ-algebras (Fn ⊆ F |
n ∈ N+). In that case, σ(F1, . . . ,Fk) and σ(Fk+1,Fk+2, . . .) are independent for every k ∈ N+.

Proof. From the previous proof, we know that I = {∩k
i=1Fi | Fi ∈ Fi for every i ∈ {1, . . . , k}} is a π-system on Ω

such that σ(I) = σ(F1, . . . ,Fk). We also know that J = ∪n{∩k+n
i=k+1Fi | Fi ∈ Fi for every i ∈ {k + 1, . . . , k + n}}

is a π-system on Ω such that σ(J ) = σ(Fk+1,Fk+2, . . .).
Consider a set (∩k

i=1Fi) ∈ I, where Fi ∈ Fi for every i ∈ {1, . . . , k}, and a set (∩k+n
i=k+1Fi) ∈ J , where n ∈

N+ and Fi ∈ Fi for every i ∈ {k + 1, . . . , k + n}. Because F1, . . . ,Fk+n are independent,

P

((
k⋂

i=1

Fi

)
∩

(
k+n⋂

i=k+1

Fi

))
=

(
k∏

i=1

P (Fi)

)(
k+n∏

i=k+1

P (Fi)

)
= P

(
k⋂

i=1

Fi

)
P

(
k+n⋂

i=k+1

Fi

)
,

which implies that I and J are independent. Because σ(I) and σ(J ) are then independent, the proof is complete.

Proposition 10.25. Consider a probability triple (Ω,F ,P) and a sequence of independent identically distributed
random variables (Xn : Ω → R | n ∈ N+), each of which has the same law LX as the random variable X ∈
L1(Ω,F ,P). Let Sn : Ω → R be a random variable given by Sn = X1 + · · ·+Xn. In that case,

E(Xk | Sn) = E(Xk | Sn, Sn+1, . . .) =
Sn

n

almost surely, where n ∈ N+ and k ∈ {1, . . . , n}.

Proof. We will start by showing that σ(Sn, Sn+1, . . .) = σ(Sn, Xn+1, Xn+2, . . .) for every n ∈ N+. For every i ∈ N+,
note that Sn+i = Sn +Xn+1 + · · ·+Xn+i, so that σ(Sn+i) ⊆ σ(Sn, Xn+1, Xn+2, . . .). Therefore, σ(Sn, Sn+1, . . .) ⊆
σ(Sn, Xn+1, Xn+2, . . .). For every i ∈ N+, note that Xn+i = Sn+i − Sn+i−1, so that σ(Xn+i) ⊆ σ(Sn, Sn+1, . . .).
Therefore, σ(Sn, Xn+1, Xn+2, . . .) ⊆ σ(Sn, Sn+1, . . .).

Next, we will show that σ(Sn, Xk) and σ(Xn+1, Xn+2, . . .) are independent for every n ∈ N+ and k ∈ {1, . . . , n}.
Note that σ(Sn) ⊆ σ(X1, . . . , Xn). Therefore, σ(Sn, Xk) ⊆ σ(X1, . . . , Xn). From a previous result, we know that
σ(X1, . . . , Xn) and σ(Xn+1, Xn+2, . . .) are independent, so that σ(Sn, Xk) and σ(Xn+1, Xn+2, . . .) are independent.

By considering this independence, for every n ∈ N+ and k ∈ {1, . . . , n},

E (Xk | Sn, Sn+1, . . .) = E (Xk | Sn, Xn+1, Xn+2, . . .) = E (Xk | Sn)

almost surely.
For every n ∈ N+, recall that IS−1

n (B) = IB(Sn) for all B ∈ B(R). Since Xk ∈ L1(Ω,F ,P) for every k ∈ {1, . . . , n},∫
Ω

XkIS−1
n (B) dP =

∫
Ω

XkIB(Sn) dP =

∫
Ω

fB(Xk, X1, . . . , Xk−1, Xk+1, . . . , Xn) dP,

where fB : Rn → R is a Borel function given by fB(x1, . . . , xn) = x1IB(x1 + · · ·+ xn).
Because a previous result for laws extends to joint laws and X1, . . . , Xn are independent,∫

Ω

XkIS−1
n (B) dP =

∫
Rn

fB dLXk,X1,...,Xk−1,Xk+1,...,Xn
=

∫
Rn

fB dLn
X .
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Therefore, for every n ∈ N+, B ∈ B(R), S−1
n (B) ∈ σ(Sn), and i, j ∈ {1, . . . , n},∫

Ω

E(Xi | Sn)IS−1
n (B) dP =

∫
Ω

XiIS−1
n (B) dP =

∫
Rn

fB dLn
X =

∫
Ω

XjIS−1
n (B) dP =

∫
Ω

E(Xj | Sn)IS−1
n (B) dP,

so that E(Xi | Sn) = E(Xj | Sn) almost surely.
Finally, for every n ∈ N+ and k ∈ {1, . . . , n},

nE(Xk | Sn) =

n∑
i=1

E(Xk | Sn) =

n∑
i=1

E(Xi | Sn) = E

(
n∑

i=1

Xi | Sn

)
= E(Sn | Sn) = Sn

almost surely, so that E(Xk | Sn) = Sn/n almost surely.

11 Martingales
Definition 11.1. Consider a probability triple (Ω,F ,P). A filtration (Fn)n is a sequence (Fn ⊆ F | n ∈ N) of
σ-algebras such that Fn ⊆ Fn+1 for every n ∈ N. In that case, we let F∞ = σ(F0,F1, . . .) = σ(∪nFn).

Definition 11.2. A filtered space (Ω,F , (Fn)n,P) is composed of a probability triple (Ω,F ,P) and a filtration
(Fn)n.

Intuitively, at a given time n ∈ N, for every ω ∈ Ω, recall that knowing IFn(ω) for every Fn ∈ Fn allows knowing
Zn(ω) for every Fn-measurable random variable Zn.

For any set C, recall that a set (or sequence) of random variables Y = (Yγ | γ ∈ C) on a probability triple
(Ω,F ,P) is called a stochastic process (parameterized by C).

Definition 11.3. Consider a probability triple (Ω,F ,P). The natural filtration (Fn)n of the stochastic process
(Wn | n ∈ N) is given by Fn = σ(W0, . . . ,Wn) for every n ∈ N.

Intuitively, at a given time n ∈ N, for every ω ∈ Ω, recall that knowing IFn
(ω) for every Fn ∈ σ(W0, . . . ,Wn) is

equivalent to knowing W0(ω), . . . ,Wn(ω).

Definition 11.4. Consider a filtered space (Ω,F , (Fn)n,P). A stochastic process (Xn | n ∈ N) is called adapted
(to the filtration (Fn)n) if Xn is Fn-measurable for every n ∈ N.

Note that if (Fn)n is the natural filtration of the stochastic process (Wn | n ∈ N), then there is a Borel function
fn : Rn+1 → R such that Xn = fn(W0, . . . ,Wn).

Consider a filtered space (Ω,F , (Fn)n,P).

Definition 11.5. A stochastic process (Xn | n ∈ N) is called a martingale if (Xn | n ∈ N) is adapted; E(|Xn|) < ∞
for every n ∈ N; and E(Xn | Fn−1) = Xn−1 almost surely for every n ∈ N+.

Definition 11.6. A stochastic process (Xn | n ∈ N) is called a supermartingale if (Xn | n ∈ N) is adapted;
E(|Xn|) < ∞ for every n ∈ N; and E(Xn | Fn−1) ≤ Xn−1 almost surely for every n ∈ N+.

Definition 11.7. A stochastic process (Xn | n ∈ N) is called a submartingale if (Xn | n ∈ N) is adapted;
E(|Xn|) < ∞ for every n ∈ N; and E(Xn | Fn−1) ≥ Xn−1 almost surely for every n ∈ N+.

Proposition 11.1. Consider an adapted stochastic process (Xn | n ∈ N) and suppose that E(|Xn|) < ∞ for every
n ∈ N. For every n ∈ N+, note that E(Xn | Fn−1) = Xn−1 almost surely if and only if E(Xn | Fn−1) ≤ Xn−1 ≤
E(Xn | Fn−1) almost surely. Therefore, (Xn | n ∈ N) is a martingale if and only if (Xn | n ∈ N) is a supermartingale
and a submartingale.

Proposition 11.2. If (Xn | n ∈ N) is a supermartingale, then (−Xn | n ∈ N) is adapted; E(|−Xn|) = E(|Xn|) < ∞
for every n ∈ N; and E(−Xn | Fn−1) ≥ −Xn−1 almost surely for every n ∈ N+. Therefore, (−Xn | n ∈ N) is a
submartingale.

Proposition 11.3. If (Xn | n ∈ N) is a submartingale, then (−Xn | n ∈ N) is adapted; E(| −Xn|) = E(|Xn|) < ∞
for every n ∈ N; and E(−Xn | Fn−1) ≤ −Xn−1 almost surely for every n ∈ N+. Therefore, (−Xn | n ∈ N) is a
supermartingale.
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Proposition 11.4. Consider an adapted stochastic process (Xn | n ∈ N) and suppose that E(|Xn|) < ∞ for every
n ∈ N. Furthermore, consider the stochastic process (Xn − X0 | n ∈ N). Because Xn − X0 is Fn-measurable for
every n ∈ N, we know that (Xn − X0 | n ∈ N) is adapted. Because L1(Ω,F ,P) is a vector space, we know that
E(|Xn −X0|) < ∞ for every n ∈ N. By the linearity of conditional expectation,

E(Xn −X0 | Fn−1) = E(Xn | Fn−1)− E(X0 | Fn−1) = E(Xn | Fn−1)−X0

almost surely for every n ∈ N+. Therefore:

• For every n ∈ N+, E(Xn | Fn−1) = Xn−1 almost surely if and only if E(Xn−X0 | Fn−1) = Xn−1−X0 almost
surely. Therefore, (Xn | n ∈ N) is a martingale if and only if (Xn −X0 | n ∈ N) is a martingale.

• For every n ∈ N+, E(Xn | Fn−1) ≤ Xn−1 almost surely if and only if E(Xn−X0 | Fn−1) ≤ Xn−1−X0 almost
surely. Therefore, (Xn | n ∈ N) is a supermartingale if and only if (Xn −X0 | n ∈ N) is a supermartingale.

• For every n ∈ N+, E(Xn | Fn−1) ≥ Xn−1 almost surely if and only if E(Xn−X0 | Fn−1) ≥ Xn−1−X0 almost
surely. Therefore, (Xn | n ∈ N) is a submartingale if and only if (Xn −X0 | n ∈ N) is a submartingale.

Consequently, it is common to assume that a stochastic process (Xn | n ∈ N) has X0 = 0 and F0 = {∅,Ω}.

Proposition 11.5. If (Xn | n ∈ N) is a martingale, n ∈ N+, and m < n, then

E(Xn | Fm) = E(Xn | Fn−1 | Fm) = E(E(Xn | Fn−1) | Fm) = E(Xn−1 | Fm)

almost surely. Therefore, almost surely,

E(Xn | Fm) = E(Xn−1 | Fm) = . . . = E(Xm+1 | Fm) = E(Xm | Fm) = Xm.

Proposition 11.6. If (Xn | n ∈ N) is a supermartingale, n ∈ N+, and m < n, then

E(Xn | Fm) = E(Xn | Fn−1 | Fm) = E(E(Xn | Fn−1) | Fm) ≤ E(Xn−1 | Fm)

almost surely. Therefore, almost surely,

E(Xn | Fm) ≤ E(Xn−1 | Fm) ≤ . . . ≤ E(Xm+1 | Fm) ≤ E(Xm | Fm) = Xm.

Proposition 11.7. If (Xn | n ∈ N) is a submartingale, n ∈ N+, and m < n, then

E(Xn | Fm) = E(Xn | Fn−1 | Fm) = E(E(Xn | Fn−1) | Fm) ≥ E(Xn−1 | Fm)

almost surely. Therefore, almost surely,

E(Xn | Fm) ≥ E(Xn−1 | Fm) ≥ . . . ≥ E(Xm+1 | Fm) ≥ E(Xm | Fm) = Xm.

The next three examples illustrate the definition of martingales.

Proposition 11.8. Consider a probability triple (Ω,F ,P), a sequence of independent random variables (Xn ∈
L1(Ω,F ,P)) | n ∈ N+), and suppose that E(Xn) = 0 for every n ∈ N+. Let Sn = X1 + · · ·+Xn for every n ∈ N+

and S0 = 0. In that case, (Sn | n ∈ N) is a martingale.

Proof. Let Fn = σ(X1, . . . , Xn) for every n ∈ N+ and F0 = {∅,Ω}. Clearly, (Sn | n ∈ N) is adapted to the filtration
(Fn)n. Because L1(Ω,F ,P) is a vector space, Sn ∈ L1(Ω,F ,P) for every n ∈ N. For every n ∈ N+,

E(Sn | Fn−1) = E(Sn−1 +Xn | Fn−1) = E(Sn−1 | Fn−1) + E(Xn | Fn−1) = Sn−1 + E(Xn) = Sn−1

almost surely, where we used the fact that σ(Xn) is independent of Fn−1 for every n ∈ N+.

Proposition 11.9. Consider a probability triple (Ω,F ,P), a sequence of independent random variables (Xn ∈
L1(Ω,F ,P) | n ∈ N+), and suppose that E(Xn) = 1 for every n ∈ N+. Let Mn = X1 · · · · ·Xn for every n ∈ N+ and
M0 = 1. In that case, (Mn | n ∈ N) is a martingale.
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Proof. Let Fn = σ(X1, . . . , Xn) for every n ∈ N+ and F0 = {∅,Ω}. Clearly, (Mn | n ∈ N) is adapted to the
filtration (Fn)n. Because X1, . . . , Xn are independent, Mn ∈ L1(Ω,F ,P) for every n ∈ N. For every n ∈ N+,

E(Mn | Fn−1) = E(Mn−1Xn | Fn−1) = Mn−1E(Xn | Fn−1) = Mn−1E(Xn) = Mn−1

almost surely, where we used the fact that σ(Xn) is independent of Fn−1 for every n ∈ N+.

Proposition 11.10. Consider a filtered space (Ω,F , (Fn)n,P) and a random variable ξ ∈ L1(Ω,F ,P). Let Mn =
E(ξ | Fn) almost surely for every n ∈ N. In that case, (Mn | n ∈ N) is a martingale.

Proof. Clearly, (Mn ∈ L1(Ω,Fn,P) | n ∈ N) is adapted to the filtration (Fn)n. For every n ∈ N+,

E(Mn | Fn−1) = E(E(ξ | Fn) | Fn−1) = E(ξ | Fn | Fn−1) = E(ξ | Fn−1) = Mn−1

almost surely.

Consider a filtered space (Ω,F , (Fn)n,P).

Definition 11.8. A stochastic process (Cn | n ∈ N) is called previsible if Cn is Fn−1 measurable for every n ∈ N+.

Note that if (Fn)n is the natural filtration of the stochastic process (Wn | n ∈ N), then there is a Borel function
gn : Rn → R such that Cn = gn(W0, . . . ,Wn−1) for every n ∈ N+.

Definition 11.9. The martingale transform (C • X) of an adapted process X = (Xn | n ∈ N) by a previsible
process C = (Cn | n ∈ N) is the adapted process ((C •X)n | n ∈ N), where (C •X)0 = 0 and

(C •X)n =

n∑
k=1

Ck(Xk −Xk−1)

for every n ∈ N+.

Note that (C •X)n = (C •X)n−1 + Cn(Xn −Xn−1) for every n ∈ N+.
The following example illustrates the definition of martingale transform.

Example 11.1. For every ω ∈ Ω, suppose that Xn(ω)−Xn−1(ω) represents the profit per unit stake in round n ∈ N+

of a game. In that case, Cn(ω) can be interpreted as the amount stake in round n ∈ N+ by a particular gambling
strategy C. For every n ∈ N+ and ω ∈ Ω, the amount stake Cn(ω) may rely on knowledge about IFn−1(ω) for
every Fn−1 ∈ Fn−1, which includes at the very least knowledge about X0(ω), . . . , Xn−1(ω) and C0(ω), . . . Cn−1(ω).
Finally, in this setting, (C •X)n(ω) represents the profit after n ∈ N+ rounds. Note that:

• If (Xn | n ∈ N) is a martingale, then E(Xn − Xn−1 | Fn−1) = E(Xn | Fn−1) − Xn−1 = 0 almost surely for
every n ∈ N+.

• If (Xn | n ∈ N) is a supermartingale, then E(Xn −Xn−1 | Fn−1) = E(Xn | Fn−1)−Xn−1 ≤ 0 almost surely
for every n ∈ N+.

• If (Xn | n ∈ N) is a submartingale, then E(Xn −Xn−1 | Fn−1) = E(Xn | Fn−1)−Xn−1 ≥ 0 almost surely for
every n ∈ N+.

Proposition 11.11. Consider an adapted process X = (Xn | n ∈ N) and a previsible process C = (Cn | n ∈ N).
If Cn ∈ L2(Ω,F ,P) and Xn ∈ L2(Ω,F ,P) for every n ∈ N, then Cn(Xn −Xn−1) ∈ L1(Ω,F ,P) for every n ∈ N+.

Proof. Since L2(Ω,F ,P) is a vector space, (Xn−Xn−1) ∈ L2(Ω,F ,P) for every n ∈ N+. By the Schwarz inequality,
Cn(Xn −Xn−1) ∈ L1(Ω,F ,P).

Proposition 11.12. Consider an adapted process X = (Xn | n ∈ N) and a previsible process C = (Cn | n ∈ N).
If |Cn| ≤ K and E(|Xn|) < ∞ for every n ∈ N and some K ∈ [0,∞), then Cn(Xn −Xn−1) ∈ L1(Ω,F ,P) for every
n ∈ N+.

Proof. Since |Cn||Xn −Xn−1| ≤ K|Xn −Xn−1| for every n ∈ N+, we know that E(|Cn(Xn −Xn−1)|) ≤ KE(|Xn −
Xn−1|). Because L1(Ω,F ,P) is a vector space, we know that Cn(Xn −Xn−1) ∈ L1(Ω,F ,P).
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Proposition 11.13. Consider an adapted process X = (Xn ∈ L1(Ω,Fn,P) | n ∈ N) and a previsible process
C = (Cn | n ∈ N). Furthermore, suppose that Cn(Xn −Xn−1) ∈ L1(Ω,F ,P) for every n ∈ N+.

First, recall that (C •X) is adapted. Because (C •X)0 = 0 and (C •X)n = (C •X)n−1 + Cn(Xn −Xn−1) for
every n ∈ N+, we know that (C •X)n ∈ L1(Ω,F ,P) for every n ∈ N. Finally, for every n ∈ N+,

E((C •X)n | Fn−1) = E((C •X)n−1 + Cn(Xn −Xn−1) | Fn−1) = (C •X)n−1 + CnE(Xn −Xn−1 | Fn−1)

almost surely. Therefore:

• If (Xn | n ∈ N) is a martingale, then, E((C •X)n | Fn−1) = (C •X)n−1 almost surely for every n ∈ N+, so
that (C •X) is a martingale.

• If (Xn | n ∈ N) is a supermartingale and C is non-negative, then E((C •X)n | Fn−1) ≤ (C •X)n−1 almost
surely for every n ∈ N+, so that (C •X) is a supermartingale.

• If (Xn | n ∈ N) is a submartingale and C is non-negative, then E((C • X)n | Fn−1) ≥ (C • X)n−1 almost
surely for every n ∈ N+, so that (C •X) is a submartingale.

Consider a filtered space (Ω,F , (Fn)n,P).

Definition 11.10. A function T : Ω → N∪ {∞} is called a stopping time if {T ≤ n} ∈ Fn for every n ∈ N∪ {∞}.

Intuitively, for every ω ∈ Ω and n ∈ N ∪ {∞}, knowing IFn
(ω) for every Fn ∈ Fn allows knowing whether

T (ω) ≤ n.

Proposition 11.14. The function T : Ω → N ∪ {∞} is a stopping time if and only if {T = n} ∈ Fn for every
n ∈ N ∪ {∞}.

Proof. If T is a stopping time, then {T ≤ n} ∈ Fn and {T ≤ n − 1}c ∈ Fn for every n ∈ N. Because {T =
n} = {T ≤ n} ∩ {T > n − 1}, we know that {T = n} ∈ Fn. Furthermore, {T = ∞} = ∩n{T ≤ n}c, so that
{T = ∞} ∈ F∞.

If {T = n} ∈ Fn for every n ∈ N ∪ {∞}, the fact that {T ≤ n} = ∪k≤n{T = k} and {T = k} ∈ Fn for every
k ≤ n implies that {T ≤ n} ∈ Fn.

The following example illustrates the definition of stopping time.

Proposition 11.15. Consider an adapted process (An | n ∈ N) and a set B ∈ B(R). Let the function T : Ω →
N∪ {∞} be given by T (ω) = inf{n ∈ N | An(ω) ∈ B}, so that T (ω) = inf ∅ = ∞ if An(ω) /∈ B for every n ∈ N. For
every n ∈ N,

{T ≤ n} = {ω ∈ Ω | Ak(ω) ∈ B for some k ≤ n} =
⋃
k≤n

{ω ∈ Ω | Ak(ω) ∈ B} =
⋃
k≤n

A−1
k (B).

Because Ak is Fn-measurable for every k ≤ n and {T ≤ ∞} ∈ F∞, we know that T is a stopping time.

Proposition 11.16. Consider an adapted process (Xn | n ∈ N) and a stopping time T . For some a ∈ R, consider
the set A given by

A = {ω ∈ Ω | T (ω) < ∞ and XT (ω)(ω) ≤ a}.

In that case, A ∈ F∞.

Proof. By definition,

A =
⋃
k∈N

{ω ∈ Ω | T (ω) = k and Xk(ω) ≤ a} =
⋃
k∈N

{T = k} ∩ {Xk ≤ a}.

Because {T = k} ∩ {Xk ≤ a} ∈ Fk for every k ∈ N, we know that A ∈ F∞.

Definition 11.11. Consider an adapted process X = (Xn | n ∈ N) and a stopping time T . The stopped process
XT is the adapted process (XT

n | n ∈ N). For every n ∈ N, the random variable XT
n : Ω → R is given by

XT
n (ω) = Xmin(T (ω),n)(ω) =

{
Xn(ω), if n ≤ T (ω),
XT (ω)(ω), if n > T (ω).
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Proposition 11.17. The stochastic process XT defined above is indeed adapted to the filtration (Fn)n.

Proof. For every n ∈ N and a ∈ R,

{XT
n ≤ a} = {ω ∈ Ω | n ≤ T (ω) and Xn(ω) ≤ a} ∪ {ω ∈ Ω | n > T (ω) and XT (ω)(ω) ≤ a}.

Let A1 denote the first set on the right side of the previous equation and A2 denote the second set.
Because {n ≤ T} = {n− 1 ≥ T}c ∈ Fn and {Xn ≤ a} ∈ Fn, we know that A1 ∈ Fn. Regarding A2, note that

A2 = {n > T} ∩ {ω ∈ Ω | T (ω) < ∞ and XT (ω)(ω) ≤ a}.

Using a previous result,

A2 = {n > T} ∩
⋃
k∈N

{T = k} ∩ {Xk ≤ a} =
⋃
k∈N

{n > T} ∩ {T = k} ∩ {Xk ≤ a} =
⋃
k<n

{T = k} ∩ {Xk ≤ a}.

Because {T = k} ∩ {Xk ≤ a} ∈ Fn for every k < n, we know that A2 ∈ Fn. Therefore, {XT
n ≤ a} ∈ Fn for

every n ∈ N and a ∈ R, so that XT
n is Fn-measurable.

Proposition 11.18. Consider the adapted process X = (Xn | n ∈ N), the stopping time T , and the process
C = (Cn | n ∈ N), where Cn = I{n≤T} for every n ∈ N. Note that C is previsible, since {n ≤ T} = {n − 1 ≥ T}c
and {n− 1 ≥ T}c ∈ Fn−1 for every n ∈ N+, which implies that I{n≤T} is Fn−1-measurable.

Now consider the martingale transform (C •X) = ((C •X)n | n ∈ N), so that (C •X)0 = 0 and

(C •X)n(ω) =

n∑
k=1

I{k≤T}(ω)(Xk(ω)−Xk−1(ω)) =

min(T (ω),n)∑
k=1

Xk(ω)−Xk−1(ω)

for every n ∈ N+ and ω ∈ Ω. By reorganizing terms,

(C •X)n(ω) =

min(T (ω),n)∑
k=1

Xk(ω)−
min(T (ω),n)−1∑

k=0

Xk(ω) = Xmin(T (ω),n)(ω)−X0(ω)

for every n ∈ N+ and ω ∈ Ω. Therefore, (C •X)n = XT
n −X0 = XT

n −XT
0 for every n ∈ N.

Proposition 11.19. When combined with previous results, the result above implies the following:

• If (Xn | n ∈ N) is a martingale and T is a stopping time, then E(XT
n − XT

0 | Fn−1) = XT
n−1 − XT

0 almost
surely for every n ∈ N+, so that the stopped process XT is a martingale.

• If (Xn | n ∈ N) is a supermartingale and T is a stopping time, then E(XT
n −XT

0 | Fn−1) ≤ XT
n−1−XT

0 almost
surely for every n ∈ N+, so that the stopped process XT is a supermartingale.

• If (Xn | n ∈ N) is a submartingale and T is a stopping time, then E(XT
n −XT

0 | Fn−1) ≥ XT
n−1 −XT

0 almost
surely for every n ∈ N+, so that the stopped process XT is a submartingale.

Definition 11.12. Consider an adapted process X = (Xn | n ∈ N) and a stopping time T . The function
XT : Ω → R is given by

XT (ω) =

{
XT (ω)(ω), if T (ω) < ∞,
0, if T (ω) = ∞.

Proposition 11.20. The function XT defined above is F∞-measurable.

Proof. For every a ∈ R,

{XT ≤ a} = {ω ∈ Ω | T (ω) < ∞ and XT (ω)(ω) ≤ a} ∪ {ω ∈ Ω | T (ω) = ∞ and 0 ≤ a}.

Let A1 denote the first set on the right side of the previous equation and A2 denote the second set. We have
already shown that A1 ∈ F∞. If a ≥ 0, then A2 = {T = ∞}. Otherwise, if a < 0, then A2 = ∅. In either case,
A2 ∈ F∞. Therefore, {XT ≤ a} ∈ F∞ for every a ∈ R, so that XT is F∞-measurable.
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Theorem 11.1 (Doob’s optional-stopping theorem). Consider a supermartingale X = (Xn | n ∈ N), a stopping
time T , and suppose at least one of the following:

1. The stopping time T is bounded, so that T ≤ N for some N ∈ N.

2. The stopping time T is almost surely finite, so that P(T < ∞) = 1, and the stochastic process X is bounded,
so that |Xn| ≤ K for every n ∈ N and some K ∈ [0,∞).

3. The stopping time T has finite expectation, so that E(T ) < ∞, and the stochastic process X has bounded
increments, so that |Xn −Xn−1| ≤ K for every n ∈ N+ and some K ∈ [0,∞).

In that case, E(|XT |) < ∞ and E(XT ) ≤ E(X0).

Proof. First, recall that the stopped process XT is a supermartingale. Therefore,

E(XT
n )IΩ = E(XT

n | {∅,Ω}) = E(E(XT
n | Fn−1) | {∅,Ω}) ≤ E(XT

n−1 | {∅,Ω}) = E(XT
n−1)IΩ,

almost surely for every n ∈ N+, which implies that E(XT
n ) ≤ E(XT

n−1) ≤ · · · ≤ E(XT
1 ) ≤ E(XT

0 ) for every n ∈ N+.
Suppose that the stopping time T is bounded, so that T ≤ N for some N ∈ N. In that case, for every ω ∈ Ω,

XT (ω) = XT (ω)(ω) = Xmin(T (ω),N)(ω) = XT
N (ω).

Because XT = XT
N , we know that E(|XT |) < ∞. From the previous result, E(XT ) = E(XT

N ) ≤ E(XT
0 ) = E(X0).

Suppose that the stopping time T is almost surely finite, so that P(T < ∞) = 1, and the stochastic process
X is bounded, so that |Xn| ≤ K for every n ∈ N and some K ∈ [0,∞). Because P(T < ∞) = 1, we know that
P
(
limn→∞ XT

n = XT

)
= 1. Therefore, by the bounded convergence theorem, we know that E(|XT |) < ∞ and

limn→∞ E(XT
n ) = E(XT ). Because E(XT

n ) ≤ E(X0) for every n ∈ N+, we know that E(XT ) ≤ E(X0).
Finally, suppose that the stopping time T has finite expectation, so that E(T ) < ∞, and the stochastic process

X has bounded increments, so that |Xn −Xn−1| ≤ K for every n ∈ N+ and some K ∈ [0,∞).
Because E(T ) < ∞ implies P(T < ∞) = 1, we know that P

(
limn→∞ XT

n = XT

)
= 1. Therefore,

P
(
lim

n→∞
XT

n −X0 = XT −X0

)
= 1.

Note that |XT
n −X0| ≤ KT for every n ∈ N, since

|XT
n (ω)−X0(ω)| =

∣∣∣∣∣
min(T (ω),n)∑

k=1

Xk(ω)−Xk−1(ω)

∣∣∣∣∣ ≤
min(T (ω),n)∑

k=1

|Xk(ω)−Xk−1(ω)| ≤
min(T (ω),n)∑

k=1

K ≤ KT (ω).

Because E(KT ) = KE(T ) < ∞, the dominated convergence theorem guarantees that E(|XT −X0|) < ∞ and

lim
n→∞

E(XT
n −X0) = E(XT −X0),

so that limn→∞ E(XT
n ) = E(XT ). Because E(XT

n ) ≤ E(X0) for every n ∈ N+, we know that E(XT ) ≤ E(X0).

Proposition 11.21. Consider a martingale X = (Xn | n ∈ N), a stopping time T , and suppose at least one of the
following:

1. The stopping time T is bounded, so that T ≤ N for some N ∈ N.

2. The stopping time T is almost surely finite, so that P(T < ∞) = 1, and the stochastic process X is bounded,
so that |Xn| ≤ K for every n ∈ N and some K ∈ [0,∞).

3. The stopping time T has finite expectation, so that E(T ) < ∞, and the stochastic process X has bounded
increments, so that |Xn −Xn−1| ≤ K for every n ∈ N+ and some K ∈ [0,∞).

In that case, E(|XT |) < ∞ and E(XT ) = E(X0).

Proof. Because X is a supermartingale, we know that E(|XT |) < ∞ and E(XT ) ≤ E(X0). Because X is a
submartingale, we know that −X = (−Xn | n ∈ N) is a supermartingale, so that E(|(−X)T |) < ∞ and E((−X)T ) ≤
E(−X0). Since (−X)T = −XT , we know that E(XT ) ≥ E(X0), which implies E(XT ) = E(X0).

71



Proposition 11.22. Consider a martingale M = (Mn | n ∈ N) that has bounded increments, so that |Mn−Mn−1| ≤
K1 for every n ∈ N+ and some K1 ∈ [0,∞). Consider also a previsible process C = (Cn | n ∈ N) that is bounded, so
that |Cn| ≤ K2 for every n ∈ N and some K2 ∈ [0,∞). Finally, consider a stopping time T with finite expectation,
so that E(T ) < ∞. In that case, E((C •M)T ) = 0.

Proof. Note that |Cn(Mn−Mn−1)| = |Cn||Mn−Mn−1| ≤ K1K2 for every n ∈ N+, so that E(|Cn(Mn−Mn−1)|) < ∞.
Therefore, using a previous result, we know that (C •M) is a martingale.

Because |(C •M)n − (C •M)n−1| = |Cn(Mn −Mn−1)| ≤ K1K2 for every n ∈ N+, we know that (C •M) has
bounded increments. Therefore, using a previous result, we know that E(|(C •M)T |) < ∞ and

E((C •M)T ) = E((C •M)0) = E(0) = 0.

Proposition 11.23. Consider a supermartingale X = (Xn | n ∈ N) and a stopping time T . Furthermore, suppose
that Xn ≥ 0 for every n ∈ N and that P(T < ∞) = 1. In that case, E(XT ) ≤ E(X0).

Proof. Because P(T < ∞) = 1, we have P
(
limn→∞ XT

n = XT

)
= 1. By the Fatou lemma, E(XT ) ≤ lim infn→∞ E(XT

n ).
Because E(XT

n ) ≤ E(X0) for every n ∈ N, we know that E(XT ) ≤ E(X0).

Proposition 11.24. For a random variable T : Ω → N ∪ {∞},

E(T ) =
∞∑
t=1

tP(T = t) =

∞∑
t=1

P(T ≥ t).

Proof. For every n ∈ N, consider the simple function Tn : Ω → {0, . . . , n} given by

Tn(ω) = (T I{T≤n})(ω) =

n∑
t=1

tI{T=t}(ω) =

{
T (ω), if T (ω) ≤ n,

0, if T (ω) > n.

Because Tn ↑ T , the monotone-convergence theorem guarantees that E(Tn) ↑ E(T ). Therefore,

E(T ) = lim
n→∞

E(Tn) = lim
n→∞

n∑
t=1

tE(I{T=t}) = lim
n→∞

n∑
t=1

tP(T = t) =

∞∑
t=1

tP(T = t).

Using the previous result and reordering summations,

E(T ) =
∞∑
k=1

[
k∑

t=1

1

]
P(T = k) =

∞∑
k=1

k∑
t=1

P(T = k) =

∞∑
t=1

∞∑
k=t

P(T = k) =

∞∑
t=1

P

( ∞⋃
k=t

{T = k}

)
=

∞∑
t=1

P(T ≥ t).

Proposition 11.25. Suppose that T is a stopping time and that for some N ∈ N+ and some ϵ > 0

P(T ≤ n+N | Fn) = E(I{T≤n+N} | Fn) > ϵ

almost surely for every n ∈ N. In that case, E(T ) < ∞.

Proof. For every k ∈ N+,

P(T > kN) = P({T > kN} ∩ {T > (k − 1)N}) = E(I{T>kN}I{T>(k−1)N}) = E(E(I{T>kN}I{T>(k−1)N} | F(k−1)N )).

Because {T ≤ (k − 1)N}c ∈ F(k−1)N , we know that I{T>(k−1)N} is F(k−1)N -measurable. Therefore,

P(T > kN) = E(I{T>(k−1)N}E(I{T>kN} | F(k−1)N )).

Let n = (k − 1)N , so that n + N = kN . From our assumption, E(I{T≤kN} | F(k−1)N ) > ϵ almost surely.
Therefore, E(I{T>kN} | F(k−1)N ) < 1− ϵ almost surely, so that

P(T > kN) ≤ (1− ϵ)E(I{T>(k−1)N}) = (1− ϵ)P(T > (k − 1)N).
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If k = 1, then

P(T > N) = 1− P(T ≤ N) = 1− E(I{T≤N}) = 1− E(E(I{T≤N} | F0)) ≤ 1− ϵ.

By induction, for every k ∈ N+,

P(T > kN) ≤ (1− ϵ)k.

Because each t ∈ N can be uniquely written as t = kN + i for some k ∈ N and i ∈ {0, . . . , N − 1},

E(T ) =
∞∑
t=1

P(T ≥ t) =

∞∑
t=0

P(T > t) =

∞∑
k=0

N−1∑
i=0

P(T > kN + i).

Because {T > kN + i} ⊆ {T > kN} for every k ∈ N and i ∈ {0, . . . , N − 1},

E(T ) ≤
∞∑
k=0

N−1∑
i=0

P(T > kN) = N

∞∑
k=0

P(T > kN) ≤ N

∞∑
k=0

(1− ϵ)k =
N

ϵ
< ∞.

Proposition 11.26. Consider a probability triple (Ω,F ,P), a sequence of independent random variables (Xn :
Ω → {−1, 1} | n ∈ N+), and a random variable X : Ω → {−1, 1}. Suppose that P(X = 1) = P(X = −1) = 1/2 and
that Xn has the same distribution as X for every n ∈ N+. Furthermore, let S0 = 0 and Sn = X1+ · · ·+Xn for every
n ∈ N+. Finally, let T : Ω → N ∪ {∞} be given by T (ω) = inf{n ∈ N | Sn(ω) = 1}. In that case, P(T < ∞) = 1.

Proof. Consider the filtration (Fn)n where F0 = {∅,Ω} and Fn = σ(X1, . . . , Xn) for every n ∈ N+. Because Sn is
Fn-measurable for every n ∈ N, the process (Sn | n ∈ N) is adapted, so that T is a stopping time.

For every n ∈ N+ and θ ∈ (0,∞), note that eθXn = eθI{Xn=1} + e−θI{Xn=−1}. Therefore,

E(eθXn) = eθP(Xn = 1) + e−θP(Xn = −1) =
eθ + e−θ

2
.

For every n ∈ N+ and θ ∈ (0,∞), let Wn = (2/(eθ + e−θ))eθXn , so that

E(Wn) = E
(

2

eθ + e−θ
eθXn

)
=

2

eθ + e−θ
E(eθXn) = 1.

Because Wn is σ(Xn)-measurable for every n ∈ N+, the sequence (Wn | n ∈ N+) is composed of independent
random variables. Now consider the stochastic process M = (Mn | n ∈ N) where M0 = 1 and

Mn = W1 · · · · ·Wn =

n∏
i=1

2

eθ + e−θ
eθXi =

(
2

eθ + e−θ

)n

eθSn

for every n ∈ N+. From a previous result, we know that M is a martingale.
Let Yn = (2/(eθ + e−θ))n and Zn = eθSn for every n ∈ N, so that Mn = YnZn. Since Y = (Yn | n ∈ N) and

Z = (Zn | n ∈ N) are adapted, the stopped processes Y T = (Y T
n | n ∈ N) and ZT = (ZT

n | n ∈ N) are given by

Y T
n (ω) = Ymin(T (ω),n)(ω) =

(
2

eθ + e−θ

)min(T (ω),n)

and ZT
n (ω) = Zmin(T (ω),n)(ω) = eθSmin(T (ω),n)(ω)

for every n ∈ N and ω ∈ Ω. Furthermore, the stopped process MT = (MT
n | n ∈ N) is given by

MT
n (ω) = Mmin(T (ω),n)(ω) = Ymin(T (ω),n)(ω)Zmin(T (ω),n)(ω) = Y T

n (ω)ZT
n (ω)

for every n ∈ N and ω ∈ Ω. Since MT is a martingale, E(MT
n ) = E(MT

0 ) = 1 for every n ∈ N.
For every n ∈ N and ω ∈ Ω, note that Smin(T (ω),n)(ω) ≤ 1. Since θ ∈ (0,∞), note that ZT

n ≤ eθ and Y T
n ≤ 1, so

that MT
n ≤ eθ. For every ω ∈ Ω, consider the limit

lim
n→∞

MT
n (ω) = lim

n→∞

(
2

eθ + e−θ

)min(T (ω),n)

eθSmin(T (ω),n)(ω).
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First, suppose that T (ω) < ∞. In that case,

lim
n→∞

MT
n (ω) = lim

n→∞

(
2

eθ + e−θ

)T (ω)

eθST (ω)(ω) =

(
2

eθ + e−θ

)T (ω)

eθ,

since ST (ω)(ω) = 1.
Second, suppose that T (ω) = ∞. In that case, we know that Sn(ω) < 1 for every n ∈ N, so that

0 ≤
(

2

eθ + e−θ

)n

eθSn(ω) ≤
(

2

eθ + e−θ

)n

eθ

for every n ∈ N and θ ∈ (0,∞). Because 0 < (2/(eθ + e−θ)) < 1 for every θ ∈ (0,∞),

lim
n→∞

(
2

eθ + e−θ

)n

eθ = eθ lim
n→∞

(
2

eθ + e−θ

)n

= 0.

Therefore, when T (ω) = ∞,

lim
n→∞

MT
n (ω) = lim

n→∞

(
2

eθ + e−θ

)n

eθSn(ω) = 0.

For every θ ∈ (0,∞), let Yθ,T : Ω → [0,∞) denote a random variable given by

Yθ,T (ω) =


(

2
eθ+e−θ

)T (ω)

, if T (ω) < ∞,

0, if T (ω) = ∞.

Using the previous result,

lim
n→∞

MT
n = eθYθ,T .

Since |MT
n | ≤ eθ for every n ∈ N, by the bounded convergence theorem,

lim
n→∞

E(MT
n ) = 1 = eθE(Yθ,T ),

so that E(Yθ,T ) = 1/eθ.
Finally, consider a sequence (θn ∈ (0,∞) | n ∈ N) so that θn ↓ 0. In that case,

lim
n→∞

Yθn,T (ω) = I{T<∞}(ω) =

{
1, if T (ω) < ∞,

0, if T (ω) = ∞.

Since |Yθn,T | ≤ 1 for every n ∈ N, by the bounded convergence theorem,

lim
n→∞

E(Yθn,T ) = lim
n→∞

1

eθn
= 1 = E(I{T<∞}) = P(T < ∞).

Proposition 11.27. Consider a measurable space (Ω,F), a set E ⊆ N, a stochastic process (Zn : Ω → E | n ∈ N),
and let Fn = σ(Z0, . . . , Zn) for every n ∈ N. Furthermore, for every n ∈ N, let Gn be given by

Gn =

{⋃
i∈A

{Z0 = i0, . . . , Zn = in} | A ∈ P(En+1)

}
,

where i = (i0, . . . , in) and P(En+1) is the set of all subsets of En+1. In that case, Fn = Gn.
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Proof. For some n ∈ N, consider a set given by

⋃
i∈A

{Z0 = i0, . . . , Zn = in} =
⋃
i∈A

n⋂
k=0

{Zk = ik}

for some A ∈ P(En+1). For every k ∈ N, recall that

σ(Zk) =

{ ⋃
ik∈Ak

{Zk = ik} | Ak ∈ P(E)

}
.

The set A is countable, since it is a subset of the countable set En+1, which is a finite Cartesian product between
countable sets. Because {Zk = ik} ∈ Fn for every k ∈ {0, . . . , n} and ik ∈ E, we know that Gn ⊆ Fn.

For some n ∈ N, let A = A0 × · · · ×An, where Ak ∈ P(E) for every k ∈ {0, . . . , n}. In that case,

⋃
i∈A

n⋂
k=0

{Zk = ik} =
⋃

i0∈A0

· · ·
⋃

in∈An

n⋂
k=0

{Zk = ik} =

( ⋃
i0∈A0

{Z0 = i0}

)
∩ · · · ∩

( ⋃
in∈An

{Zn = in}

)
.

Since E ∈ P(E), note that σ(Zk) ⊆ Gn for every k ∈ {0, . . . , n}. Because Fn = σ(∪n
k=0σ(Zk)) and Gn ⊆ Fn,

showing that Fn = Gn now only requires showing that Gn is a σ-algebra on Ω.
For some n ∈ N, let A = En+1. Using the previous result, we know that Ω ∈ Gn.
For some n ∈ N, consider a sequence (Gn,m ∈ Gn | m ∈ N) where

Gn,m =
⋃

i∈Am

{Z0 = i0, . . . , Zn = in}

for some sequence (Am ∈ P(En+1) | m ∈ N). Clearly,⋃
m

Gn,m =
⋃
m

⋃
i∈Am

{Z0 = i0, . . . , Zn = in} =
⋃
i∈A

{Z0 = i0, . . . , Zn = in},

where A = ∪mAm. Because A ∈ P(En+1), we know that ∪mGn,m ∈ Gn.
For some n ∈ N and every A ∈ P(En+1), note that Ac ∈ P(En+1) and A ∪Ac = En+1, so that{⋃

i∈A

{Z0 = i0, . . . , Zn = in}

}
∪

{ ⋃
i∈Ac

{Z0 = i0, . . . , Zn = in}

}
=

⋃
i∈En+1

{Z0 = i0, . . . , Zn = in} = Ω.

Since the leftmost sets above are disjoint, if Gn ∈ Gn, then Gc
n ∈ Gn, so that Gn is a σ-algebra on Ω.

Proposition 11.28. Consider a probability triple (Ω,F ,P), a random variable Z : Ω → N, and a non-negative
function h : N → [0,∞]. In that case,

E(h(Z)) =
∑
z∈N

h(z)P(Z = z).

Proof. For every B ∈ B(R), note that h−1(B) ∈ P(N), where P(N) is the set of all subsets of N. Because
P(N) ⊆ B(R) and Z−1(h−1(B)) ∈ F , we know that h(Z) is a random variable. For every ω ∈ Ω, note that

h(Z)(ω) = h(Z(ω)) =
∑
z∈N

h(z)I{Z=z}(ω).

Since h(z)I{Z=z} is a non-negative random variable for every z ∈ N,

E(h(Z)) = E

(∑
z∈N

h(z)I{Z=z}

)
=
∑
z∈N

h(z)E
(
I{Z=z}

)
=
∑
z∈N

h(z)P (Z = z) .
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Proposition 11.29. Consider a probability triple (Ω,F ,P), a random variable Z : Ω → N, and a function h : N →
R. If E(|h(Z)|) < ∞, then

E(h(Z)) =
∑
z∈N

h(z)P(Z = z).

Proof. Note that h(Z) : Ω → R is a random variable and let h = h+ − h−. Using the previous result,

E(h(Z)) = E(h+(Z))− E(h−(Z)) =
∑
z∈N

h+(z)P(Z = z)−
∑
z∈N

h−(z)P(Z = z) =
∑
z∈N

h(z)P(Z = z).

Consider a probability triple (Ω,F ,P), a set E ⊆ N, a stochastic process Z = (Zn : Ω → E | n ∈ N), and let
Fn = σ(Z0, . . . , Zn) for every n ∈ N.

Let P be a stochastic matrix whose (i, j)-th element is given by pi,j ≥ 0 and suppose that
∑

k∈E pi,k = 1 for
every i, j ∈ E. Let µ be a probability measure on the measurable space (E,P(E)), where P(E) is the set of all
subsets of E, and let µi denote µ({i}) for every i ∈ E.

Finally, suppose that Z is a time-homogeneous Markov chain on E with initial distribution µ and 1-step transition
matrix P . Recall that, for every n ∈ N+ and i0, i1, . . . , in ∈ E,

P(Z0 = i0, Z1 = i1, . . . , Zn = in) = µi0pi0,i1 . . . pin−1,in = µi0

n∏
k=1

pik−1,ik .

Definition 11.13. For every n ∈ N and in+1 ∈ E, let p(Zn, in+1) : Ω → [0, 1] be given by p(Zn, in+1)(ω) =
pZn(ω),in+1

.

We will now show three propositions regarding such time-homogeneous Markov chain.

Proposition 11.30. First, for every n ∈ N, in+1 ∈ E, p(Zn, in+1) = E(I{Zn+1=in+1} | Fn) = P(Zn+1 = in+1 | Fn)
almost surely.

Proof. For every c ∈ R, note that

{p(Zn, in+1) ≤ c} =
⋃

in∈E

{ω ∈ Ω | Zn(ω) = in and pin,in+1
≤ c} =

⋃
in∈E

{Zn = in} ∩ {pin,in+1
≤ c}.

Since {pin,in+1
≤ c} ∈ {∅,Ω} for every in ∈ E, we know that {p(Zn, in+1) ≤ c} ∈ σ(Zn), so that p(Zn, in+1) is

σ(Zn)-measurable. Because |p(Zn, in+1)| ≤ 1, we know that E(|p(Zn, in+1)|) ≤ 1.
For every ω ∈ Ω, n ∈ N, and i0, . . . , in+1 ∈ E, note that

(p(Zn, in+1)I{Z0=i0,...,Zn=in})(ω) = pin,in+1I{Z0=i0,...,Zn=in}(ω) =

{
pZn(ω),in+1

, if Zk(ω) = ik for k ∈ {0, . . . , n},
0, otherwise.

Therefore, for every n ∈ N, and i0, . . . , in+1 ∈ E,

E(p(Zn, in+1)I{Z0=i0,...,Zn=in}) = pin,in+1
E(I{Z0=i0,...,Zn=in}) = pin,in+1

P(Z0 = i0, . . . , Zn = in).

Clearly, for every n ∈ N, and i0, . . . , in+1 ∈ E,

E(I{Zn+1=in+1}I{Z0=i0,...,Zn=in}) = P(Z0 = i0, . . . , Zn+1 = in+1) = pin,in+1
P(Z0 = i0, . . . , Zn = in).

For every n ∈ N, recall that every set Fn ∈ Fn can be written as

Fn =
⋃
i∈A

{Z0 = i0, . . . , Zn = in},

where i = (i0, . . . , in) and A ∈ P(En+1) is a countable set. Because Fn is a union of disjoint sets,

IFn =
∑
i∈A

I{Z0=i0,...,Zn=in}.

76



Therefore, for every n ∈ N and Fn ∈ Fn, since p(Zn, in+1) ≥ 0 for every in+1 ∈ E,

E(p(Zn, in+1)IFn) =
∑
i∈A

E
(
p(Zn, in+1)I{Z0=i0,...,Zn=in}

)
=
∑
i∈A

pin,in+1P(Z0 = i0, . . . , Zn = in),

where i = (i0, . . . , in) and A ∈ P(En+1) is a countable set. Using our previous observation,

E(p(Zn, in+1)IFn
) = E

(
I{Zn+1=in+1}

∑
i∈A

I{Z0=i0,...,Zn=in}

)
= E(I{Zn+1=in+1}IFn

),

so that p(Zn, in+1) = E(I{Zn+1=in+1} | Fn) = P(Zn+1 = in+1 | Fn) almost surely.

For every n ∈ N and in+1 ∈ E, note that p(Zn, in+1) is σ(Zn)-measurable and σ(Zn) ⊆ Fn. Therefore, we also
know that p(Zn, in+1) = E(I{Zn+1=in+1} | Zn) = P(Zn+1 = in+1 | Zn) almost surely.

Proposition 11.31. Second, for every n ∈ N and in+1 ∈ E,

P(Zn+1 = in+1) =
∑
in∈E

pin,in+1P(Zn = in).

Proof. For every n ∈ N and in+1 ∈ E, using a property of conditional expectations,

P(Zn+1 = in+1) = E(I{Zn+1=in+1}) = E(E(I{Zn+1=in+1} | Fn)) = E(p(Zn, in+1)) =
∑
in∈E

pin,in+1
P(Zn = in),

where we have noted that p(Zn, in+1) = fin+1(Zn) if fin+1 : N → [0, 1] is given by fin+1(in) = pin,in+1 .

Proposition 11.32. Third, consider a function h : E → [0,∞] and let Ph : E → [0,∞] be given by

(Ph)(i) =
∑
j∈E

pi,jh(j).

Furthermore, suppose that Ph ≤ h (so that h is P -superharmonic) and that
∑

i∈E µih(i) < ∞.
In that case, (h(Zn) : Ω → [0,∞] | n ∈ N) is a supermartingale adapted to the filtration (Fn)n.

Proof. For every B ∈ B(R), note that h−1(B) ∈ P(E). For every n ∈ N, because P(E) ⊆ B(R) and Z−1
n (h−1(B)) ∈

σ(Zn), we know that h(Zn) is Fn-measurable. Therefore, the stochastic process (h(Zn) | n ∈ N) is adapted.
We will use induction to show that E(h(Zn)) < ∞ for every n ∈ N. Using our assumption and a previous result,

E(h(Z0)) =
∑
i0∈E

h(i0)P(Z0 = i0) =
∑
i0∈E

µi0h(i0) < ∞.

Suppose that E(h(Zn)) < ∞ for some n ∈ N. Using a previous result,

E(h(Zn+1)) =
∑

in+1∈E

h(in+1)P(Zn+1 = in+1) =
∑

in+1∈E

h(in+1)
∑
in∈E

pin,in+1P(Zn = in).

By rearranging terms, since h is P -superharmonic,

E(h(Zn+1)) =
∑
in∈E

P(Zn = in)
∑

in+1∈E

pin,in+1
h(in+1) ≤

∑
in∈E

P(Zn = in)h(in) = E(h(Zn)) < ∞,

which completes the inductive step.
It remains to show that E(h(Zn+1) | Fn) ≤ h(Zn) almost surely for every n ∈ N.
For every n ∈ N, note that h(Zn+1) : Ω → [0,∞] is given by

h(Zn+1)(ω) = h(Zn+1(ω)) =
∑

in+1∈E

h(in+1)I{Zn+1=in+1}(ω).
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Therefore, if (Xm : Ω → [0,∞] | m ∈ N) is a sequence of random variables given by

Xm(ω) =
∑

in+1∈E|in+1≤m

h(in+1)I{Zn+1=in+1}(ω),

then Xm ↑ h(Zn+1). Since E(h(Zn+1)) < ∞, by the conditional monotone-convergence theorem,

E(h(Zn+1) | Fn) = lim
m→∞

IA
∑

in+1∈E|in+1≤m

h(in+1)E
(
I{Zn+1=in+1} | Fn

)
=

∑
in+1∈E

h(in+1)p(Zn, in+1)IA

almost surely, where A ∈ Fn is a set such that P(A) = 1.
For every n ∈ N, note that (Ph)(Zn) : Ω → [0,∞] is given by

(Ph)(Zn)(ω) = (Ph)(Zn(ω)) =
∑

in+1∈E

pZn(ω),in+1
h(in+1) =

∑
in+1∈E

p(Zn, in+1)(ω)h(in+1).

Therefore, for every n ∈ N, because h is P -superharmonic,

E(h(Zn+1) | Fn) = (Ph)(Zn)IA = (Ph)(Zn) ≤ h(Zn)

almost surely, so that (h(Zn) : Ω → [0,∞] | n ∈ N) is a supermartingale adapted to the filtration (Fn)n.

Proposition 11.33. Consider a set E ⊆ R, a measurable space (Ω̃, F̃), and a stochastic process (Z̃n : Ω̃ → E |
n ∈ N). Let Z̃ : Ω̃ → E∞ be given by Z̃(ω̃) = (Z̃n(ω̃) | n ∈ N). For every n ∈ N, let Zn : E∞ → E be given by
Zn(ω) = ωn and let F = σ(∪nσ(Zn)). In that case, Z̃ is F̃/F-measurable.

Proof. For every n ∈ N, note that Z̃n = Zn ◦ Z̃, so that Z̃−1
n (B) = Z̃−1(Z−1

n (B)) for every B ∈ B(R). Because Z̃n

is F̃-measurable for every n ∈ N, we know that Z̃−1(C) ∈ F̃ for every C ∈ ∪nσ(Zn).
Since (E∞,F) is a measurable space, note that E = {F ∈ F | Z̃−1(F ) ∈ F̃} is a σ-algebra on E∞. Because

∪nσ(Zn) ⊆ F , we know that σ(∪nσ(Zn)) = F ⊆ E , so that E = F . Therefore, Z̃ is F̃/F-measurable.

Proposition 11.34 (Existence of the canonical model). Consider a set E ⊆ N and a stochastic matrix P whose
(i, j)-th element is given by pi,j ≥ 0 and suppose that

∑
k∈E pi,k = 1 for every i, j ∈ E.

Let Ω = E∞, so that every ω ∈ Ω is a sequence ω = (ωn ∈ E | n ∈ N). For every n ∈ N, consider the function
Zn : Ω → E given by Zn(ω) = ωn and let Fn = σ(Z0, . . . , Zn). Furthermore, let F = σ(Z0, Z1, . . .) = σ(∪nFn).

In that case, for every probability measure µ on the measurable space (E,P(E)) there is a unique probability
measure Pµ on the measurable space (Ω,F) such that, for every n ∈ N+ and i0, i1, . . . , in ∈ E,

Pµ(Z0 = i0, Z1 = i1, . . . , Zn = in) = µi0pi0,i1 . . . pin−1,in = µi0

n∏
k=1

pik−1,ik .

The probability triple (Ω,F ,Pµ) is called the canonical model for the time-homogeneous Markov chain Z =
(Zn : Ω → E | n ∈ N) on E with initial distribution µ and 1-step transition matrix P .

Proof. We have already shown that there is a probability triple (Ω̃µ, F̃µ, P̃µ) carrying the stochastic process (Z̃µ
n :

Ω̃µ → E | n ∈ N) such that, for every n ∈ N+ and i0, i1, . . . , in ∈ E,

P̃µ(Z̃µ
0 = i0, Z̃

µ
1 = i1, . . . , Z̃

µ
n = in) = µi0pi0,i1 . . . pin−1,in .

Consider the function Z̃µ : Ω̃µ → Ω given by Z̃µ(ω̃) = (Z̃µ
n(ω̃) | n ∈ N). Because Z̃µ is F̃µ/F-measurable, the

function Pµ : F → [0, 1] defined by

Pµ(F ) = P̃µ((Z̃µ)−1(F )) = P̃µ({ω̃ ∈ Ω̃µ | Z̃µ(ω̃) ∈ F})

is a probability measure on the measurable space (Ω,F). Clearly, Pµ(Ω) = P̃µ((Z̃µ)−1(Ω)) = P̃µ(Ω̃µ) = 1 and
Pµ(∅) = P̃µ((Z̃µ)−1(∅)) = P̃µ(∅) = 0. For any sequence of sets (Fn ∈ F | n ∈ N) such that Fn ∩ Fm = ∅ for n ̸= m,

Pµ

(⋃
n

Fn

)
= P̃µ

(
(Z̃µ)−1

(⋃
n

Fn

))
= P̃µ

(⋃
n

(Z̃µ)−1 (Fn)

)
=
∑
n

P̃µ
(
(Z̃µ)−1 (Fn)

)
=
∑
n

Pµ(Fn),
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where we have used the fact that (Z̃µ)−1 (Fn) ∩ (Z̃µ)−1 (Fm) = (Z̃µ)−1 (Fn ∩ Fm) = ∅ for n ̸= m.
For every n ∈ N+ and i0, i1, . . . , in ∈ E,

Pµ(Z0 = i0, Z1 = i1, . . . , Zn = in) = P̃µ({ω̃ ∈ Ω̃µ | Z̃µ(ω̃) ∈ {ω ∈ Ω | Z0(ω) = i0, Z1(ω) = i1, . . . , Zn(ω) = in}}).

Because Ω = E∞ and Zm(ω) = ωm for every m ∈ N,

Pµ(Z0 = i0, Z1 = i1, . . . , Zn = in) = P̃µ({ω̃ ∈ Ω̃µ | Z̃µ
0 (ω̃) = i0, Z̃

µ
1 (ω̃) = i1, . . . , Z̃

µ
n(ω̃) = in}) = µi0pi0,i1 . . . pin−1,in ,

so that a probability measure on (Ω,F) with the desired properties exists.
Naturally, any two desired probability measures on (Ω,F) must agree on the π-system I ⊆ F given by

I = {∅} ∪ {{Z0 = i0, . . . , Zn = in} | n ∈ N and i0, . . . , in ∈ E}}.

Therefore, if σ(I) = F , then Pµ will be the unique probability measure on (Ω,F) with the desired properties.
First, we will show that I is indeed a π-system on Ω. Clearly, I ∩ ∅ = ∅ and ∅ ∈ I for every I ∈ I. For

some n ∈ N and i0, . . . , in ∈ E, let I1 = {Z0 = i0, . . . , Zn = in}. For some m ≥ n and j0, . . . , jm ∈ E, let
I2 = {Z0 = j0, . . . , Zm = jm}. In that case,

I1 ∩ I2 = {ω ∈ Ω | Z0(ω) = i0 = j0, . . . , Zn(ω) = in = jn, Zn(ω) = jn, . . . , Zm(ω) = jm},

so that

I1 ∩ I2 =

{
I2, if ik = jk for every k ∈ {0, . . . , n},
∅, if ik ̸= jk for some k ∈ {0, . . . , n}.

Therefore, I1 ∩ I2 ∈ I, so that I is a π-system on Ω.
Finally, we will show that F ⊆ σ(I). For every n ∈ N, recall that the σ-algebra Fn is given by

Fn =

{⋃
i∈A

{Z0 = i0, . . . , Zn = in} | A ∈ P(En+1)

}
,

where i = (i0, . . . , in) and A is a countable set. For every n ∈ N, because each Fn ∈ Fn is a countable union of
elements of I, we know that Fn ∈ σ(I). Therefore, ∪nFn ⊆ σ(I), so that F = σ(∪nFn) ⊆ σ(I).

Consider a set E ⊆ N. Let P be a stochastic matrix whose (i, j)-th element is given by pi,j ≥ 0 and suppose
that

∑
k∈E pi,k = 1 for every i, j ∈ E.

Let (Ω,F ,Pµ) denote the canonical model for the time-homogeneous Markov chain Z = (Zn : Ω → E | n ∈ N)
on E with initial distribution µ and 1-step transition matrix P , where µ is a probability measure on the measurable
space (E,P(E)). For every i ∈ E, let Pi = Pµ if µ({i}) = 1. Furthermore, consider the filtration (Fn)n, where
Fn = σ(Z0, . . . , Zn) for every n ∈ N. Finally, for every j ∈ E, consider the stopping time Tj : Ω → N ∪ {∞} given
by Tj(ω) = inf{n ∈ N+ | Zn(ω) = j}.

Definition 11.14. The stochastic matrix P is called irreducible recurrent if and only if Pi(Tj < ∞) = 1 for every
i, j ∈ E.

Definition 11.15. For every function h : E → [0,∞], let Ph : E → [0,∞] be given by

(Ph)(i) =
∑
j∈E

pi,jh(j).

The function h is called finite non-negative P -superharmonic if and only if Ph ≤ h < ∞.

Proposition 11.35. The stochastic matrix P is irreducible recurrent if and only if every finite non-negative P -
superharmonic function is constant.

Proof. First, suppose that the stochastic matrix P is irreducible recurrent. Consider a finite non-negative P -
superharmonic function h : E → [0,∞] and the stochastic process h(Z) = (h(Zn) : Ω → [0,∞] | n ∈ N).
Because h < ∞, for every i ∈ E, a previous result guarantees that h(Z) is a supermartingale on the filtered space
(Ω,F , (Fn)n,Pi).
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For every j ∈ E, recall that the random variable h(Z)Tj : Ω → [0,∞] is given by

h(Z)Tj (ω) =

{
h(j), if Tj(ω) < ∞,

0, if Tj(ω) = ∞.

Because h(Zn) ≥ 0 for every n ∈ N and Pi(Tj < ∞) = 1 for every i, j ∈ E, a previous result guarantees that
Ei(h(Z)Tj ) ≤ Ei(h(Z0)) for every i, j ∈ E. This implies that h is constant because, for every i, j ∈ E,

h(j) = Ei(h(Z)Tj ) ≤ Ei(h(Z0)) =
∑
i0∈E

h(i0)Pi(Z0 = i0) = h(i).

Suppose that every finite non-negative P -superharmonic function is constant. For every i, j ∈ E, note that

Pi(Tj = 1) = Pi(Z1 = j) =
∑
k∈E

pk,jPi(Z0 = k) = pi,j .

For every n ∈ N+ and i, j ∈ E, we will now show that

Pi(Tj = n+ 1) =
∑
k ̸=j

pi,kPk(Tj = n).

For n = 1 and every i, j ∈ E,

Pi(Tj = 2) = Pi(Z1 ̸= j, Z2 = j) = Pi

⋃
k ̸=j

{Z1 = k} ∩ {Z2 = j}

 =
∑
k ̸=j

Pi(Z1 = k, Z2 = j).

Since Pi(Z0 = i) = 1,

Pi(Tj = 2) =
∑
k ̸=j

Pi(Z0 = i, Z1 = k, Z2 = j) =
∑
k ̸=j

pi,kpk,j =
∑
k ̸=j

pi,kPk(Tj = 1).

For every n ≥ 2 and i, j ∈ E,

Pi(Tj = n+ 1) = Pi(Z1 ̸= j, . . . , Zn ̸= j, Zn+1 = j) = Pi

 ⋃
k0 ̸=j

· · ·
⋃

kn−1 ̸=j

{Z1 = k0, . . . , Zn = kn−1, Zn+1 = j}

 .

Since Pi(Z0 = i) = 1,

Pi(Tj = n+ 1) =
∑
k0 ̸=j

· · ·
∑

kn−1 ̸=j

Pi(Z0 = i, Z1 = k0, . . . , Zn = kn−1, Zn+1 = j).

From the definition of Pi,

Pi(Tj = n+ 1) =
∑
k0 ̸=j

pi,k0

∑
k1 ̸=j

· · ·
∑

kn−1 ̸=j

pk0,k1 · · · pkn−2,kn−1pkn−1j .

From the definition of Pk0 ,

Pi(Tj = n+ 1) =
∑
k0 ̸=j

pi,k0
Pk0

 ⋃
k1 ̸=j

· · ·
⋃

kn−1 ̸=j

{Z1 = k1, . . . , Zn−1 = kn−1, Zn = j}

 =
∑
k ̸=j

pi,kPk(Tj = n),

which completes this step.
For every i, j ∈ E, we will now provide a recursive expression for Pi(Tj < ∞). First, note that

Pi(Tj < ∞) = Pi

( ⋃
n∈N+

{Tj = n}

)
=
∑
n∈N+

Pi(Tj = n) = Pi(Tj = 1) +
∑
n∈N+

Pi(Tj = n+ 1).
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Using the previous results,

Pi(Tj < ∞) = pi,j +
∑
n∈N+

∑
k ̸=j

pi,kPk(Tj = n) = pi,j +
∑
k ̸=j

pi,k
∑
n∈N+

Pk(Tj = n).

Therefore,

Pi(Tj < ∞) = pi,j +
∑
k ̸=j

pi,kPk

( ⋃
n∈N+

{Tj = n}

)
= pi,j +

∑
k ̸=j

pi,kPk(Tj < ∞),

which completes this step.
For every i, j ∈ E, let hj(i) = Pi(Tj < ∞). Since Pj(Tj < ∞) ≤ 1,

hj(i) = pi,j +
∑
k ̸=j

pi,khj(k) ≥
∑
k∈E

pi,khj(k) = (Phj)(i),

so that hj : E → [0,∞] is finite non-negative P -superharmonic.
By assumption, for every j ∈ E there is a constant ρj such that hj(i) = ρj for every i ∈ E. For every i, j ∈ E,

ρj = hj(i) = pi,j +
∑
k ̸=j

pi,kρj = pi,j + ρj(1− pi,j).

By reordering terms, we know that ρjpi,j = pi,j for every i, j ∈ E.
In order to complete the proof, we will show that for every j ∈ E there is an i ∈ E such that pi,j > 0, which

implies that ρj = 1. For every i, j ∈ E, let fj(i) = 1 if i = j and fj(i) = 0 if i ̸= j, so that

(Pfj)(i) =
∑
k∈E

pi,kfj(k) = pi,j .

If there is a j ∈ E such that pi,j = 0 for every i ∈ E, then fj(i) ≥ (Pfj)(i) = 0, so that fj : E → [0,∞] is a
finite non-negative P -superharmonic function. Because fj is not constant, such j ∈ E does not exist.

Because ρj = 1 for every j ∈ E and ρj = hj(i) = Pi(Tj < ∞) for every i ∈ E, the proof is complete.

12 Martingale convergence
Consider a filtered space (Ω,F , (Fn)n,P).

Proposition 12.1. Consider an adapted process (Xn | n ∈ N), a stopping time S : Ω → N ∪ {∞}, and a set
B ∈ B(R). Let the function T : Ω → N ∪ {∞} be given by T (ω) = inf{n > S(ω) | Xn(ω) ∈ B}, where inf ∅ = ∞.
The function T is a stopping time.

Proof. For every n ∈ N,

{T ≤ n} = {ω ∈ Ω | Xk(ω) ∈ B for some k ≤ n such that k > S(ω)} =
⋃
k≤n

X−1
k (B) ∩ {S ≤ k − 1}.

For every k ≤ n, we know that Xk is Fn-measurable and {S ≤ k − 1} ∈ Fn, so that {T ≤ n} ∈ Fn. Because
{T ≤ ∞} ∈ F∞, we know that T is a stopping time.

Definition 12.1. Consider an adapted process (Xn | n ∈ N). Let T0(ω) = −1 for every ω ∈ Ω. For some a, b ∈ R
such that a < b and every i ∈ N+, let Si : Ω → N ∪ {∞} and Ti : Ω → N ∪ {∞} be given by

Si(ω) = inf{n > Ti−1(ω) | Xn(ω) < a},
Ti(ω) = inf{n > Si(ω) | Xn(ω) > b}.

For every n ∈ N+, the number of upcrossings Un[a, b] of [a, b] by time n is defined by

Un[a, b] = sup
i∈N+

iI{Ti≤n}.
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For every ω ∈ Ω, Un[a, b](ω) is the number of times that X0(ω), . . . , Xn(ω) goes from below a to above b.

Proposition 12.2. For every i ∈ N+, the functions Si and Ti are stopping times.

Proof. From a previous result, S1 is a stopping time, so that T1 is also a stopping time. If Ti is a stopping time for
some i ∈ N+, then Si+1 and Ti+1 are stopping times.

Proposition 12.3. Consider an adapted process (Xn | n ∈ N). For every a, b ∈ R such that a < b and every
n ∈ N+, the number of upcrossings Un[a, b] is an Fn-measurable bounded non-negative function.

Proof. Because Ti is a stopping time for every i ∈ N+, we know that iI{Ti≤n} is non-negative and Fn-measurable.
Therefore, Un[a, b] is non-negative and Fn-measurable. For every ω ∈ Ω and i ∈ N+ such that Ti(ω) ≤ n, note that
0 ≤ S1(ω) < T1(ω) < . . . < Si(ω) < Ti(ω) ≤ n, so that Ti(ω) ≥ 2i− 1. Therefore,

Un[a, b] = sup
i∈N+

iI{2i−1≤Ti≤n} = sup
i≤⌊n+1

2 ⌋
iI{Ti≤n},

which implies that Un[a, b] ≤ ⌊n+1
2 ⌋.

Lemma 12.1 (Doob’s upcrossing lemma). Consider a supermartingale X = (Xn | n ∈ N). For every a, b ∈ R such
that a < b and n ∈ N+,

(b− a)E(Un[a, b]) ≤ E(max(a−Xn, 0)).

Proof. Consider the stochastic process C = (Cn : Ω → {0, 1} | n ∈ N), where C0 = 0 and

Cn = sup
i∈N+

I{Si≤n−1<Ti}

for every n ∈ N+. Because Si and Ti are stopping times for every i ∈ N+, we know that I{Si≤n−1} and I{Ti>n−1} =
I{Ti≤n−1}c are Fn−1-measurable for every n ∈ N+. Therefore, C is previsible.

Consider the martingale transform (C •X) = ((C •X)n | n ∈ N), where (C •X)0 = 0 and

(C •X)n =

n∑
k=1

Ck(Xk −Xk−1)

for every n ∈ N+. Because C is bounded and non-negative, (C •X) is a supermartingale.
For every ω ∈ Ω and k ∈ N+, note that Ck(ω) = 1 if and only if (k − 1) ∈ [Si(ω), Ti(ω)) for some i ∈ N+.

Therefore, for every ω ∈ Ω and n ∈ N+,

(C •X)n(ω) =

Un[a,b](ω)∑
i=1

Ti(ω)∑
k=Si(ω)+1

Xk(ω)−Xk−1(ω)

+

 n∑
k=SUn[a,b](ω)+1(ω)+1

Xk(ω)−Xk−1(ω)

 .

By rewriting the sums of differences,

(C •X)n =

Un[a,b]∑
i=1

XTi
−XSi

+
[
Xn −XSUn[a,b]+1

]
I{SUn[a,b]+1<n},

where X∞ = 0. For every ω ∈ Ω, if i ≤ Un[a, b](ω), then XTi(ω)(ω)−XSi(ω)(ω) > (b− a). Therefore,

(C •X)n ≥ (b− a)Un[a, b] +
[
Xn −XSUn[a,b]+1

]
I{SUn[a,b]+1<n}.

Let L =
[
Xn −XSUn[a,b]+1

]
I{SUn[a,b]+1<n}. For every ω ∈ Ω, if SUn[a,b](ω)+1(ω) ≥ n, then L(ω) = 0. Now

suppose SUn[a,b](ω)+1(ω) < n. If Xn(ω) ≥ XSUn[a,b](ω)+1(ω)(ω), then L(ω) ≥ 0. If Xn(ω) < XSUn[a,b](ω)+1(ω)(ω),
then Xn(ω) < a and −L(ω) = |Xn(ω) − XSUn[a,b](ω)+1(ω)(ω)| < |Xn(ω) − a| = max(a − Xn(ω), 0). In every case,
L(ω) ≥ −max(a−Xn(ω), 0). Therefore,

(C •X)n ≥ (b− a)Un[a, b]−max(a−Xn, 0).

Because (C •X) is a supermartingale and (C •X)0 = 0,

0 ≥ (b− a)E(Un[a, b])− E(max(a−Xn, 0)).
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Definition 12.2. A stochastic process (Xn | n ∈ N) is bounded in L1(Ω,F ,P) if

sup
n

E(|Xn|) < ∞.

Proposition 12.4. Consider a supermartingale X = (Xn | n ∈ N) bounded in L1(Ω,F ,P). For every a, b ∈ R such
that a < b,

P(U∞[a, b] = ∞) = 0,

where U∞[a, b] = limn→∞ Un[a, b].

Proof. Note that U∞[a, b] : Ω → [0,∞] is well defined because Un+1[a, b] ≥ Un[a, b] for every n ∈ N+.
For every n ∈ N+, by Doob’s upcrossing lemma,

(b− a)E(Un[a, b]) ≤ E(max(a−Xn, 0)) = E((Xn − a)−) = E(|Xn − a|)− E((Xn − a)+) ≤ E(|Xn − a|).

For every n ∈ N+, by the triangle inequality and because X is bounded in L1(Ω,F ,P),

(b− a)E(Un[a, b]) ≤ E(|Xn|) + |a| ≤ sup
k

E(|Xk|) + |a|.

By the monotone-convergence theorem, since Un[a, b] ↑ U∞[a, b],

(b− a)E(U∞[a, b]) = lim
n→∞

(b− a)E(Un[a, b]) ≤ sup
k

E(|Xk|) + |a| < ∞,

so that E(U∞[a, b]) < ∞, which implies P(U∞[a, b] = ∞) = 0.

Theorem 12.1 (Doob’s forward convergence theorem). Consider a supermartingale X = (Xn | n ∈ N) bounded
in L1(Ω,F ,P). If X∞ = lim supn→∞ Xn, then limn→∞ Xn = X∞ almost surely and |X∞| < ∞ almost surely.

Proof. Let Λ = {ω ∈ Ω | limn→∞ Xn(ω) does not exist in [−∞,∞]}. In that case,

Λ = {ω ∈ Ω | lim inf
n→∞

Xn(ω) < lim sup
n→∞

Xn(ω)}.

For every ω ∈ Ω, lim infn→∞ Xn(ω) < lim supn→∞ Xn(ω) if and only if lim infn→∞ Xn(ω) < a < b <
lim supn→∞ Xn(ω) for some rationals a, b ∈ Q. Therefore,

Λ =
⋃

a,b∈Q|a<b

{ω ∈ Ω | lim inf
n→∞

Xn(ω) < a < b < lim sup
n→∞

Xn(ω)}.

For every ω ∈ Ω, if lim infn→∞ Xn(ω) < a, then Xn(ω) < a for infinitely many n ∈ N. Similarly, if b <
lim supn→∞ Xn(ω), then Xn(ω) > b for infinitely many n ∈ N. Therefore,

Λ ⊆
⋃

a,b∈Q|a<b

{ω ∈ Ω | U∞[a, b](ω) = ∞}.

Because the set of rational numbers Q is countable and by a previous result,

P(Λ) ≤
∑

a,b∈Q|a<b

P(U∞[a, b] = ∞) = 0.

Therefore, almost surely,

lim
n→∞

Xn = lim inf
n→∞

Xn = lim sup
n→∞

Xn = X∞.

Because |X∞| = limn→∞ |Xn| = lim infn→∞ |Xn| almost surely and by the Fatou lemma,

E (|X∞|) = E
(
lim inf
n→∞

|Xn|
)
≤ lim inf

n→∞
E (|Xn|) ≤ sup

n
E(|Xn|) < ∞.

Therefore, P(|X∞| = ∞) = 0, so that |X∞| < ∞ almost surely.

Proposition 12.5. Consider a non-negative supermartingale X = (Xn : Ω → [0,∞] | n ∈ N). If X∞ =
lim supn→∞ Xn, then limn→∞ Xn = X∞ almost surely and |X∞| < ∞ almost surely.

Proof. For every n ∈ N+, we know that E(X0) ≥ E(Xn) = E(|Xn|). Therefore, supn E(|Xn|) ≤ E(X0) < ∞, so that
the supermartingale X is bounded in L1(Ω,F ,P).
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