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1 Measure spaces
A set S contains s if s ∈ S. A set S includes F if F ⊆ S.

An algebra Σ0 on a set S is a set of subsets of S such that

• S ∈ Σ0,

• If F ∈ Σ0, then F c ∈ Σ0, where F c = S \ F ,

• If F,G ∈ Σ0, then F ∪G ∈ Σ0.

Consequently, if Σ0 is an algebra on S,

• ∅ ∈ Σ0,

• If F,G ∈ Σ0, then F ∩G ∈ Σ0.

A trivial algebra on S is given by {∅, S}.
A σ-algebra Σ on S is an algebra on S such that⋃

n∈N
Fn ∈ Σ

for any sequence (Fn ∈ Σ | n ∈ N), which also implies⋂
n∈N

Fn ∈ Σ.

A measurable space (S,Σ) is a pair composed of a set S and a σ-algebra Σ on S. An element of Σ is called a
Σ-measurable subset of S.

Let C be a set of subsets of S. The σ-algebra σ(C) generated by C is the smallest σ-algebra Σ on S such that
C ⊆ Σ. The σ-algebra σ(C) is the intersection of all the σ-algebras on S that include C. Note that the set P(S) of
all subsets of S is a σ-algebra on S that includes any set of subsets C.

The Borel B(R) σ-algebra is the σ-algebra on R generated by the set of open sets of real numbers.
Let π(R) = {(−∞, x] | x ∈ R} be the set that contains every interval that contains every real number smaller

or equal to every real number x ∈ R. We will now show that the σ-algebra generated by π(R) is σ(π(R)) = B(R).
First, recall that (−∞, x] =

⋂
n∈N+(−∞, x + n−1). Because B(R) is a σ-algebra on R that contains every

(−∞, x+ n−1), we have (−∞, x] ∈ B(R). Because B(R) is a σ-algebra on R that includes π(R) and σ(π(R)) is the
smallest σ-algebra on R that includes π(R), we have σ(π(R)) ⊆ B(R).

Second, recall that every open set of real numbers is a countable union of open intervals. Because σ(π(R)) is a
σ-algebra on R, if it contains every open interval, then it contains every open set of real numbers. This would also
imply that B(R) ⊆ σ(π(R)), since σ(π(R)) is a σ-algebra on R and B(R) is the the smallest σ-algebra on R that
contains every open set of real numbers. In order to show that σ(π(R)) contains every open interval, first note that
(a, u] = (−∞, u]∩(−∞, a]c ∈ σ(π(R)) for any u > a and then note that (a, b) = ∪n∈N+(a, b−ϵn−1] for ϵ = (b−a)/2.

Consider an algebra Σ0 on a set S. A function µ0 : Σ0 → [0,∞] is called additive if µ0(∅) = 0 and, for any
F,G ∈ Σ0 such that F ∩G = ∅,

µ0(F ∪G) = µ0(F ) + µ0(G).

A function µ0 : Σ0 → [0,∞] is called countably additive if µ0(∅) = 0 and, for any sequence (Fn ∈ Σ0 | n ∈ N)
such that Fn ∩ Fm = ∅ for n ̸= m,

µ0

(⋃
n∈N

Fn

)
=
∑
n∈N

µ0(Fn)

whenever
⋃

n∈N Fn ∈ Σ0. This last requirement is always met when Σ0 is a σ-algebra.
Let (S,Σ) be a measurable space. A countably additive function µ : Σ → [0,∞] is called a measure on (S,Σ).

The triple (S,Σ, µ) is called a measure space, which has the following properties:
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• If µ(S) < ∞ and A,B ∈ Σ, then µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B),

• If A,B ∈ Σ, then µ(A ∪B) ≤ µ(A) + µ(B),

• µ
(⋃

n∈N Fn

)
≤
∑

n∈N µ(Fn) for any sequence (Fn ∈ Σ | n ∈ N).

A measure µ on the measurable space (S,Σ) is called finite if µ(S) < ∞. A measure µ on the measurable space
(S,Σ) is called σ-finite if there is a sequence (Sn ∈ Σ | n ∈ N) such that µ(Sn) < ∞ and ∪n∈NSn = S.

A measure µ on the measurable space (S,Σ) is called a probability measure if µ(S) = 1. The triple (S,Σ, µ) is
then called a probability triple. A set F ∈ Σ is called µ-null if µ(F ) = 0. If a statement is false only for elements
of a µ-null set F ∈ Σ, then the statement is said to be true almost everywhere.

A π-system I on S is a set of subsets of S such that if I1, I2 ∈ I, then I1∩I2 ∈ I. Let Σ = σ(I) be the σ-algebra
generated by a π-system I. If µ1 and µ2 are measures on the measurable space (S,Σ) such that µ1(S) = µ2(S) < ∞
and µ1(I) = µ2(I) for any I ∈ I, then µ1(F ) = µ2(F ) for any F ∈ Σ. Therefore, if two probability measures agree
on a π-system, then they agree on the σ-algebra generated by that π-system.

Carathéodory’s extension theorem states that if Σ0 is an algebra on S and Σ = σ(Σ0) is the σ-algebra generated
by Σ0 and µ0 : Σ0 → [0,∞] is a countably additive function, then there exists a measure µ on the measurable space
(S,Σ) such that µ(F ) = µ0(F ) for any F ∈ Σ0. If µ0(S) < ∞, then µ is unique, since an algebra is a π-system.

Let Σ0 be the algebra on the set S = (0, 1] that contains every F such that

F =

r⋃
k=1

(ak, bk],

where r ∈ N and 0 ≤ a1 ≤ b1 ≤ . . . ≤ ar ≤ br ≤ 1.
Let µ0 : Σ0 → [0, 1] denote the countably additive function given by

µ0(F ) =

r∑
k=1

(bk − ak).

Let B((0, 1]) = σ(Σ0) be the σ-algebra generated by Σ0. The unique measure µ : B((0, 1]) → [0, 1] on the
measurable space ((0, 1],B((0, 1])) that agrees with µ0 on the algebra Σ0 is called the Lebesgue measure Leb
on ((0, 1],B((0, 1])). The σ-finite Lebesgue measure Leb on the measurable space (R,B(R)) is similarly defined.
Intuitively, a Lebesgue measure Leb assigns lenghts.

Let an ↑ a denote that a sequence of real numbers (an | n ∈ N) is such that an ≤ an+1 and a = limn→∞ an.
Similarly, let an ↓ a denote that a sequence of real numbers (an | n ∈ N) is such that an+1 ≤ an and a = limn→∞ an.

Let An ↑ A denote that a sequence of sets (An | n ∈ N) is such that An ⊆ An+1 and A = ∪n∈NAn. Similarly,
let An ↓ A denote that a sequence of sets (An | n ∈ N) is such that An+1 ⊆ An and A = ∩n∈NAn.

Consider the measure space (S,Σ, µ). For a sequence (Fn ∈ Σ | n ∈ N), the monotone-convergence property of
measure guarantees that if Fn ↑ F , then µ(Fn) ↑ µ(F ). Similarly, for a sequence (Gn ∈ Σ | n ∈ N), if Gn ↓ G and
µ(Gk) < ∞ for some k, then µ(Gn) ↓ µ(G).

2 Events
Consider a probability triple (Ω,F ,P). An element ω ∈ Ω is called an outcome. The set Ω is called an outcome
space. A set of outcomes F ∈ F is called an event. The probability measure P : F → [0, 1] is defined on a σ-algebra
F on the outcome space Ω.

A probability P(F ) assigns a degree of belief to the statement that the outcome ω ∈ Ω of an experiment belongs
to the event F ∈ F . For instance, a probability P(F ) = 1 indicates that ω ∈ F almost surely, while a probability
P(F ) = 0 indicates that ω /∈ F almost surely. In general, a statement about an outcome is said to be true almost
surely if P(F ) = 1, where F ∈ F is the event that contains every outcome ω ∈ Ω for which the statement is true.

As an example, consider an experiment where a coin is tossed twice. Let H = 0 represent heads and T = 1
represent tails. The outcome space Ω may be defined as Ω = {(H,H), (H,T ), (T,H), (T, T )}. The σ-algebra F on
the outcome space Ω may be defined as the set of all subsets of Ω, which is denoted by F = P(Ω). The event F
where at least one head is observed is then given by F = {(H,H), (H,T ), (T,H)}.

More interestingly, consider an experiment where a coin is tossed infinitely often. The outcome space Ω may be
defined as the set of infinite binary sequences Ω = {H,T}N. In order to at least assign probabilities to every event
F = {ω ∈ Ω | ωn = W} where n ∈ N and W ∈ {H,T}, the σ-algebra F on the outcome space Ω may be generated
as F = σ({{ω ∈ Ω | ωn = W} | n ∈ N,W ∈ {H,T}}).
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Consider a sequence of events (Fn ∈ F | n ∈ N). If P(Fn) = 1 for every n ∈ N, then P(∩n∈NFn) = 1.
The infimum infn xn of a sequence of real numbers (xn ∈ R | n ∈ N) is the largest r ∈ [−∞,∞] such that r ≤ xn

for every n ∈ N. The supremum supn xn of a sequence of real numbers (xn ∈ R | n ∈ N) is the smallest r ∈ [−∞,∞]
such that r ≥ xn for every n ∈ N.

The limit inferior of a sequence of real numbers (xn ∈ R | n ∈ N) is defined by

lim inf
n→∞

xn = sup
m

inf
n≥m

xn = lim
m→∞

inf
n≥m

xn.

Note that the sequence (infn≥m xn | m ∈ N) is non-decreasing. Let z ∈ [−∞,∞]. If z < lim infn→∞ xn, then
z < xn for all sufficiently large n ∈ N. If z > lim infn→∞ xn, then z > xn for infinitely many n ∈ N.

The limit superior of a sequence of real numbers (xn ∈ R | n ∈ N) is defined by

lim sup
n→∞

xn = inf
m

sup
n≥m

xn = lim
m→∞

sup
n≥m

xn.

Note that the sequence (supn≥m xn | m ∈ N) is non-increasing. Let z ∈ [−∞,∞]. If z > lim supn→∞ xn, then
z > xn for all sufficiently large n ∈ N. If z < lim supn→∞ xn, then z < xn for infinitely many n ∈ N.

For any sequence (xn ∈ R | n ∈ N), the limit inferior and the limit superior are related by the fact that

− lim inf
n→∞

xn = lim
m→∞

− inf
n≥m

xn = lim
m→∞

sup
n≥m

−xn = lim sup
n→∞

−xn.

A sequence of real numbers (xn ∈ R | n ∈ N) is said to converge in [−∞,∞] if and only if

lim inf
n→∞

xn = lim sup
n→∞

xn = lim
n→∞

xn.

The limit inferior of a sequence of sets (En | n ∈ N) is defined by

lim inf
n→∞

En =
⋃
m∈N

⋂
n≥m

En.

Let Fm =
⋂

n≥m En. Note that Fm ⊆ Fm+1. Furthermore, ω ∈ lim infn→∞ En if and only if ω ∈ En for all
sufficiently large n ∈ N.

The limit superior of a sequence of sets (En | n ∈ N) is defined by

lim sup
n→∞

En =
⋂
m∈N

⋃
n≥m

En.

Let Fm =
⋃

n≥m En. Note that Fm ⊇ Fm+1. Furthermore, ω ∈ lim supn→∞ En if and only if ω ∈ En for
infinitely many n ∈ N.

For any sequence of sets (En ⊆ Ω | n ∈ N), the limit inferior and the limit superior are related by the fact that(
lim inf
n→∞

En

)C
= lim sup

n→∞
EC

n .

Consider a measurable space (Ω,F). The indicator function IF : Ω → {0, 1} of an event F ∈ F is defined by

IF (ω) =

{
1, if ω ∈ F ,
0, if ω /∈ F .

For any outcome ω ∈ Ω and sequence of events (En ∈ F | n ∈ N),

Ilim infn→∞ En(ω) = lim inf
n→∞

IEn(ω),

Ilim supn→∞ En
(ω) = lim sup

n→∞
IEn

(ω).

Consider a probability triple (Ω,F ,P) and a sequence (En ∈ F | n ∈ N). The reverse Fatou Lemma states that

P
(
lim sup
n→∞

En

)
≥ lim sup

n→∞
P(En).
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We will now show this lemma. Let Fm =
⋃

n≥m En such that Fm ⊇ Fm+1. By definition, Fm ↓ lim supn→∞ En,
which implies P(Fm) ↓ P (lim supn→∞ En). Because A ⊆ (B∪A) implies P(A) ≤ P(B∪A) for any events A,B ∈ F ,

P (Fm) = P

 ⋃
n≥m

En

 ≥ sup
n≥m

P(En).

By taking the limit of both sides of the equation above when m → ∞,

lim
m→∞

P(Fm) = P
(
lim sup
n→∞

En

)
≥ lim

m→∞
sup
n≥m

P(En) = lim sup
n→∞

P(En).

Consider a probability triple (Ω,F ,P) and a sequence (En ∈ F | n ∈ N). The Fatou Lemma for sets states that

P
(
lim inf
n→∞

En

)
≤ lim inf

n→∞
P(En).

We will now show this lemma. Let Fm =
⋂

n≥m En such that Fm ⊆ Fm+1. By definition, Fm ↑ lim infn→∞ En,
which implies P(Fm) ↑ P(lim infn→∞ En). Because (A∩B) ⊆ B implies P(A∩B) ≤ P(B) for any events A,B ∈ F ,

P(Fm) = P

 ⋂
n≥m

En

 ≤ inf
n≥m

P(En).

By taking the limit of both sides of the equation above when m → ∞,

lim
m→∞

P(Fm) = P
(
lim inf
n→∞

En

)
≤ lim

m→∞
inf
n≥m

P(En) = lim inf
n→∞

P(En).

Consider a probability triple (Ω,F ,P) and a sequence of events (En ∈ F | n ∈ N) such that
∑∞

n=0 P(En) < ∞.
The first Borel-Cantelli Lemma states that

P
(
lim sup
n→∞

En

)
= 0.

We will now show this lemma. Let Fm =
⋃

n≥m En such that Fm ⊇ Fm+1. By definition, Fm ↓ lim supn→∞ En,
which implies P(Fm) ↓ P (lim supn→∞ En). Because P(A ∪B) ≤ P(A) + P(B) for any events A,B ∈ F ,

P (Fm) = P

 ⋃
n≥m

En

 ≤
∑
n≥m

P(En).

By taking the limit of both sides of the equation above when m → ∞,

lim
m→∞

P (Fm) = P
(
lim sup
n→∞

En

)
≤ lim

m→∞

∑
n≥m

P(En) = 0,

where the last equality comes from the fact that, for any ϵ > 0, there is an N ∈ N such that, for all m− 1 ≥ N ,

ϵ >

∣∣∣∣∣
∞∑

n=0

P(En)−
m−1∑
n=0

P(En)

∣∣∣∣∣ = ∑
n≥m

P(En).

3 Random variables
Consider a measurable space (S,Σ) and a function h : S → R. The function h−1 is defined as

h−1(A) = {s ∈ S | h(s) ∈ A}

for any A ⊆ R. The function h is called Σ-measurable if h−1(A) ∈ Σ for every A ∈ B(R). In an extended definition,
a function h : S → [−∞,∞] is called Σ-measurable if h−1(A) ∈ Σ for every A ∈ B([−∞,∞]). A B(R)-measurable
function h : R → R is said to be Borel.
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The set of Σ-measurable functions on S is denoted by mΣ. The set of non-negative Σ-measurable functions on
S is denoted by (mΣ)+. The set of bounded Σ-measurable functions on S is denoted by bΣ.

Consider a function h : S → R. For any set A ⊆ R,

h−1(Ac) = {s ∈ S | h(s) ∈ Ac} = {s ∈ S | h(s) ∈ A}c = (h−1(A))c.

Consider a function h : S → R. For any sequence of sets (An ⊆ R | n ∈ N),

h−1

(⋃
n∈N

An

)
= {s ∈ S | h(s) ∈

⋃
n∈N

An} =
⋃
n∈N

{s ∈ S | h(s) ∈ An} =
⋃
n∈N

h−1(An).

Similarly,

h−1

(⋂
n∈N

An

)
= {s ∈ S | h(s) ∈

⋂
n∈N

An} =
⋂
n∈N

{s ∈ S | h(s) ∈ An} =
⋂
n∈N

h−1 (An) .

Consider a measurable space (S,Σ) and a function h : S → R. The set E = {B ∈ B(R) | h−1(B) ∈ Σ} is a
σ-algebra on R. First, note that h−1(R) = {s ∈ S | h(s) ∈ R} = S and S ∈ Σ. Therefore, R ∈ E . Consider an
element B ∈ E . In that case, h−1(B) ∈ Σ, which implies (h−1(B))c = h−1(Bc) ∈ Σ. Therefore, Bc ∈ E . Finally,
consider a sequence (Bn ∈ E | n ∈ N). In that case, h−1(Bn) ∈ Σ for every n ∈ N, which implies ∪nh

−1(Bn) ∈ Σ.
Therefore, h−1(∪nBn) ∈ Σ and ∪nBn ∈ E .

Consider a measurable space (S,Σ), a function h : S → R, and a set C of subsets of R. If σ(C) = B(R) and
h−1(C) ∈ Σ for every C ∈ C, then h is Σ-measurable. First, note that the set E = {B ∈ B(R) | h−1(B) ∈ Σ} is
a σ-algebra on R. Because C ⊆ E , E ⊆ B(R), and B(R) is the smallest σ-algebra that includes C, we know that
E = B(R), which implies that h−1(B) ∈ Σ for every B ∈ B(R).

If a function h : R → R is continuous, then it is Borel. First, consider the measurable space (R,B(R)) and let C
be the set of open sets of real numbers. Recall that B(R) = σ(C). Second, recall that a function h is continuous if
h−1(A) ∈ C is an open set for every open set A ∈ C. Using the previous result, h−1(B) ∈ B(R) for every B ∈ B(R).

Consider a measurable space (S,Σ) and a function h : S → R. For any c ∈ R, define

{h ≤ c} = h−1((−∞, c]) = {s ∈ S | h(s) ≤ c}.

If {h ≤ c} ∈ Σ for every c ∈ R, then h is Σ-measurable. First, let C = {(−∞, x] | x ∈ R} be the set that
contains every interval that contains every real number smaller or equal to every real number x ∈ R. Recall that
B(R) = σ(C). By assumption, h−1(C) ∈ Σ for every C ∈ C, and so h−1 is Σ-measurable. Note that analogous
results apply for {h ≥ c}, {h < c}, and {h > c}.

Consider a measurable space (S,Σ). Let h : S → R, h1 : S → R, and h2 : S → R be Σ-measurable functions
and let λ ∈ R be a constant. In that case, h1 + h2 is a Σ-measurable function, h1h2 is a Σ-measurable function,
and λh is a Σ-measurable function. We will now show the first of these statements. Based on the previous result,
if {h1 + h2 > c} = {s ∈ S | h1(s) + h2(s) > c} ∈ Σ for every c ∈ R, then h1 + h2 is Σ-measurable. Recall that
h1(s) + h2(s) > c if and only if there is a rational q ∈ Q such that h1(s) > q > c− h2(s). Therefore,

{h1 + h2 > c} = {s ∈ S | h1(s) > q and q > c− h2(s) for some q ∈ Q} =
⋃
q∈Q

{s ∈ S | h1(s) > q and q > c− h2(s)},

which is a countable union of elements of Σ given by

{h1 + h2 > c} =
⋃
q∈Q

{s ∈ S | h1(s) > q} ∩ {s ∈ S | q > c− h2(s)} =
⋃
q∈Q

{h1 > q} ∩ {h2 > c− q}.

Consider a measurable space (S,Σ) and a Σ-measurable function h : S → R. Consider also the measurable space
(R,B(R)) and a B(R)-measurable function f : R → R. For all s ∈ S, let (f ◦ h)(s) = f(h(s)). For any A ⊆ R,

(f ◦ h)−1(A) = {s ∈ S | (f ◦ h)(s) ∈ A} = {s ∈ S | f(h(s)) ∈ A}.

Note that f−1(A) ⊆ R for any A ⊆ R, since f−1(A) = {r ∈ R | f(r) ∈ A}. Therefore,

(h−1 ◦ f−1)(A) = h−1(f−1(A)) = {s ∈ S | h(s) ∈ f−1(A)} = {s ∈ S | f(h(s)) ∈ A} = (f ◦ h)−1(A),
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where we used the fact that f(h(s)) ∈ A if and only if h(s) ∈ f−1(A), for all s ∈ S and A ⊆ R. Furthermore, since
f−1(A) ∈ B(R) for any A ∈ B(R) and h−1(f−1(A)) ∈ Σ for any f−1(A) ∈ B(R), the function f ◦h is Σ-measurable.

Consider the measurable spaces (S1,Σ1) and (S2,Σ2). A function h : S1 → S2 is called Σ1/Σ2-measurable
if h−1(A) ∈ Σ1 for every A ∈ Σ2. Therefore, a function on a measurable space (S,Σ) is Σ-measurable if it is
Σ/B(R)-measurable.

Consider a measurable space (S,Σ) and a sequence of Σ/B([−∞,∞])-measurable functions (hn | n ∈ N).
For any s ∈ S, the function infn hn : S → [−∞,∞] is given by(

inf
n

hn

)
(s) = inf

n
hn(s).

We will now show that infn hn is Σ/B([−∞,∞])-measurable. Note that if {infn hn ≥ c} ∈ Σ for every c ∈ R,
then infn hn is Σ/B([−∞,∞])-measurable. For every c ∈ R,

{inf
n

hn ≥ c} = {s ∈ S | inf
n

hn(s) ≥ c} = {s ∈ S | hn(s) ≥ c for all n ∈ N},

where we used the fact that infn hn(s) ≥ c if and only if hn(s) ≥ c for all n ∈ N, for all s ∈ S and c ∈ R. Therefore,

{inf
n

hn ≥ c} =
⋂
n∈N

{s ∈ S | hn(s) ≥ c} =
⋂
n∈N

{hn ≥ c},

which is a countable intersection of elements of Σ.
For any s ∈ S, the function supn hn : S → [−∞,∞] is given by(

sup
n

hn

)
(s) = sup

n
hn(s).

We will now show that supn hn is Σ/B([−∞,∞])-measurable. Note that if {supn hn ≤ c} ∈ Σ for every c ∈ R,
then supn hn is Σ/B([−∞,∞])-measurable. For every c ∈ R,

{sup
n

hn ≤ c} = {s ∈ S | sup
n

hn(s) ≤ c} = {s ∈ S | hn(s) ≤ c for all n ∈ N},

where we used the fact that supn hn(s) ≤ c if and only if hn(s) ≤ c for all n ∈ N, for all s ∈ S and c ∈ R. Therefore,

{sup
n

hn ≤ c} =
⋂
n∈N

{s ∈ S | hn(s) ≤ c} =
⋂
n∈N

{hn ≤ c},

which is a countable intersection of elements of Σ.
For any s ∈ S, the function lim infn→∞ hn : S → [−∞,∞] is given by(

lim inf
n→∞

hn

)
(s) = lim inf

n→∞
hn(s).

We will now show that lim infn→∞ hn is Σ/B([−∞,∞])-measurable. Each function in the sequence (Ln =
infr≥n hr | n ∈ N) is Σ/B([−∞,∞])-measurable, which implies that supn Ln is Σ/B([−∞,∞])-measurable. Also,(

lim inf
n→∞

hn

)
(s) = lim inf

n→∞
hn(s) = sup

n
inf
r≥n

hr(s) = sup
n

(
inf
r≥n

hr

)
(s) = sup

n
Ln(s) =

(
sup
n

Ln

)
(s).

For any s ∈ S, the function lim supn→∞ hn : S → [−∞,∞] is given by(
lim sup
n→∞

hn

)
(s) = lim sup

n→∞
hn(s).

We will now show that lim supn→∞ hn is Σ/B([−∞,∞])-measurable. Each function in the sequence (Ln =
supr≥n hr | n ∈ N) is Σ/B([−∞,∞])-measurable, which implies that infn Ln is Σ/B([−∞,∞])-measurable. Also,(

lim sup
n→∞

hn

)
(s) = lim sup

n→∞
hn(s) = inf

n
sup
r≥n

hr(s) = inf
n

(
sup
r≥n

hr

)
(s) = inf

n
Ln(s) =

(
inf
n

Ln

)
(s).
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Consider the set F = {s ∈ S | limn→∞ hn(s) exists in R}. Recall that limn→∞ hn(s) exists in R if and only if

−∞ < lim inf
n→∞

hn(s) = lim sup
n→∞

hn(s) < ∞.

Therefore, F ∈ Σ, since F is an intersection of elements of Σ:

F = {s ∈ S | lim inf
n→∞

hn(s) > −∞} ∩ {s ∈ S | lim sup
n→∞

hn(s) < ∞} ∩ {s ∈ S |
(
lim sup
n→∞

hn − lim inf
n→∞

hn

)
(s) = 0}.

Consider a measurable space (Ω,F). An F-measurable function X : Ω → R is a random variable. By definition,
for any B ∈ B(R), X−1(B) ∈ F .

The indicator function IF : Ω → {0, 1} of any event F ∈ F is a random variable. The function IF is defined by

IF (ω) =

{
1, if ω ∈ F ,
0, if ω /∈ F .

Recall that if {ω ∈ Ω | IF (ω) ≤ c} ∈ F for every c ∈ R, then IF is F-measurable. For every c < 1, we have
{ω ∈ Ω | IF (ω) ≤ c} = {ω ∈ Ω | ω /∈ F} = F c. For every c ≥ 1, we have {ω ∈ Ω | IF (ω) ≤ c} = Ω.

More interestingly, once again consider an experiment where a coin is tossed infinitely often. Let H = 0
represent heads and T = 1 represent tails. The outcome space Ω may be defined as the set of infinite binary
sequences Ω = {H,T}N+

. Let Fn,W = {ω ∈ Ω | ωn = W} be the set of infinite binary sequences whose n-th element
is W . The σ-algebra F on the outcome space Ω may be generated as F = σ({Fn,W | n ∈ N+,W ∈ {H,T}}). Note
that IFn,W

is a random variable, since Fn,W ∈ F . Therefore, for any n ∈ N+, the function An,W given by

An,W (ω) =

(
n−1

n∑
i=1

IFi,W

)
(ω) =

1

n

n∑
i=1

IFi,W
(ω)

is also a random variable. For a given sequence ω ∈ Ω, An,W (ω) is the fraction of the first n tosses resulting in W .
For a given p ∈ [0, 1], consider the set ΛW = {ω ∈ Ω | limn→∞ An,W (ω) = p}. Clearly,

ΛW = {ω ∈ Ω | lim inf
n→∞

An,W (ω) = p} ∩ {ω ∈ Ω | lim sup
n→∞

An,W (ω) = p},

which can be rewritten as

ΛW =
(
lim inf
n→∞

An,W

)−1

({p}) ∩
(
lim sup
n→∞

An,W

)−1

({p}).

Note that ΛW ∈ F , since both the limit inferior and the limit superior of the sequence of F-measurable functions
(An,W | n ∈ N+) are F-measurable functions. Therefore, a probability triple (Ω,F ,P) would define the probability
P(ΛW ) that the fraction of tosses with result W tends to a given p ∈ [0, 1].

Consider a function X : Ω → R. The σ-algebra σ(X) on Ω is defined as σ(X) = σ({X−1(B) | B ∈ B(R)}). Note
that if X is a random variable on a measurable space (Ω,F), then σ(X) ⊆ F .

Consider a set of functions {Yγ | γ ∈ C} where Yγ : Ω → R. The σ-algebra σ({Yγ | γ ∈ C}) is defined by

σ({Yγ | γ ∈ C}) = σ({Y −1
γ (B) | γ ∈ C, B ∈ B(R)}).

Note that if Yγ : Ω → R is a random variable on a measurable space (Ω,F) for every γ, then σ({Yγ | γ ∈ C}) ⊆ F .
Consider a measurable space (Ω,F) and a random variable Y : Ω → R. For a set E of subsets of R, let

Y −1(E) = {Y −1(E) | E ∈ E}. By definition, σ(Y ) = σ(Y −1(B(R))). We will now show that σ(Y ) = Y −1(B(R)).
By definition, Y −1(B(R)) = {Y −1(B) | B ∈ B(R)}. Because R ∈ B(R), Y −1(R) ∈ Y −1(B(R)), where Y −1(R) =

Ω. Consider an element Y −1(B) ∈ Y −1(B(R)). Because Bc ∈ B(R), Y −1(Bc) ∈ Y −1(B(R)), where Y −1(Bc) =
(Y −1(B))c. Finally, consider a sequence (Y −1(Bn) ∈ Y −1(B(R)) | n ∈ N). Because ∪nBn ∈ B(R), Y −1(∪nBn) ∈
Y −1(B(R)), where Y −1(∪nBn) = ∪nY

−1(Bn). Therefore, Y −1(B(R)) is a σ-algebra on Ω. Because σ(Y ) is the
smallest σ-algebra on Ω that includes Y −1(B(R)), we know that σ(Y ) = Y −1(B(R)).

Furthermore, consider the π-system π(R) = {(−∞, x] | x ∈ R} and let π(Y ) = Y −1(π(R)). We will now show
that σ(Y ) = σ(π(Y )).

By definition, σ(π(Y )) = σ({Y −1((−∞, x]) | (−∞, x] ∈ π(R)}). Clearly, π(R) ⊆ B(R) implies σ(π(Y )) ⊆ σ(Y ),
since σ(Y ) = σ({Y −1(B) | B ∈ B(R)}). Because {Y ≤ x} ∈ σ(π(Y )) for every x ∈ R, Y is σ(π(Y ))-measurable.
Therefore, σ(Y ) ⊆ σ(π(Y )).
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If Y : Ω → R, then Z : Ω → R is a σ(Y )-measurable function if and only if there is a Borel function f : R → R
such that Z = f ◦ Y .

If Y1, Y2, . . . , Yn are functions from Ω to R, then a function Z : Ω → R is σ({Y1, Y2, . . . , Yn})-measurable if and
only if there is a Borel function f : Rn → R such that Z(ω) = f(Y1(ω), Y2(ω), . . . , Yn(ω)) for every ω ∈ Ω.

Consider a probability triple (Ω,F ,P) and a random variable X : Ω → R. For any B ∈ B(R), X−1(B) ∈ σ(X),
σ(X) ⊆ F , and P(X−1(B)) ∈ [0, 1]. For any B ∈ B(R), this allows defining the law LX : B(R) → [0, 1] of X as

LX(B) = P(X−1(B)).

The law LX is a probability measure on the measurable space (R,B(R)). First, note that

LX(R) = P(X−1(R)) = P({ω ∈ Ω | X(ω) ∈ R}) = P(Ω) = 1,

LX(∅) = P(X−1(∅)) = P({ω ∈ Ω | X(ω) ∈ ∅}) = P(∅) = 0.

Second, consider a sequence of sets (Bn ∈ B(R) | n ∈ N) such that Bn ∩Bm = ∅ for n ̸= m and note that

LX

(⋃
n∈N

Bn

)
= P

(
X−1

(⋃
n∈N

Bn

))
= P

(⋃
n∈N

X−1(Bn)

)
=
∑
n∈N

P(X−1(Bn)) =
∑
n∈N

LX(Bn),

where we used the fact that X−1(Bn) ∩X−1(Bm) = X−1(Bn ∩Bm) = X−1(∅) = ∅ for n ̸= m.
The (cumulative) distribution function FX : R → [0, 1] of the random variable X is defined by

FX(c) = LX((−∞, c]) = P(X−1((−∞, c])) = P({ω ∈ Ω | X(ω) ≤ c}) = P({X ≤ c}).

Recall that the σ-algebra generated by π(R) = {(−∞, x] | x ∈ R} is σ(π(R)) = B(R). Consider a probability
measure µ on the measurable space (R,B(R)) such that µ((−∞, c]) = FX(c) = LX((−∞, c]) for every c ∈ R.
Because µ and LX agree on the π-system π(R), we have µ = LX . Therefore, FX fully determines the law LX of X.

Consider a random variable X : Ω → R carried by a probability triple (Ω,F ,P) and the distribution function
FX : R → [0, 1].

If a ≤ b, then FX(a) ≤ FX(b). Clearly, {X ≤ a} ⊆ {X ≤ b}, which implies P({X ≤ a}) ≤ P({X ≤ b}).
We will now show that limx→−∞ FX(x) = 0. Recall that f : R → R is a function such that limx→−∞ f(x) = L

for some L ∈ R if and only if limn→∞ f(xn) = L for all non-increasing sequences (xn ∈ R | n ∈ N) such that
limn→∞ xn = −∞.

Consider a non-increasing sequence (xn ∈ R | n ∈ N) such that limn→∞ xn = −∞ and the sequence of sets
(An = (−∞, xn] | n ∈ N). Because An ↓ ∅, LX(An) ↓ 0. Therefore, limn→∞ LX((−∞, xn]) = 0, which implies

lim
x→−∞

FX(x) = lim
x→−∞

LX((−∞, x]) = 0.

We will now show that limx→∞ FX(x) = 1. Recall that f : R → R is a function such that limx→∞ f(x) = L
for some L ∈ R if and only if limn→∞ f(xn) = L for all non-decreasing sequences (xn ∈ R | n ∈ N) such that
limn→∞ xn = +∞.

Consider a non-decreasing sequence (xn ∈ R | n ∈ N) such that limn→∞ xn = +∞ and the sequence of sets
(An = (−∞, xn] | n ∈ N). Because An ↑ R, LX(An) ↑ 1. Therefore, limn→∞ LX((−∞, xn]) = 1, which implies

lim
x→∞

FX(x) = lim
x→∞

LX((−∞, x]) = 1.

We will now show that FX is right-continuous. Recall that f : R → R is right continuous if and only if
limn→∞ f(xn) = f(x) for every x ∈ R and every non-increasing sequence (xn ∈ R | n ∈ N) such that limn→∞ xn = x
and xn > x for every n ∈ N.

Consider x ∈ R and a non-increasing sequence (xn ∈ R | n ∈ N) such that limn→∞ xn = x and xn > x for
every n ∈ N. Consider also the sequence of sets (An = (−∞, xn] | n ∈ N). Because An ↓ (−∞, x], LX((−∞, xn]) ↓
LX((−∞, x]). Therefore, limn→∞ LX((−∞, xn]) = LX((−∞, x]), which implies

lim
n→∞

FX(xn) = lim
n→∞

LX((−∞, xn]) = LX((−∞, x]) = FX(x).

Consider a right-continuous function F : R → [0, 1] such that if a ≤ b, then F (a) ≤ F (b); limx→−∞ F (x) = 0;
and limx→∞ F (x) = 1. We will show that there is a unique probability measure L on the measurable space (R,B(R))
such that L((−∞, x]) = F (x) for every x ∈ R.
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Consider the probability triple ((0, 1),B((0, 1)),Leb) and a function X− : (0, 1) → R given by

X−(ω) = inf{z ∈ R | F (z) ≥ ω}.

In words, X−(ω) is the infimum z ∈ R such that F (z) reaches ω ∈ (0, 1).
First, note that ω ≤ F (c) if and only if X−(ω) ≤ c for every c ∈ R. Clearly, if ω ≤ F (c), then X−(ω) ≤ c.

Now suppose X−(ω) ≤ c. Because F is non-decreasing, F (X−(ω)) ≤ F (c). Because F is also right-continuous,
F (X−(ω)) ≥ ω. Therefore, ω ≤ F (c). This also implies that X− is a random variable since, for every c ∈ R,

{X− ≤ c} = {ω ∈ (0, 1) | X−(ω) ≤ c} = {ω ∈ (0, 1) | ω ≤ F (c)} = (0, F (c)].

For every c ∈ R, the distribution function FX− on the probability triple ((0, 1),B((0, 1)),Leb) is given by

FX−(c) = LX−((−∞, c]) = Leb({X− ≤ c}) = Leb((0, F (c)]) = F (c).

Finally, recall that the distribution function FX− fully determines the law LX− of X−, which is the desired
unique probability measure on the measurable space (R,B(R)) such that LX−((−∞, x]) = F (x) for every x ∈ R.

The monotone-class theorem states that if

• H is a set of bounded functions from a set S into R,

• H is a vector space over R,

• The constant function 1 is an element of H,

• If (fn ∈ H | n ∈ N) is a sequence of non-negative functions in H such that fn ↑ f , where f is a bounded
function on S, then f ∈ H,

• H contains the indicator function of every set in some π-system I,

then H contains every bounded σ(I)-measurable function on S.

4 Independence
Consider a probability triple (Ω,F ,P).

The sub-σ-algebras G1,G2, . . . of F are called independent if, for every choice of distinct indices i1, i2, . . . , in and
events Gi1 , Gi2 , . . . , Gin such that Gik ∈ Gik for every ik,

P

(
n⋂

k=1

Gik

)
=

n∏
k=1

P(Gik).

The random variables X1, X2, . . . are called independent if the σ-algebras σ(X1), σ(X2), ... are independent.
The events E1, E2, . . . are called independent if the σ-algebras E1, E2, . . . are independent, where Ek = {∅, Ek, E

c
k,Ω}.

We have already shown that each indicator function IEk
is Ek-measurable. Since I−1

Ek
({1}) = Ek, we know that

Ek ∈ σ(IEk
), which implies Ek = σ(IEk

). Therefore, the events E1, E2, . . . are called independent if and only if the
random variables IE1

, IE2
, . . . are independent.

The events E1, E2, . . . are independent if and only if, for every choice of distinct indices i1, i2, . . . , in,

P

(
n⋂

k=1

Eik

)
=

n∏
k=1

P(Eik).

If X1, X2, . . . are independent random variables, then the events {X1 ≤ x1}, {X2 ≤ x2}, . . . are independent for
every x1, x2, . . . ∈ R, since X−1

n ((−∞, xn]) ∈ σ(Xn) for every n ∈ N+.
Suppose that G and H are sub-σ-algebras of F . Furthermore, let I and J be π-systems such that σ(I) = G

and σ(J ) = H. If P(I ∩ J) = P(I)P(J) for every I ∈ I and J ∈ J , we say that I and J are independent. We will
show that G and H are independent if and only if I and J are independent.

Suppose that G and H are independent. In that case, P(G∩H) = P(G)P(H) for every G ∈ G and H ∈ H. Since
I ⊆ G and J ⊆ H, I and J are independent.
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Suppose that I and J are independent. For every I ∈ I and H ∈ H, let µI(H) = P(I ∩ H) and ηI(H) =
P(I)P(H). Clearly, µI(∅) = 0 = ηI(∅). Also, µI(Ω) = P(I) = ηI(Ω). Finally, if (Hn ∈ H | n ∈ N) is a sequence of
events such that Hn ∩Hm = ∅ for n ̸= m,

µI

(⋃
n

Hn

)
= P

(
I ∩

(⋃
n

Hn

))
= P

(⋃
n

(I ∩Hn)

)
=
∑
n

P(I ∩Hn) =
∑
n

µI(Hn),

ηI

(⋃
n

Hn

)
= P(I)P

(⋃
n

Hn

)
= P(I)

∑
n

P(Hn) =
∑
n

P(I)P(Hn) =
∑
n

ηI(Hn).

Considered together, these results imply that µI and ηI are finite measures on (Ω,H). By assumption, µI(J) =
P(I ∩ J) = P(I)P(J) = ηI(J) for every I ∈ I and J ∈ J . Therefore, µI and ηI agree on the π-system J ,
which implies that they agree on the σ-algebra σ(J ) = H. In other words, for every I ∈ I and H ∈ H, we have
P(I ∩H) = µI(H) = ηI(H) = P(I)P(H).

For every H ∈ H and G ∈ G, let µ′
H(G) = P(H ∩ G) and η′H(G) = P(H)P(G). Analogously, µ′

H and η′H are
finite measures on (Ω,G). From our previous result, for every I ∈ I and H ∈ H, we have P(I ∩ H) = µ′

H(I) =
η′H(I) = P(I)P(H). Therefore, µ′

H and η′H agree on the π-system I, which implies that they agree on the σ-algebra
σ(I) = G. In other words, for every G ∈ G and H ∈ H, we have P(G ∩H) = µ′

H(G) = η′H(G) = P(G)P(H).
Consider the random variables X and Y on the probability triple (Ω,F ,P). For every A ∈ B(R) and B ∈

B(R) such that P(Y −1(B)) > 0, let P(X−1(A) | Y −1(B)) = P(X−1(A) ∩ Y −1(B))/P(Y −1(B)). If X and Y are
independent, then P(X−1(A) | Y −1(B)) = P(X−1(A)), since X−1(A) ∈ σ(X) and Y −1(B) ∈ σ(Y ).

In what follows, we will employ a common abuse of notation. Consider the random variables X and Y on the
probability triple (Ω,F ,P). For every x ∈ R, we will let P(X ≤ x) denote P({X ≤ x}). Furthermore, for every
x, y ∈ R, we will let P(X ≤ x, Y ≤ y) denote P({X ≤ x} ∩ {Y ≤ y}). We will employ analogous notation when
there are more random variables and different predicates.

Consider the random variables X and Y on the probability triple (Ω,F ,P). Suppose that, for every x, y ∈ R,
P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y). We will now show that X and Y are independent.

Recall that π(R) = {(−∞, x] | x ∈ R} and π(X) = {X−1((−∞, x]) | (−∞, x] ∈ π(R)} = {{X ≤ x} | x ∈ R}.
Note that π(X) is a π-system on Ω: for any x1, x2 ∈ R, if {X ≤ x1} ∈ π(X) and {X ≤ x2} ∈ π(X), then {X ≤
x1} ∩ {X ≤ x2} = {ω ∈ Ω | X(ω) ≤ x1 and X(ω) ≤ x2} = {ω ∈ Ω | X(ω) ≤ min(x1, x2)} = {X ≤ min(x1, x2)}.
By assumption, P({X ≤ x} ∩ {Y ≤ y}) = P({X ≤ x})P({Y ≤ y}) for any {X ≤ x} ∈ π(X) and {Y ≤ y} ∈ π(Y ).
By definition, the π-systems π(X) and π(Y ) are independent. Therefore, σ(π(X)) and σ(π(Y )) are independent.
Based on a previous result, we know that σ(π(X)) = σ(X) and σ(π(Y )) = σ(Y ).

In general, the random variables X1, X2, . . . , Xn are independent if and only if, for every x1, x2, . . . , xn ∈ R,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = P

(
n⋂

k=1

{Xk ≤ xk}

)
=

n∏
k=1

P(Xk ≤ xk).

Consider a probability triple (Ω,F ,P) and a sequence of independent events (En ∈ F | n ∈ N) such that∑∞
n=0 P(En) = ∞. The second Borel-Cantelli Lemma states that

P
(
lim sup
n→∞

En

)
= 1.

Because the events are independent, for any m, r ∈ N such that m ≤ r,

P

 ⋂
m≤n≤r

Ec
n

 =
∏

m≤n≤r

P(Ec
n) =

∏
m≤n≤r

(1− P(En)).

Let e denote Euler’s number. For any x ≥ 0, recall that 1− x ≤ e−x. Therefore,

P

 ⋂
m≤n≤r

Ec
n

 ≤
∏

m≤n≤r

e−P(En) = e−
∑

m≤n≤r P(En).

Because both sides of the inequation above are non-increasing with respect to r, we may take the limit of both
sides when r → ∞ and use the fact that

∑∞
n=0 P(En) = ∞ to conclude that

lim
r→∞

P

 ⋂
m≤n≤r

Ec
n

 = P

 ⋂
n≥m

Ec
n

 ≤ lim
r→∞

e−
∑

m≤n≤r P(En) = 0.
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Using the relationship between the limit superior and the limit inferior,

P
((

lim sup
n→∞

En

)c)
= P

(
lim inf
n→∞

EC
n

)
= P

⋃
m

⋂
n≥m

Ec
n

 ≤
∑
m

P

 ⋂
n≥m

Ec
n

 = 0.

A valid distribution function F : R → [0, 1] is a right-continuous function such that if a ≤ b, then F (a) ≤ F (b);
limx→−∞ F (x) = 0; and limx→∞ F (x) = 1. For any sequence of valid distribution functions (Fn | n ∈ N), it is
possible to show that there is a sequence of independent random variables (Xn | n ∈ N) on the probability triple
([0, 1],B([0, 1]),Leb) such that Fn is the distribution function of Xn.

Let (Xn | n ∈ N) be a sequence of independent random variables on the probability triple (Ω,F ,P). If P(Xn ≤
x) = F (x) for every n ∈ N, x ∈ R, and a distribution function F : R → [0, 1], then the random variables are
considered independent and identically distributed.

As an application of the Borel-Cantelli lemmas, consider a sequence (Xn | n ∈ N+) of independent random
variables on the probability triple (Ω,F ,P). Suppose that each random variable Xn is exponentially distributed
with rate 1 such that P(Xn > xn) = 1− P(Xn ≤ xn) = e−xn for every xn ≥ 0. If xn = α log n for some α > 0, then

P(Xn > α log n) = e−α logn = (elogn)−α =
1

nα
.

For some α > 0, consider the sequence of independent events ({Xn > α log n} ∈ F | n ∈ N+) and recall that

∞∑
n=1

P(Xn > α log n) =

∞∑
n=1

1

nα
< ∞

if and only if α > 1. Using the Borel-Cantelli lemmas,

P
(
lim sup
n→∞

{Xn > α log n}
)

=

{
0, if α > 1,
1, if α ≤ 1.

Recall that ω ∈ lim supn→∞ {Xn > α log n} if and only if Xn(ω) > α log n for infinitely many n ∈ N.
Furthermore, consider the random variable lim supn→∞ Xn/ log n. It is also possible to show that

P
(
lim sup
n→∞

Xn

log n
= 1

)
= P

({
ω ∈ Ω | lim sup

n→∞

Xn(ω)

log n
= 1

})
= 1.

For any set C, a set (or sequence) of random variables Y = (Yγ | γ ∈ C) on a probability triple (Ω,F ,P) is called
a stochastic process parameterized by C.

Consider a measurable space (Ω,F) and a function X : Ω → C, where C ⊆ N. We will show that if {X = c} ∈ F
for every c ∈ C, then X is F-measurable. For any B ∈ B(R), let A = B ∩ C and note that

X−1(B) = {ω ∈ Ω | X(ω) ∈ B} = {ω ∈ Ω | X(ω) ∈ B and X(ω) ∈ C} = X−1(B ∩ C) = X−1(A).

Furthermore, note that

X−1(A) = X−1

(⋃
a∈A

{a}

)
=
⋃
a∈A

X−1({a}) =
⋃
a∈A

{X = a}.

Because A ⊆ C, we have {X = a} ∈ F for every a ∈ A. Because F is a σ-algebra, we have X−1(A) ∈ F .
Therefore, for every B ∈ B(R), we have X−1(B) ∈ F .

Consider a set E ⊆ N. For every i, j ∈ E, let P be a stochastic matrix whose (i, j)-th element is given by
pi,j ≥ 0 and suppose that

∑
k pi,k = 1. Let µ be a probability measure on the measurable space (E,P(E)),

where P(E) is the set of all subsets of E, and let µi denote µ({i}) for every i ∈ E. A time-homogeneous Markov
chain Z = (Zn | n ∈ N) on E with initial distribution µ and 1-step transition matrix P is a stochastic process
parameterized by N such that, for every n ∈ N and i0, i1, . . . , in ∈ E,

P(Z0 = i0, Z1 = i1, . . . , Zn = in) = µi0pi0,i1 . . . pin−1,in = µi0

n∏
k=1

pik−1,ik .
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We will now show that a probability triple (Ω,F ,P) carrying the aforementioned stochastic process Z exists.
First, for any set of valid distribution functions {Fn | n ∈ N}, recall that there is a set of independent random

variables {Xn | n ∈ N} on a certain probability triple (Ω,F ,P) such that Fn is the distribution function of Xn.
Using this result, for every i, j ∈ E and n ∈ N+, let Z0 : Ω → E and Yi,n : Ω → E be independent random variables
on a probability triple (Ω,F ,P) such that P(Z0 = i) = µi and P(Yi,n = j) = pi,j .

For every ω ∈ Ω and n ∈ N+, let Zn(ω) = YZn−1(ω),n(ω). Using induction, we will show that the function
Zn : Ω → E is a random variable for every n ∈ N. We already know that Z0 is a random variable. Suppose that
Zn−1 is a random variable. We will show that {Zn = in} ∈ F for every in ∈ E. By definition,

{Zn = in} = {ω ∈ Ω | Zn(ω) = in} = {ω ∈ Ω | YZn−1(ω),n(ω) = in} =
⋃
i∈E

{ω ∈ Ω | Zn−1(ω) = i and Yi,n(ω) = in},

which implies

{Zn = in} =
⋃
i∈E

{Zn−1 = i} ∩ {Yi,n = in}.

Because Zn−1 and Yi,n are random variables for every i ∈ E, {Zn = in} ∈ F , as we wanted to show.
Using induction, we will now show that, for every n ∈ N and i0, i1, . . . , in ∈ E,

n⋂
k=0

{Zk = ik} = {Z0 = i0} ∩
n⋂

k=1

{Yik−1,k = ik}.

The statement above is true when n = 0, so suppose it is true for some n− 1 ∈ N. Using a previous result,

n⋂
k=0

{Zk = ik} =

(
n−1⋂
k=0

{Zk = ik}

)
∩ {Zn = in} =

(
n−1⋂
k=0

{Zk = ik}

)
∩

(⋃
i∈E

{Zn−1 = i} ∩ {Yi,n = in}

)
.

By distributing the intersection over the union,

n⋂
k=0

{Zk = ik} =
⋃
i∈E

(
n−1⋂
k=0

{Zk = ik}

)
∩ {Zn−1 = i} ∩ {Yi,n = in}.

Because {Zn−1 = in−1} ∩ {Zn−1 = i} = ∅ whenever i ̸= in−1,

n⋂
k=0

{Zk = ik} =

(
n−1⋂
k=0

{Zk = ik}

)
∩ {Yin−1,n = in} = {Z0 = i0} ∩

n⋂
k=1

{Yik−1,k = ik},

where the last equation follows from the inductive hypothesis.
The event above is the intersection of events from the σ-algebras of independent random variables, which implies

P(Z0 = i0, Z1 = i1, . . . , Zn = in) = P

(
n⋂

k=0

{Zk = ik}

)
= P(Z0 = i0)

n∏
k=1

P(Yik−1,k = ik) = µi0

n∏
k=1

pik−1,ik .

Consider a time-homogeneous Markov chain Z = (Zn | n ∈ N) on E with initial distribution µ and 1-step
transition matrix P . Consider also a finite sequence of elements of E given by I = i0, i1, . . . in. We say that the
sequence I appears in outcome ω ∈ Ω at time t if Zt+k(ω) = ik for every k ≤ n. We will now show how several
interesting events related to the appearance of the sequence I may be defined.

The event Mt composed of outcomes where the sequence I appears at time t is given by

Mt =

n⋂
k=0

{Zt+k = ik} =

n⋂
k=0

{ω ∈ Ω | Zt+k(ω) = ik}.

The event St composed of outcomes where the sequence I appears at least once at or after time t is given by

St =
⋃
t′≥t

Mt′ .

12



The event Lt,m composed of outcomes where the sequence I appears at least m times up to time t is given by

Lt,m =
⋃

l1,...,lm

m⋂
k=1

Mlk ,

where l1, . . . , lm is a finite sequence of distinct elements of E such that lk ≤ t for every k ≤ m.
The event Lm composed of outcomes where I appears at least m times is given by Lt,m when t = ∞.
The event E composed of outcomes where the sequence I appears infinitely many times is given by

E = lim sup
t→∞

Mt.

5 Integration
Consider a measure space (S,Σ, µ). The integral with respect to µ of a Σ-measurable function f : S → R is denoted
by µ(f).

For any set A ∈ Σ, the integral with respect to µ of the indicator function IA : S → {0, 1} is defined as

µ(IA) = µ(A).

A simple function is a Σ-measurable function f : S → [0,∞] that can be written as

f(s) =

m∑
k=1

akIAk
(s)

for every s ∈ S, for some fixed a1, a2, . . . , am ∈ [0,∞] and A1, A2, . . . , Am ∈ Σ. Intuitively, when A1, A2, . . . , Am

partition S, each set Ak is assigned a value ak.
The integral with respect to µ of the simple function f : S → [0,∞] as written above is defined as

µ(f) =

m∑
k=1

akµ(Ak).

It is possible to show that the right side of the equation above is equivalent for every choice of sets and constants used
to write the simple function f . Therefore, the integral µ(f) with respect to µ of a simple function f is well-defined.
Intuitively, when A1, A2, . . . , Am partition S, the integral with respect to µ accumulates the measure µ(Ak) of each
set Ak multiplied by the value ak assigned to it.

If f : S → [0,∞] and g : S → [0,∞] are simple functions, then

• f + g is a simple function and µ(f + g) = µ(f) + µ(g),

• if c ≥ 0, then cf is a simple function and µ(cf) = cµ(f),

• if µ(f ̸= g) = µ({s ∈ S | f(s) ̸= g(s)}) = 0, then µ(f) = µ(g),

• if f ≤ g such that f(s) ≤ g(s) for every s ∈ S, then µ(f) ≤ µ(g),

• if h = min(f, g) such that h(s) = min(f(s), g(s)) for every s ∈ S, then h is a simple function,

• if h = max(f, g) such that h(s) = max(f(s), g(s)) for every s ∈ S, then h is a simple function.

The integral with respect to µ of a Σ-measurable function f : S → [0,∞] is defined as

µ(f) = sup{µ(h) | h is simple and h ≤ f}.

Consider a Σ-measurable function f : S → [0,∞]. We will now show that if µ(f) = 0, then µ({f > 0}) = 0.
Because the measure µ is non-negative, this is equivalent to showing that if µ({f > 0}) > 0, then µ(f) > 0.

For every n ∈ N+, let An = {f > n−1} = {s ∈ S | f(s) > n−1} and note that

{f > 0} = {s ∈ S | f(s) > 0} =
⋃

n∈N+

{s ∈ S | f(s) > n−1} =
⋃

n∈N+

An.
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For every s ∈ S and n ∈ N+, if f(s) > n−1, then f(s) > (n + 1)−1. Therefore, An ⊆ An+1 and An ↑ {f > 0}.
Furthermore, the monotone-convergence property of measure guarantees that µ(An) ↑ µ({f > 0}).

Suppose that µ({f > 0}) > 0. In that case, there is an n ∈ N+ such that

µ(I{f>n−1}) = µ({f > n−1}) = µ(An) > 0.

For such an n ∈ N+, consider now the simple function g = n−1I{f>n−1} given by

g(s) = n−1I{f>n−1}(s) =

{
n−1 f(s) > n−1,

0 f(s) ≤ n−1.

The fact that f ≥ g implies that µ(f) ≥ µ(g) even if f is not simple. Therefore,

µ(f) ≥ µ(g) = µ(n−1I{f>n−1}) = n−1µ(I{f>n−1}) > 0,

where the last inequality follows from the fact that n−1 > 0.
Let fn ↑ f denote that a sequence of functions (fn : S → R | n ∈ N) is such that fn(s) ↑ f(s) for every s ∈ S.

Similarly, let fn ↓ f denote that a sequence of functions (fn : S → R | n ∈ N) is such that fn(s) ↓ f(s) for every
s ∈ S.

The monotone-convergence theorem states that if (fn : S → [0,∞] | n ∈ N) is a sequence of Σ-measurable
functions such that fn ↑ f , then µ(fn) ↑ µ(f).

Before showing how the integral with respect to µ of a given Σ-measurable function is the limit of a sequence of
integrals with respect to µ of simple functions, it is convenient to introduce staircase functions.

Let αn : [0,∞] → [0, n] denote the n-th staircase function given by αn(x) = min(n, ⌊2nx⌋/2n) for every n ∈ N
and x ∈ [0,∞]. Intuitively, the n-th staircase function partitions its domain into a sequence of intervals of length
1/2n. The value assigned to the first interval is zero, and the value of each following interval is 1/2n plus the value of
the previous interval, with values truncated at n. Furthermore, let h : [0,∞] → [0,∞] denote the identity function
given by h(x) = x for every x ∈ [0,∞]. We will now show that αn ↑ h.

We will start by showing that min(n, ⌊2nx⌋/2n) = αn(x) ≤ αn+1(x) = min(n + 1, ⌊2n+1x⌋/2n+1), for every
n ∈ N and x ∈ [0,∞]. When x = ∞, we have αn(x) = n ≤ n + 1 = αn+1(x). When x < ∞, the fact that
n ≤ n+1 implies that we only need to show that ⌊2nx⌋/2n ≤ ⌊2n+1x⌋/2n+1. Note that ⌊2nx⌋ ≤ 2nx, which implies
2⌊2nx⌋ ≤ 2n+1x. By the monotonicity of the floor function, ⌊2⌊2nx⌋⌋ ≤ ⌊2n+1x⌋. Because the floor of an integer is
itself an integer, 2⌊2nx⌋ ≤ ⌊2n+1x⌋. Dividing both sides of the previous inequation by 2n+1 completes the proof.

In order to show that αn ↑ h, it remains to show that, for every x ∈ [0,∞],

lim
n→∞

αn(x) = x.

The case where x = ∞ is trivial, since αn(x) = n. When x < ∞, note that 2nx ≥ ⌊2nx⌋ implies x ≥ ⌊2nx⌋/2n,
and so n > x implies n > ⌊2nx⌋/2n. Therefore, for every sufficiently large n ∈ N, we know that αn(x) = ⌊2nx⌋/2n
when x < ∞. It remains to show that limn→∞⌊2nx⌋/2n = x. By noting that 2nx− 1 ≤ ⌊2nx⌋ ≤ 2nx and dividing
each term by 2n,

x− 1

2n
=

2nx− 1

2n
≤ ⌊2nx⌋

2n
≤ 2nx

2n
= x.

Using the squeeze theorem with n → ∞ completes the proof that αn ↑ h.
Consider a Σ-measurable function f : S → [0,∞]. For every n ∈ N, consider fn : S → [0, n] such that

fn(s) = αn(f(s)) =

m∑
k=1

akI{fn=ak}(s),

where a1, . . . , am ∈ [0, n] are the (distinct) elements of the (finite) image of the function fn. Because f is Σ-
measurable and αn is B([0,∞])-measurable, we know that fn = αn ◦ f is Σ-measurable, which implies that fn
is also simple. For every s ∈ S, we have f(s) ∈ [0,∞] and (αn ◦ f)(s) ↑ f(s). Therefore, fn ↑ f . From the
monotone-convergence theorem, µ(fn) ↑ µ(f). Therefore, the integral with respect to µ of a given Σ-measurable
function f is the limit of a sequence of integrals with respect to µ of simple functions (fn : S → [0, n] | n ∈ N).

Let f : S → [0,∞] and g : S → [0,∞] be Σ-measurable functions. We will show that if µ({f ̸= g}) = 0, then
µ(f) = µ(g). Recall that we already have the analogous result for simple functions.
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For any n ∈ N, let fn = αn ◦ f and gn = αn ◦ g, where αn is the n-th staircase function. Note that

{fn ̸= gn} = {s ∈ S | fn(s) ̸= gn(s)} ⊆ {s ∈ S | f(s) ̸= g(s)} = {f ̸= g},

which implies µ({fn ̸= gn}) ≤ µ({f ̸= g}) = 0. Because fn and gn are simple functions such that µ({fn ̸= gn}) = 0,
we know that µ(fn) = µ(gn). From the monotone-convergence theorem, µ(fn) ↑ µ(f) and µ(gn) ↑ µ(g), so

µ(f) = lim
n→∞

µ(fn) = lim
n→∞

µ(gn) = µ(g).

Consider a Σ-measurable function f : S → [0,∞] and a sequence of Σ-measurable functions (fn : S → [0,∞] |
n ∈ N) such that fn(s) ↑ f(s) for every s ∈ S \N for some µ-null set N ⊆ S. We will show that µ(fn) ↑ µ(f).

Consider the Σ-measurable function fIS\N such that (fIS\N )(s) = f(s)IS\N (s) for every s ∈ S. Clearly,
{fIS\N ̸= f} ⊆ N . Therefore, µ({fIS\N ̸= f}) ≤ µ(N) = 0 and µ(fIS\N ) = µ(f).

Analogously, consider the Σ-measurable function fnIS\N such that (fnIS\N )(s) = fn(s)IS\N (s) for every s ∈ S
and n ∈ N. Clearly, {fnIS\N ̸= fn} ⊆ N . Therefore, µ({fnIS\N ̸= fn}) ≤ µ(N) = 0 and µ(fnIS\N ) = µ(fn).

Note that (fnIS\N )(s) ↑ (fIS\N )(s), whether s ∈ N or s ∈ S \ N . Therefore, µ(fnIS\N ) ↑ µ(fIS\N ), which
implies µ(fn) ↑ µ(f).

Consider a sequence of Σ-measurable functions (fn : S → [0,∞] | n ∈ N). The Fatou lemma states that

µ
(
lim inf
n→∞

fn

)
≤ lim inf

n→∞
µ(fn).

We will now show this lemma. For any m ∈ N, consider the function gm = infn≥m fn such that

lim inf
n→∞

fn = lim
m→∞

inf
n≥m

fn = lim
m→∞

gm.

Because gm+1 ≥ gm for every m ∈ N, we have that gm ↑ lim infn→∞ fn. Because gm : S → [0,∞] is also
Σ-measurable for every m ∈ N, the monotone-convergence theorem guarantees that µ(gm) ↑ µ(lim infn→∞ fn).

For any n ≥ m, note that gm ≤ fn and µ(gm) ≤ µ(fn), which also implies µ(gm) ≤ infn≥m µ(fn). By taking
the limit of both sides of the previous inequation when m → ∞,

µ
(
lim inf
n→∞

fn

)
= lim

m→∞
µ(gm) ≤ lim

m→∞
inf
n≥m

µ(fn) = lim inf
n→∞

µ(fn).

Consider a Σ-measurable function f : S → [0,∞] and a constant c ≥ 0. We will now show that µ(cf) = cµ(f).
Recall that we already have the analogous result for simple functions.

For any n ∈ N, let fn = αn ◦ f , where αn is the n-th staircase function. Because fn ↑ f , we know that cfn ↑ cf .
Because cfn is Σ-measurable for every n ∈ N, the monotone-convergence theorem guarantees that µ(cfn) ↑ µ(cf).
Because µ(cfn) = cµ(fn), we have cµ(fn) ↑ µ(cf). Because cµ(fn) ↑ cµ(f), we have µ(cf) = cµ(f).

Consider a Σ-measurable function f : S → [0,∞] and a Σ-measurable function g : S → [0,∞]. We will now
show that µ(f + g) = µ(f) + µ(g). Recall that we already have the analogous result for simple functions.

For any n ∈ N, let fn = αn ◦ f and gn = αn ◦ g, where αn is the n-th staircase function. Because fn ↑ f and
gn ↑ g, we know that fn + gn ↑ f + g. Because fn + gn is Σ-measurable for every n ∈ N, the monotone-convergence
theorem guarantees that µ(fn + gn) ↑ µ(f + g). Because µ(fn + gn) ↑ µ(f) + µ(g), we have µ(f + g) = µ(f) + µ(g).

Consider a sequence of Σ-measurable functions (fn : S → [0,∞] | n ∈ N) such that fn ≤ g for every n ∈ N and
some Σ-measurable function g : S → [0,∞] such that µ(g) < ∞. The reverse Fatou lemma states that

µ

(
lim sup
n→∞

fn

)
≥ lim sup

n→∞
µ(fn).

We will now show this lemma. For every n ∈ N, consider the function hn = g − fn. Because g and fn are
Σ-measurable and fn ≤ g, we know that hn : S → [0,∞] is Σ-measurable. From the Fatou lemma,

µ
(
lim inf
n→∞

(g − fn)
)
≤ lim inf

n→∞
µ(g − fn).

By using the fact that µ(g) = µ(g − fn) + µ(fn) and moving g and µ(g) outside the corresponding limits,

µ
(
g + lim inf

n→∞
−fn

)
≤ µ(g) + lim inf

n→∞
−µ(fn).
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By using the relationship between limit inferior and limit superior,

µ

(
g − lim sup

n→∞
fn

)
≤ µ(g)− lim sup

n→∞
µ(fn).

By using the fact that µ(g) = µ(g − lim supn→∞ fn) + µ(lim supn→∞ fn),

µ(g)− µ

(
lim sup
n→∞

fn

)
≤ µ(g)− lim sup

n→∞
µ(fn).

The proof is completed by reorganizing terms in the inequation above.
For a Σ-measurable function f : S → R, the Σ-measurable function f+ : S → [0,∞] is given by

f+(s) = max(f(s), 0) =

{
f(s), if f(s) > 0,

0, if f(s) ≤ 0.

For a Σ-measurable function f : S → R, the Σ-measurable function f− : S → [0,∞] is given by

f−(s) = max(−f(s), 0) =

{
0, if f(s) > 0,

−f(s), if f(s) ≤ 0.

Therefore, for a Σ-measurable function f : S → R, whether f(s) > 0 or f(s) ≤ 0,

f(s) = f+(s)− f−(s).

Furthermore, whether f(s) > 0 or f(s) ≤ 0,

|f(s)| = f+(s) + f−(s).

In other words, f = f+ − f− and |f | = f+ + f−.
A function f : S → R is µ-integrable if it is Σ-measurable and µ(|f |) = µ(f+ + f−) = µ(f+) + µ(f−) < ∞.
The set of all µ-integrable functions in the measure space (S,Σ, µ) is denoted by L1(S,Σ, µ). The set of all

non-negative µ-integrable functions in the measure space (S,Σ, µ) is denoted by L1(S,Σ, µ)+.
The integral µ(f) with respect to µ of a µ-integrable function f : S → R is defined as

µ(f) = µ(f+)− µ(f−).

Alternatively, the integral µ(f) with respect to µ of a µ-integrable function f : S → R is denoted by∫
S

fdµ =

∫
S

f(s)µ(ds) = µ(f).

If a function f : S → R is µ-integrable, then µ(f+) < ∞ and µ(f−) < ∞. By the triangle inequality,

|µ(f)| = |µ(f+) + (−µ(f−))| ≤ |µ(f+)|+ | − µ(f−)| = µ(f+) + µ(f−) = µ(|f |).

Consider a µ-integrable function f : S → R. Because −f : S → R is Σ-measurable and µ(|−f |) = µ(|f |) < ∞, we
know that −f is µ-integrable. We will now show that µ(−f) = −µ(f). For every s ∈ S, (−f)+(s) = max(−f(s), 0) =
f−(s) and (−f)−(s) = max(f(s), 0) = f+(s). Therefore,

µ(−f) = µ((−f)+)− µ((−f)−) = −(µ((−f)−)− µ((−f)+)) = −(µ(f+)− µ(f−)) = −µ(f).

Consider a µ-integrable function f : S → R and a constant c ∈ R. Because cf : S → R is Σ-measurable and
µ(|cf |) = µ(|c||f |) = |c|µ(|f |) < ∞, we know that cf is µ-integrable. We will now show that µ(cf) = cµ(f).

Because f = f+ − f−, we know that cf = cf+ − cf−. Furthermore, (cf) = (cf)+ − (cf)−. Therefore,

(cf)+ − (cf)− = cf+ − cf−.

By rearranging negative terms,

(cf)+ + cf− = (cf)− + cf+.
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We will now consider the case where c ≥ 0. By the linearity of the integral of non-negative functions,

µ((cf)+) + µ(cf−) = µ((cf)−) + µ(cf+).

By rearranging terms,

µ((cf)+)− µ((cf)−) = µ(cf+)− µ(cf−).

Because cf is µ-integrable and by the linearity of the integral of non-negative functions,

µ(cf) = cµ(f+)− cµ(f−) = c(µ(f+)− µ(f−)) = cµ(f).

When c < 0, note that µ(cf) = µ(−|c|f) = |c|µ(−f) = −|c|µ(f) = cµ(f).
Consider a µ-integrable function f : S → R and a µ-integrable function g : S → R. Because f + g : S → R is

Σ-measurable and |f + g| ≤ |f |+ |g| implies µ(|f + g|) ≤ µ(|f |) + µ(|g|) < ∞, we know that f + g is µ-integrable.
We will now show that µ(f + g) = µ(f) + µ(g).

We know that f + g = (f+ − f−) + (g+ − g−). Furthermore, (f + g) = (f + g)+ − (f + g)−. Therefore,

(f + g)+ − (f + g)− = (f+ − f−) + (g+ − g−).

By rearranging negative terms,

(f + g)+ + f− + g− = (f + g)− + f+ + g+.

By the linearity of the integral of non-negative functions,

µ((f + g)+) + µ(f−) + µ(g−) = µ((f + g)−) + µ(f+) + µ(g+).

By rearranging terms,

µ((f + g)+)− µ((f + g)−) = (µ(f+)− µ(f−)) + (µ(g+)− µ(g−))

Because f + g is µ-integrable,

µ(f + g) = µ(f) + µ(g).

Let f : S → R and g : S → R be µ-integrable functions. We will now show that if µ({f ̸= g}) = 0, then
µ(f) = µ(g). Recall that we already have the analogous result for non-negative Σ-measurable functions.

First, note that if f+(s) ̸= g+(s) or f−(s) ̸= g−(s) for some s ∈ S, then f(s) ̸= g(s). Therefore,

{s ∈ S | f+(s) ̸= g+(s)} ∪ {s ∈ S | f−(s) ̸= g−(s)} ⊆ {s ∈ S | f(s) ̸= g(s)},

so that µ({f+ ̸= g+}) + µ({f− ̸= g−}) ≤ µ({f ̸= g}). Because µ({f ̸= g}) = 0, we know that µ({f+ ̸= g+}) = 0
and µ({f− ̸= g−}) = 0. Because f+, f−, g+, and g− are non-negative Σ-measurable functions, we know that
µ(f+) = µ(g+) and µ(f−) = µ(g−). Therefore,

µ(f) = µ(f+)− µ(f−) = µ(g+)− µ(g−) = µ(g).

The integral with respect to µ of a µ-integrable function f : S → R over the set A ∈ Σ is defined as

µ(f ;A) = µ(fIA).

Because fIA is Σ-measurable and |fIA| ≤ |f | implies µ(|fIA|) ≤ µ(|f |) < ∞, we know that fIA is µ-integrable.
Alternatively, the integral µ(f ;A) with respect to µ of f over the set A ∈ Σ is denoted by∫

A

fdµ =

∫
A

f(s)µ(ds) = µ(f ;A).

Consider a sequence of real numbers (xn | n ∈ N) and the measure space (N,P(N), µ), where µ({n}) = 1 for
every n ∈ N. Furthermore, consider a function f : N → R such that f(n) = xn. We will now show that f is
µ-integrable if and only if

∑
n |xn| < ∞. Also, if f is µ-integrable, then µ(f) =

∑
n xn.
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Suppose that f(n) ≥ 0 for every n ∈ N. For every k ∈ N, consider the function fk : N → [0,∞] given by

fk(n) =

k∑
i=0

f(i)I{i}(n) =

{
f(n), if n ≤ k,

0, if n > k.

Clearly, if k → ∞, then fk → f . Because fk is a simple function,

µ(fk) =

k∑
i=0

f(i)µ({i}) =
k∑

i=0

f(i) =

k∑
i=0

xi.

Because fk ≤ fk+1, we have fk ↑ f . By the monotone-convergence theorem, µ(fk) ↑ µ(f). Therefore,

µ(f) = lim
k→∞

k∑
i=0

xi =
∑
n

xn.

Now suppose f(n) ∈ R for every n ∈ N. Based on our previous result,

µ(|f |) = µ(f+) + µ(f−) =
∑
n

max(xn, 0) + max(−xn, 0) =
∑
n

|xn|.

By definition, f is integrable if and only if µ(|f |) =
∑

n |xn| < ∞, in which case

µ(f) = µ(f+)− µ(f−) =
∑
n

max(xn, 0)−max(−xn, 0) =
∑
n

xn.

Consider a sequence of Σ-measurable functions (fn : S → R | n ∈ N) and a Σ-measurable function f : S → R
such that limn→∞ fn = f . Furthermore, suppose there is a µ-integrable non-negative function g ∈ L1(S,Σ, µ)+

that dominates this sequence of functions such that |fn| ≤ g for every n ∈ N. The dominated convergence theorem
states that f is µ-integrable and limn→∞ µ(fn) = µ(f). We will now show this theorem.

Because g is µ-integrable and non-negative, µ(g) = µ(|g|) < ∞. Because |fn| ≤ g for every n ∈ N, we know that
µ(|fn|) ≤ µ(g) < ∞, which implies that fn is µ-integrable. Because the function | · | is continuous, we know that
limn→∞ |fn| = |f |, which implies |f | ≤ g. Because µ(|f |) ≤ µ(g) < ∞, we know that f is µ-integrable.

Because |fn| ≤ g and |f | ≤ g, we know that |fn|+ |f | ≤ 2g. By the triangle inequality,

|fn − f | = |fn + (−f)| ≤ |fn|+ |f | ≤ 2g.

Because |fn−f | : S → [0,∞] is a Σ-measurable function and |fn−f | ≤ 2g for every n ∈ N, where 2g : S → [0,∞]
is a Σ-measurable function such that µ(2g) = 2µ(g) < ∞, the reverse Fatou lemma states that

µ

(
lim sup
n→∞

|fn − f |
)

≥ lim sup
n→∞

µ(|fn − f |).

Since the function | · | is continuous, we know that limn→∞ |fn− f | = 0, where 0 is the zero function. Therefore,

lim sup
n→∞

|fn − f | = lim inf
n→∞

|fn − f | = lim
n→∞

|fn − f | = 0.

By taking the integral with respect to µ of these non-negative functions,

µ

(
lim sup
n→∞

|fn − f |
)

= µ
(
lim inf
n→∞

|fn − f |
)
= µ

(
lim
n→∞

|fn − f |
)
= µ(0) = 0.

Because fn − f is µ-integrable for every n ∈ N and |µ(fn − f)| ≤ µ(|fn − f |),

0 ≥ lim sup
n→∞

µ(|fn − f |) ≥ lim sup
n→∞

|µ(fn − f)| ≥ lim inf
n→∞

|µ(fn − f)| ≥ 0.

Because the limit superior and limit inferior in the inequation above must be equal to zero, we know that
limn→∞ |µ(fn − f)| = 0, which implies limn→∞ µ(fn − f) = 0. By the linearity of the integral with respect to µ,

lim
n→∞

µ(fn) = µ(f).
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Consider a sequence of µ-integrable non-negative functions (fn : S → [0,∞] | n ∈ N) and a µ-integrable non-
negative function f : S → [0,∞] such that limn→∞ fn = f (almost everywhere). Scheffé’s lemma for non-negative
functions states that

lim
n→∞

µ(|fn − f |) = 0 if and only if lim
n→∞

µ(fn) = µ(f).

We will now show this lemma. First, suppose limn→∞ µ(|fn − f |) = 0. Since 0 ≤ |µ(fn − f)| ≤ µ(|fn − f |),
the squeeze theorem implies that limn→∞ |µ(fn − f)| = 0, which also implies that limn→∞ µ(fn − f) = 0. By the
linearity of the integral with respect to µ, we conclude that limn→∞ µ(fn) = µ(f).

Now suppose limn→∞ µ(fn) = µ(f) and consider the function (fn − f)− : S → [0,∞] given by

(fn − f)−(s) = max(−(fn − f)(s), 0) = max((f − fn)(s), 0) = (f − fn)
+(s) =

{
f(s)− fn(s), if f(s) > fn(s),

0, if f(s) ≤ fn(s).

Note that (fn−f)− ≤ f for every n ∈ N. Because limn→∞ fn = f , we know that for every s ∈ S and ϵ > 0 there
is an N ∈ N such that n > N guarantees that |f(s)− fn(s)| < ϵ. Note that, for every n > N , if f(s) > fn(s), then
|(fn − f)−(s)| = |f(s) − fn(s)| < ϵ. If f(s) ≤ fn(s), then |(fn − f)−(s)| = 0 < ϵ. Therefore, for every s ∈ S and
ϵ > 0, there is an N ∈ N such that n > N guarantees that |(fn − f)−(s)| < ϵ. By definition, limn→∞(fn − f)− = 0,
where 0 denotes the zero function.

Consider the sequence of Σ-measurable functions ((fn − f)− : S → R | n ∈ N) and the Σ-measurable function
0 : S → R such that limn→∞(fn − f)− = 0. Furthermore, consider the µ-integrable non-negative function f ∈
L1(S,Σ, µ)+ such that |(fn − f)−| = (fn − f)− ≤ f for every n ∈ N. By the dominated convergence theorem, we
know that limn→∞ µ((fn − f)−) = µ(0) = 0.

For every n ∈ N, recall that (fn− f)+ = (fn− f)+ (fn− f)−. By the linearity of the integral with respect to µ,

lim
n→∞

µ((fn − f)+) = lim
n→∞

µ(fn)− µ(f) + µ((fn − f)−) = µ(f)− µ(f) + lim
n→∞

µ((fn − f)−) = 0.

For every n ∈ N, recall that |fn − f | = (fn − f)+ +(fn − f)−. By the linearity of the integral with respect to µ,

lim
n→∞

µ(|fn − f |) = lim
n→∞

µ((fn − f)+) + µ((fn − f)−) = 0.

Consider a sequence of µ-integrable functions (fn : S → R | n ∈ N) and a µ-integrable function f : S → R such
that limn→∞ fn = f (almost everywhere). Scheffé’s lemma states that

lim
n→∞

µ(|fn − f |) = 0 if and only if lim
n→∞

µ(|fn|) = µ(|f |).

We will now show this lemma. First, suppose limn→∞ µ(|fn − f |) = 0. By the triangle inequality,

|fn| = |(fn − f) + f | ≤ |fn − f |+ |f |,
|f | = |(f − fn) + fn| ≤ |fn − f |+ |fn|.

Because the integral with respect to µ is non-decreasing and linear,

µ(|fn − f |) ≥ µ(|fn|)− µ(|f |),
µ(|fn − f |) ≥ µ(|f |)− µ(|fn|).

Because µ(|fn − f |) ≥ a and µ(|fn − f |) ≥ −a for a = µ(|fn|)− µ(|f |),

µ(|fn − f |) ≥ |µ(|fn|)− µ(|f |)| ≥ 0. (1)

By the squeeze theorem, limn→∞ |µ(|fn|) − µ(|f |)| = 0, which implies limn→∞ µ(|fn|) − µ(|f |) = 0. By the
linearity of the integral with respect to µ, we conclude that limn→∞ µ(|fn|) = µ(|f |).

Now suppose limn→∞ µ(|fn|) = µ(|f |). Because the function g : R → R given by g(x) = max(x, 0) is continuous,

lim
n→∞

f+
n (s) = lim

n→∞
max(fn(s), 0) = max(f(s), 0) = f+(s),

lim
n→∞

f−
n (s) = lim

n→∞
max(−fn(s), 0) = max(−f(s), 0) = f−(s).
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Because (f+
n : S → [0,∞] | n ∈ N) and (f−

n : S → [0,∞] | n ∈ N) are sequences of Σ-measurable functions, the
Fatou lemma guarantees that

µ(f+) = µ
(
lim

n→∞
f+
n

)
= µ

(
lim inf
n→∞

f+
n

)
≤ lim inf

n→∞
µ(f+

n ),

µ(f−) = µ
(
lim
n→∞

f−
n

)
= µ

(
lim inf
n→∞

f−
n

)
≤ lim inf

n→∞
µ(f−

n ).

Consider the integrals µ(f+
n ) and µ(f−

n ) written as

µ(f+
n ) = µ(f+

n ) + µ(f−
n )− µ(f−

n ),

µ(f−
n ) = µ(f−

n ) + µ(f+
n )− µ(f+

n ).

By taking the limit superior of both sides,

lim sup
n→∞

µ(f+
n ) = lim sup

n→∞

(
µ(f+

n ) + µ(f−
n )− µ(f−

n )
)
,

lim sup
n→∞

µ(f−
n ) = lim sup

n→∞

(
µ(f−

n ) + µ(f+
n )− µ(f+

n )
)
.

By the subadditivity of the limit superior,

lim sup
n→∞

µ(f+
n ) ≤ lim sup

n→∞

(
µ(f+

n ) + µ(f−
n )
)
+ lim sup

n→∞
−µ(f−

n )

lim sup
n→∞

µ(f−
n ) ≤ lim sup

n→∞

(
µ(f−

n ) + µ(f+
n )
)
+ lim sup

n→∞
−µ(f+

n ).

From our assumption that limn→∞ µ(|fn|) = µ(|f |),

lim sup
n→∞

(
µ(f+

n ) + µ(f−
n )
)
= lim sup

n→∞

(
µ(f−

n ) + µ(f+
n )
)
= lim sup

n→∞
µ(|fn|) = lim

n→∞
µ(|fn|) = µ(|f |).

Therefore, by the relationship between the limit inferior and the limit superior,

lim sup
n→∞

µ(f+
n ) ≤ µ(|f |)− lim inf

n→∞
µ(f−

n ),

lim sup
n→∞

µ(f−
n ) ≤ µ(|f |)− lim inf

n→∞
µ(f+

n ).

By non-decreasing the right sides of the previous inequations using our previous result,

lim sup
n→∞

µ(f+
n ) ≤ µ(|f |)− µ(f−) = µ(f+) + µ(f−)− µ(f−) = µ(f+),

lim sup
n→∞

µ(f−
n ) ≤ µ(|f |)− µ(f+) = µ(f+) + µ(f−)− µ(f+) = µ(f−).

By noting that the limit superior is at least as large as the limit inferior and combining the previous results,

µ(f+) ≤ lim inf
n→∞

µ(f+
n ) ≤ lim sup

n→∞
µ(f+

n ) ≤ µ(f+),

µ(f−) ≤ lim inf
n→∞

µ(f−
n ) ≤ lim sup

n→∞
µ(f−

n ) ≤ µ(f−).

Because the previous inequations imply that the limits must match,

lim
n→∞

µ(f+
n ) = µ(f+),

lim
n→∞

µ(f−
n ) = µ(f−).

Because (f+
n : S → [0,∞] | n ∈ N) and (f−

n : S → [0,∞] | n ∈ N) are sequences of µ-integrable non-
negative functions and f+ : S → [0,∞] and f− : S → [0,∞] are µ-integrable non-negative functions such that
limn→∞ f+

n = f+ and limn→∞ f−
n = f−, Scheffé’s lemma for non-negative functions guarantees that

lim
n→∞

µ(|f+
n − f+|) = 0,

lim
n→∞

µ(|f−
n − f−|) = 0.
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By the triangle inequality,

|fn − f | = |(f+
n − f−

n )− (f+ − f−)| = |(f+
n − f+) + (f− − f−

n )| ≤ |f+
n − f+|+ |f−

n − f−|.

Because the integral with respect to µ is non-negative for non-negative functions, non-decreasing, and linear,

0 ≤ µ(|fn − f |) ≤ µ(|f+
n − f+|) + µ(|f−

n − f−|).

By the squeeze theorem, and as we wanted to show,

lim
n→∞

µ(|fn − f |) = 0.

Consider the measure space (S,Σ, µ). For a set A ∈ Σ, consider the triple (A,ΣA, µA) such that ΣA = {B ∈ Σ |
B ⊆ A} and µA(B) = µ(B) for every B ∈ ΣA. We will now show that (A,ΣA, µA) is a measure space restricted to
A.

First, we will show that ΣA is a σ-algebra on A. Because A ∈ Σ and A ⊆ A, we have A ∈ ΣA. If B ∈ ΣA, then
B ∈ Σ and A ∩Bc ∈ Σ. Because A ∩Bc ⊆ A, we have A \B ∈ ΣA. For any sequence (Bn ∈ ΣA | n ∈ N), the fact
that Bn ∈ Σ guarantees that ∪nBn ∈ Σ. Because Bn ⊆ A for every n ∈ N, we know that ∪nBn ⊆ A, which implies
∪nBn ∈ ΣA.

Second, we will show that the non-negative function µA : ΣA → [0,∞] is a measure on the measurable space
(A,ΣA). Because ∅ ∈ Σ and ∅ ∈ ΣA, we know that µA(∅) = µ(∅) = 0. For any sequence (Bn ∈ ΣA | n ∈ N) such
that Bn ∩Bm = ∅ for every n ̸= m, we know that ∪nBn ∈ Σ and ∪nBn ∈ ΣA and

µA

(⋃
n

Bn

)
= µ

(⋃
n

Bn

)
=
∑
n

µ(Bn) =
∑
n

µA(Bn).

Consider the measure space (S,Σ, µ) and a Σ-measurable function f : S → R. Consider also the measure space
(A,ΣA, µA) restricted to A ∈ Σ and the function f |A : A → R restricted to A given by f |A(a) = f(a) for every
a ∈ A. The function f |A is ΣA-measurable because, for every B ∈ B(R),

(f |A)−1(B) = {a ∈ A | f(a) ∈ B} = {s ∈ S | f(s) ∈ B} ∩A = f−1(B) ∩A.

Consider the measure space (S,Σ, µ), a Σ-measurable function f : S → R, and a set A ∈ Σ. We will now show
that f |A is µA-integrable if and only if fIA is µ-integrable, in which case µA(f |A) = µ(fIA) = µ(f ;A).

First, suppose f = IB for some set B ∈ Σ. Clearly, µ(fIA) = µ(IBIA) = µ(IB∩A) = µ(B ∩ A) and µA(f |A) =
µA(IB |A) = µA(IB∩A) = µA(B ∩ A). Because B ∩ A ⊆ A, we have µA(B ∩ A) = µ(B ∩ A), which implies
µA(f |A) = µ(fIA). Because µ(|fIA|) = µ(fIA) = µA(f |A) = µA(|f |A|), we know that f |A is µA-integrable if and
only if fIA is µ-integrable.

Next, suppose f is a simple function that can be written as f =
∑m

k=1 akIAk
for some fixed a1, a2, . . . , am ∈ [0,∞]

and A1, A2, . . . , Am ∈ Σ. In that case, the integral with respect to µ of the function fIA is given by

µ(fIA) = µ

(
m∑

k=1

akIAk
IA

)
= µ

(
m∑

k=1

akIAk∩A

)
=

m∑
k=1

akµ(Ak ∩A).

Furthermore, the integral of the function f |A with respect to µA is given by

µA(f |A) = µA

((
m∑

k=1

akIAk

)∣∣∣∣∣
A

)
= µA

(
m∑

k=1

akIAk∩A

)
=

m∑
k=1

akµA(IAk∩A) =

m∑
k=1

akµA(Ak ∩A).

Because Ak ∩A ⊆ A for every k ≤ m, we have µA(Ak ∩ A) = µ(Ak ∩ A), which implies µA(f |A) = µ(fIA).
Because µ(|fIA|) = µ(fIA) = µA(f |A) = µA(|f |A|), we know that f |A is µA-integrable if and only if fIA is
µ-integrable.

Next, suppose f is non-negative. For any n ∈ N, let fn = αn◦f , where αn is the n-th staircase function. Because
(fnIA | n ∈ N) is a sequence of Σ-measurable functions such that fnIA ↑ fIA, we know that µ(fnIA) ↑ µ(fIA).
Because (fn|A | n ∈ N) is a sequence of ΣA-measurable functions such that fn|A ↑ f |A, we know that µA(fn|A) ↑
µA(f |A). For every n ∈ N, the fact that fn is a simple function implies µ(fnIA) = µA(fn|A). Therefore, µA(fn|A) ↑
µ(fIA), and µ(fnIA) ↑ µA(f |A), and µ(fIA) = µA(f |A). Because µ(|fIA|) = µ(fIA) = µA(f |A) = µA(|f |A|), we
know that f |A is µA-integrable if and only if fIA is µ-integrable.
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Finally, suppose f : S → R. By definition,

µ(|fIA|) = µ((fIA)+) + µ((fIA)−) = µ(f+IA) + µ(f−IA) = µA(f
+|A) + µA(f

−|A) = µA((f |A)+) + µA((f |A)−) = µ(|f |A|).

Therefore, f |A is µA-integrable if and only if fIA is µ-integrable. In that case,

µ(fIA) = µ((fIA)+)− µ((fIA)−) = µ(f+IA)− µ(f−IA) = µA(f
+|A)− µA(f

−|A) = µA((f |A)+)− µA((f |A)−) = µ(f |A).

Consider a Σ-measurable function f : S → [0,∞] and the function (fµ) : Σ → [0,∞] defined by

(fµ)(A) = µ(f ;A) = µ(fIA) = µA(f |A).

We will now show that (fµ) is a measure on (S,Σ). Clearly, (fµ)(∅) = µ(fI∅) = µ(0) = 0.
Consider a sequence (Bn ∈ Σ | n ∈ N) such that Bn ∩Bm = ∅ for n ̸= m. First, suppose f is a simple function

that can be written as f =
∑m

k=1 akIAk
for some fixed a1, a2, . . . , am ∈ [0,∞] and A1, A2, . . . , Am ∈ Σ. In that case,

(fµ)(∪nBn) = µ(fI∪nBn
) = µ

(
m∑

k=1

akIAk
I∪nBn

)
= µ

(
m∑

k=1

akIAk∩(∪nBn)

)
= µ

(
m∑

k=1

akI∪n(Ak∩Bn)

)
.

By the definition of integral with respect to µ of a simple function and countable additivity,

(fµ)(∪nBn) =

m∑
k=1

akµ (∪n(Ak ∩Bn)) =

m∑
k=1

ak
∑
n

µ (Ak ∩Bn) =
∑
n

m∑
k=1

akµ (Ak ∩Bn) .

By the definition of integral with respect to µ of a simple function,

(fµ)(∪nBn) =
∑
n

µ

(
m∑

k=1

akIAk∩Bn

)
=
∑
n

µ

(
m∑

k=1

akIAk
IBn

)
=
∑
n

µ (fIBn) =
∑
n

(fµ)(Bn).

Now suppose f is non-negative. For any n ∈ N, let fn = αn ◦ f , where αn is the n-th staircase function. For
every set B ∈ Σ, we know that (fnIB : S → [0,∞] | n ∈ N) is a sequence of Σ-measurable functions such that
fnIB ↑ fIB , which implies that µ(fnIB) ↑ µ(fIB). Therefore,

(fµ)(∪jBj) = µ(fI∪jBj
) = lim

n→∞
µ(fnI∪jBj

) = lim
n→∞

∑
j

µ(fnIBj
) =

∑
j

lim
n→∞

µ(fnIBj
) =

∑
j

µ(fIBj
) =

∑
j

(fµ)(Bj).

Consider a Σ-measurable function f : S → [0,∞] and the measure space (S,Σ, (fµ)). By definition, the integral
with respect to (fµ) of a Σ-measurable function h : S → R over the set A is given by

(fµ)(hIA) = (fµ)(h;A) = (h(fµ))(A).

We will now show that (fµ)(hIA) = µ(fhIA).
First, suppose h = IB for some set B ∈ Σ. In that case, the integral with respect to (fµ) of h over the set A is

given by

(fµ)(hIA) = (fµ)(IBIA) = (fµ)(IB∩A) = (fµ)(B ∩A) = µ(fIB∩A) = µ(fIBIA) = µ(fhIA).

Next, suppose h is a simple function that can be written as h =
∑m

k=1 akIAk
for some fixed a1, a2, . . . , am ∈ [0,∞]

and A1, A2, . . . , Am ∈ Σ. In that case, the integral with respect to (fµ) of h over the set A is given by

(fµ)(hIA) = (fµ)

(
m∑

k=1

akIAk
IA

)
= (fµ)

(
m∑

k=1

akIAk∩A

)
=

m∑
k=1

ak(fµ)(Ak ∩A) =

m∑
k=1

akµ(fIAk∩A).

By the linearity of the integral with respect to µ,

(fµ)(hIA) = µ

(
m∑

k=1

akfIAk∩A

)
= µ

(
fIA

m∑
k=1

akIAk

)
= µ(fhIA).

Next, suppose h is non-negative. For any n ∈ N, let hn = αn ◦ h, where αn is the n-th staircase function.
Because (hnIA : S → [0,∞] | n ∈ N) is a sequence of Σ-measurable functions such that hnIA ↑ hIA, we know
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that (fµ)(hnIA) ↑ (fµ)(hIA). Furthermore, because (fhnIA : S → [0,∞] | n ∈ N) is a sequence of Σ-measurable
functions such that fhnIA ↑ fhIA, we know that µ(fhnIA) ↑ µ(fhIA). Therefore, the integral with respect to (fµ)
of h over the set A is given by

(fµ)(hIA) = lim
n→∞

(fµ)(hnIA) = lim
n→∞

µ(fhnIA) = µ(fhIA).

Finally, suppose h : S → R. By definition,

(fµ)(|hIA|) = (fµ)((hIA)+) + (fµ)((hIA)−) = (fµ)(h+IA) + (fµ)(h−IA) = µ(fh+IA) + µ(fh−IA)

By the linearity of the integral with respect to µ,

(fµ)(|hIA|) = µ(fh+IA + fh−IA) = µ(fIA(h+ + h−)) = µ(f |h|IA) = µ(|fhIA|).

Therefore, hIA is (fµ)-integrable if and only if fhIA is µ-integrable. In that case,

(fµ)(hIA) = (fµ)((hIA)+)− (fµ)((hIA)−) = (fµ)(h+IA)− (fµ)(h−IA) = µ(fh+IA)− µ(fh−IA)

By the linearity of the integral with respect to µ,

(fµ)(hIA) = µ(fh+IA − fh−IA) = µ(fIA(h+ − h−)) = µ(fhIA).

Therefore, by considering integrals over the set S, if f : S → [0,∞] and h : S → R are Σ-measurable functions,
then h is (fµ)-measurable if and only if fh is µ-measurable, in which case (fµ)(h) = µ(fh).

Consider a measure space (S,Σ, µ), a Σ-measurable function f : S → [0,∞], and the measure λ = (fµ) on
(S,Σ). We say that λ has density f relative to µ, which is denoted by dλ/dµ = f .

For every A ∈ Σ, if µ(A) = 0, we will now show that λ(A) = (fµ)(A) = µ(fIA) = 0. The fact that {fIA ̸= 0} ⊆ A
implies µ({fIA ̸= 0}) ≤ µ(A) = 0. Because fIA and 0 are Σ-measurable functions such that µ({fIA ̸= 0}) = 0, we
know that µ(fIA) = µ(0) = 0.

If µ and λ are σ-finite measures on (S,Σ) such that if µ(A) = 0 then λ(A) = 0 for every A ∈ Σ, the Radon-
Nykodým theorem states that λ = (fµ) for some Σ-measurable function f : S → [0,∞].

6 Expectation
Consider a probability triple (Ω,F ,P). The expectation E(X) of a P-integrable random variable X : Ω → R is
defined as the integral of X with respect to the probability measure P. Therefore,

E(X) = P(X) =

∫
Ω

XdP =

∫
Ω

X(ω)P(dω).

The expectation E(X) of a non-negative random variable X : Ω → [0,∞] is also defined as the integral of X
with respect to the probability measure P.

Consider a sequence of random variables (Xn : Ω → R | n ∈ N) and a random variable X : Ω → R such that

P
(
lim
n→∞

Xn = X
)
= P

(
{ω ∈ Ω | lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

The integration results discussed in the previous section can be restated as follows:

• By the monotone-convergence theorem, if Xn ≥ 0 and Xn ≤ Xn+1 for every n ∈ N, then E(Xn) ↑ E(X).

• By the Fatou lemma, if Xn ≥ 0 for every n ∈ N, then E (X) ≤ lim infn→∞ E[Xn].

• By the dominated convergence theorem, if there is a P-integrable non-negative function Y : Ω → [0,∞] such
that |Xn| ≤ Y for every n ∈ N, then X is P-integrable and limn→∞ E(Xn) = E(X).

• By Scheffé’s lemma, if X and Xn are P-integrable for every n ∈ N, then limn→∞ E(|Xn −X|) = 0 if and only
if limn→∞ E(|Xn|) = E(|X|).
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As a special case of the dominated convergence theorem, the bounded convergence theorem guarantees that if
there is a K ∈ [0,∞) such that |Xn| ≤ K for every n ∈ N, then limn→∞ E(|Xn −X|) = 0. Note that the simple
function Y = K is P-integrable, since P(|Y |) = P(Y ) = P(KIΩ) = KP(Ω) = K. Therefore, X is P-integrable and
limn→∞ E(Xn) = E(X). The dominated convergence theorem also guarantees that limn→∞ E(|Xn −X|) = 0.

The expectation E(X;F ) of the P-integrable random variable X : Ω → R over the set F ∈ F is defined as

E(X;F ) = E(XIF ) = P(X;F ) = P(XIF ) =
∫
F

XdP =

∫
F

X(ω)P(dω).

Consider a random variable Z : Ω → R and a B(R)-measurable non-negative function g : R → [0,∞] such that
a ≤ b implies g(a) ≤ g(b). Recall that the function g(Z) : Ω → [0,∞] defined by g(Z) = g ◦ Z is also a random
variable. For every c ∈ R, Markov’s inequality states that

E(g(Z)) ≥ g(c)P(Z ≥ c),

since g(Z) ≥ g(Z)I{Z≥c} ≥ g(c)I{Z≥c} implies E(g(Z)) ≥ E(g(c)I{Z≥c}) = g(c)P(Z ≥ c).
Consider a non-negative random variable Z : Ω → [0,∞] and let g(c) = max(c, 0). For c ≥ 0, Markov’s inequality

implies that E(Z) ≥ cP(Z ≥ c).
Consider a random variable Z : Ω → R and let g(c) = eθc for some θ > 0. Markov’s inequality implies that

E(eθZ) ≥ eθcP(Z ≥ c).
Consider a non-negative random variable X : Ω → [0,∞]. If E(X) < ∞, then P(X < ∞) = 1. Note that

∞I{X=∞} ≤ X, such that ∞P(X = ∞) ≤ E(X). Therefore, P(X = ∞) > 0 implies E[X] = ∞.
Consider a sequence (Zn : Ω → [0,∞] | n ∈ N) of non-negative random variables. We will now show that

E

(∑
k

Zk

)
=
∑
k

E(Zk).

For any n ∈ N, let Yn =
∑n

k=0 Zk, such that E(Yn) =
∑n

k=0 E(Zk). Clearly, Yn ≥ 0, Yn ≤ Yn+1, and
limn→∞ Yn =

∑
k Zk. Therefore, Yn ↑

∑
k Zk. By the monotone-convergence theorem, E(Yn) ↑ E(

∑
k Zk).

Consider a sequence (Zn : Ω → [0,∞] | n ∈ N) of non-negative random variables such that
∑

k E(Zk) < ∞.
We will now show that

∑
k Zk < ∞ almost surely and limn→∞ Zn = 0 almost surely, where 0 denotes the zero

function. Because E(
∑

k Zk) < ∞, we know that P(
∑

k Zk < ∞) = 1. Because the n-th term test implies that
{
∑

k Zk < ∞} ⊆ {limn→∞ Zn = 0}, we know that 1 = P(
∑

k Zk < ∞) ≤ P(limn→∞ Zn = 0).
Consider a sequence of events (Fn ∈ F | n ∈ N) such that

∑
n P(Fn) < ∞. Let (IFn

| n ∈ N) be the
corresponding sequence of indicator functions. Because E(IFk

) = P(Fk), we know that
∑

n E(IFn) < ∞, which
implies

∑
n IFn < ∞ almost surely. Because

∑
n IFn

(ω) is the number of times that the outcome ω ∈ Ω belongs to
an event in the sequence, we know that the outcome ω almost surely belongs to a finite number of events in the
sequence, which implies that P (lim supn→∞ Fn) = 0. This is the Borel-Cantelli lemma.

A function ϕ : R → R is convex if λϕ(x)+(1−λ)ϕ(y) ≥ ϕ(λx+(1−λ)y), for every x ∈ R, y ∈ R, and λ ∈ [0, 1]. If
ϕ : R → R is convex, it is also continuous and therefore B(R)-measurable. Important examples of convex functions
include x 7→ |x|, x 7→ x2, and x 7→ eθx for θ ∈ R.

If ϕ : R → R is a convex function, for every z ∈ R there is a function g : R → R given by g(x) = ax+ b for every
x ∈ R and some a ∈ R and b ∈ R such that g(z) = ϕ(z) and g(x) ≤ ϕ(x) for every x ∈ R. In other words, for every
point in the domain of a convex function, there is a linear function that never surpasses the convex function such
that the value of the linear function at that point matches the value of the convex function at that point.

Consider a random variable X : Ω → R such that E(X) < ∞ and a convex function ϕ : R → R. Jensen’s
inequality states that E(ϕ(X)) ≥ ϕ(E(X)). We will now show this inequality.

Consider a function g : R → R such that g(E(X)) = ϕ(E(X)) and g(x) = ax + b ≤ ϕ(x) for every x ∈ R and
some a, b ∈ R. Clearly g(X) = g ◦X ≤ ϕ ◦X = ϕ(X). Therefore,

E(ϕ(X)) ≥ E(g(X)) = E[aX + b] = aE(X) + b = g(E(X)) = ϕ(E(X)).

For every p ∈ [1,∞), the set Lp(Ω,F ,P) contains exactly each random variable X : Ω → R such that E(|X|p) <
∞. If X ∈ Lp(Ω,F ,P), the p-norm ∥X∥p of the random variable X is given by ∥X∥p = E(|X|p)1/p.

For every p ∈ [1,∞) and r ∈ [1,∞) such that p ≤ r, we will now show that if Y ∈ Lr(Ω,F ,P) then Y ∈
Lp(Ω,F ,P) and ∥Y ∥p ≤ ∥Y ∥r. For every n ∈ N, consider the function Xn = min(|Y |, n)p. Clearly, 0 ≤ Xn ≤ np,
so 0 ≤ E(|Xn|) = E(Xn) ≤ np. Consider also the convex function ϕ : R → R given by ϕ(x) = |x|r/p such that
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ϕ(Xn) = |Xn|r/p = X
r/p
n . Clearly, 0 ≤ X

r/p
n = min(|Y |, n)r ≤ nr, so 0 ≤ E(|Xr/p

n |) = E(Xr/p
n ) ≤ nr. Using

Jensen’s inequality,

E(Xr/p
n ) = E(ϕ(Xn)) ≥ ϕ(E(Xn)) = |E(Xn)|r/p = E(Xn)

r/p.

Because Xr/p
n ≥ 0 and X

r/p
n ↑ |Y |r, the monotone-convergence theorem guarantees that E(Xr/p

n ) ↑ E(|Y |r). Because
Xn ≥ 0 and Xn ↑ |Y |p, the monotone-convergence theorem guarantees that E(Xn) ↑ E(|Y |p). By taking the limit
of both sides of the previous inequation,

E(|Y |r) = lim
n→∞

E(Xr/p
n ) ≥ lim

n→∞
E(Xn)

r/p =
(
lim

n→∞
E(Xn)

)r/p
= E(|Y |p)r/p.

By taking the r-th root of both sides of the previous inequation,

∞ > E(|Y |r)1/r ≥ E(|Y |p)1/p.

For every p ∈ [1,∞), we will now show that Lp(Ω,F ,P) is a vector space over the field R. First, recall that the set
of all functions from Ω to R is a vector space over the field R when scalar multiplication and addition are performed
pointwise. Because such set includes Lp(Ω,F ,P), it is sufficient to show that Lp(Ω,F ,P) is non-empty and closed
under scalar multiplication and addition. Because 0 : Ω → R is a random variable and E(|0|p) = E(0) = 0, we
know that 0 ∈ Lp(Ω,F ,P). If X ∈ Lp(Ω,F ,P) and c ∈ R, then cX : Ω → R is a random variable and E(|cX|p) =
E(|c|p|X|p) = |c|pE(|X|p), we know that cX ∈ Lp(Ω,F ,P). Finally, if X ∈ Lp(Ω,F ,P) and Y ∈ Lp(Ω,F ,P), then

|X + Y |p ≤ (|X|+ |Y |)p ≤ (2max(|X|, |Y |)p ≤ 2p(|X|p + |Y |p),

which implies X + Y ∈ Lp(Ω,F ,P) since

E(|X + Y |p) ≤ E(2p(|X|p + |Y |p)) = 2pE(|X|p) + 2pE(|Y |p) < ∞.

Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). The Schwarz inequality states that
XY ∈ L1(Ω,F ,P) and E(|XY |) ≤ ∥X∥2∥Y ∥2. We will now show this inequality.

First, consider the case where ∥X∥2 ̸= 0 and ∥Y ∥2 ̸= 0. Let Z = |X|/∥X∥2 and W = |Y |/∥Y ∥2. Clearly,
E(Z2) = E(|X|2)/∥X∥22 = 1. Analogously, E(W 2) = 1. Because (Z −W )2 ≥ 0, we know that

0 ≤ E((Z −W )2) = E(Z2) + E(W 2)− E(2ZW ) = 2− E(2ZW ).

Because the previous inequation implies that E(ZW ) ≤ 1,

1 ≥ E(ZW ) = E(|X||Y |/∥X∥2∥Y ∥2) = E(|XY |)/∥X∥2∥Y ∥2.

Using the fact that X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P),

E(|XY |) ≤ ∥X∥2∥Y ∥2 < ∞.

Finally, consider the case where ∥X∥2 = E(X2)1/2 = 0, which will prove analogous to the case where ∥Y ∥2 = 0.
Because X2 is a non-negative random variable, the fact that E(X2) = 0 implies that P(X2 > 0) = P(X ̸= 0) = 0.
Therefore, P(X = 0) = 1. Because {X = 0} ⊆ {XY = 0}, we know that P(X = 0) ≤ P(XY = 0), which implies
P(XY = 0) = P(|XY | = 0) = 1. Because {|XY | = 0} happens almost surely, we know that E(|XY |) = E(0) = 0.
Therefore, XY ∈ L1(Ω,F ,P) and 0 = E(|XY |) ≤ ∥X∥2∥Y ∥2 = 0.

Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). Because L2(Ω,F ,P) is a vector space
over R, we know that X + Y ∈ L2(Ω,F ,P). We will now show that ∥X + Y ∥2 ≤ ∥X∥2 + ∥Y ∥2.

Since |X + Y | ≤ |X|+ |Y |, we know that |X + Y |2 ≤ (|X|+ |Y |)2 = |X|2 + 2|X||Y |+ |Y |2. Therefore,

E(|X + Y |2) ≤ E(|X|2) + 2E(|X||Y |) + E(|Y |2) = E(|X|2) + 2E(|XY |) + E(|Y |2).

Using the Schwarz inequality,

E(|X + Y |2) ≤ E(|X|2) + 2∥X∥2∥Y ∥2 + E(|Y |2) = (∥X∥2 + ∥Y ∥2)2

By taking the square root of both sides,

∥X + Y ∥2 = E(|X + Y |2)1/2 ≤ ∥X∥2 + ∥Y ∥2.
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Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). Recall that X ∈ L1(Ω,F ,P) and
Y ∈ L1(Ω,F ,P). Let µX = E(X) and µY = E(Y ). Because (X − µX) ∈ L2(Ω,F ,P) and (Y − µY ) ∈ L2(Ω,F ,P),
we know that (X − µX)(Y − µY ) ∈ L1(Ω,F ,P). The covariance Cov(X,Y ) between X and Y is defined by

Cov(X,Y ) = E((X − µX)(Y − µY )) = E(XY )− E(XµY )− E(Y µX) + E(µXµY ) = E(XY )− µXµY .

Consider the random variable X ∈ L2(Ω,F ,P). The variance Var(X) of X is defined by

Var(X) = Cov(X,X) = E((X − µX)2) = E(X2)− µ2
X .

Consider the random variables U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P). The inner product ⟨U, V ⟩ between U and
V is given by ⟨U, V ⟩ = E(UV ). If ∥U∥2 ̸= 0 and ∥V ∥2 ̸= 0, the cosine of the angle θ between U and V is defined as

cos θ =
⟨U, V ⟩

∥U∥2∥V ∥2
.

Because |⟨U, V ⟩| = |E(UV )| ≤ E(|UV |) ≤ ∥U∥2∥V ∥2, we know that | cos θ| ≤ 1.
Consider the random variables U, V,W,Z ∈ L2(Ω,F ,P). Note the following properties of the inner product:

• ⟨U,U⟩ = E(U2) = ∥U∥22.

• ⟨U, V ⟩ = E(UV ) = E(V U) = ⟨V,U⟩.

• ⟨aU, V ⟩ = E(aUV ) = aE(UV ) = a⟨U, V ⟩, for any a ∈ R.

• ⟨U, aV ⟩ = E(UaV ) = aE(UV ) = a⟨U, V ⟩, for any a ∈ R.

• ⟨U + V,W ⟩ = E((U + V )W ) = E(UW + VW ) = ⟨U,W ⟩+ ⟨V,W ⟩.

• ⟨U, V +W ⟩ = E(U(V +W )) = E(UV + UW ) = ⟨U, V ⟩+ ⟨U,W ⟩.

• ⟨U + V,W + Z⟩ = ⟨U,W + Z⟩+ ⟨V,W + Z⟩ = ⟨U,W ⟩+ ⟨U,Z⟩+ ⟨V,W ⟩+ ⟨V,Z⟩.

Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). Let µX = E(X) and µY = E(Y ). The
correlation ρ between X and Y is defined as the cosine of the angle between X −µX and Y −µY , which is given by

ρ =
⟨X − µX , Y − µY ⟩

∥X − µX∥2∥Y − µY ∥2
=

Cov(X,Y )√
Var(X)Var(Y )

.

Consider the random variables U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P). Because U + V ∈ L2(Ω,F ,P),

∥U + V ∥22 = E(|U + V |2) = E((U + V )2) = E(U2) + 2E(UV ) + E(V 2) = ∥U∥22 + ∥V ∥22 + 2⟨U, V ⟩.

When ⟨U, V ⟩ = 0, we say that U and V are orthogonal, which is denoted by U ⊥ V . In that case,

∥U + V ∥22 = ∥U∥22 + ∥V ∥22.

Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). Note that X + Y ∈ L2(Ω,F ,P) and

Var(X + Y ) = E((X + Y )2)− E(X + Y )2 = E(X2 + 2XY + Y 2)− (E(X)2 + 2E(X)E(Y ) + E(Y )2).

By the linearity of expectation and reorganizing terms,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

Therefore, if Cov(X,Y ) = 0, then Var(X + Y ) = Var(X) + Var(Y ).
More generally, if X1, . . . , Xn ∈ L2(Ω,F ,P), then

Var

(
n∑

k=1

Xk

)
=

n∑
k=1

Var(Xk) + 2

n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj).

Consider the random variables U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P). The parallelogram law states that

∥U + V ∥22 + ∥U − V ∥22 = 2∥U∥22 + 2∥V ∥22.
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We will now show this law. Using the relationship between the inner product and the 2-norm,

∥U + V ∥22 + ∥U − V ∥22 = ⟨U + V,U + V ⟩+ ⟨U − V,U − V ⟩.

By the bilinearity of the inner product,

∥U + V ∥22 + ∥U − V ∥22 = ⟨U,U⟩+ ⟨U, V ⟩+ ⟨V,U⟩+ ⟨V, V ⟩+ ⟨U,U⟩+ ⟨U,−V ⟩+ ⟨−V,U⟩+ ⟨−V,−V ⟩.

By cancelling terms,

∥U + V ∥22 + ∥U − V ∥22 = 2⟨U,U⟩+ 2⟨V, V ⟩ = 2∥U∥22 + 2∥V ∥22.

For some p ∈ [1,∞), consider a sequence of random variables (Xn ∈ Lp(Ω,F ,P) | n ∈ N) such that

lim
k→∞

sup
r,s≥k

∥Xr −Xs∥p = 0.

We will now show that there is a random variable X ∈ Lp(Ω,F ,P) such that

lim
n→∞

∥Xn −X∥p = 0.

By definition, for every ϵ > 0 there is an N ∈ N such that k ≥ N implies supr,s≥k ∥Xr −Xs∥p < ϵ. Therefore,
there is a sequence (kn ∈ N | n ∈ N) such that kn+1 ≥ kn and supr,s≥kn

∥Xr −Xs∥p < 1/2n for every n ∈ N.
For every n ∈ N, the monotonicity of the norm implies that

E(|Xkn+1 −Xkn |) = ∥Xkn+1 −Xkn∥1 ≤ ∥Xkn+1 −Xkn∥p <
1

2n
.

Because |Xkn+1
−Xkn

| is a non-negative random variable for every n ∈ N,

∑
n

E(|Xkn+1
−Xkn

|) = E

(∑
n

|Xkn+1
−Xkn

|

)
≤
∑
n

1

2n
< ∞.

Because the expectation above is finite,

P

(∑
n

|Xkn+1
−Xkn

| < ∞

)
= 1.

Suppose
∑

n |Xkn+1(ω)−Xkn(ω)| < ∞ for some ω ∈ Ω. For every ϵ > 0, the Cauchy test guarantees that there
is an N ∈ N such that j > i > N implies∣∣∣∣∣

j∑
n=i

|Xkn+1
(ω)−Xkn

(ω)|

∣∣∣∣∣ =
j∑

n=i

|Xkn+1
(ω)−Xkn

(ω)| < ϵ.

Furthermore, for every j > i,

|Xkj
(ω)−Xki

(ω)| =

∣∣∣∣∣Xkj
(ω)−Xki

(ω) +

j−1∑
n=i+1

Xkn
(ω)−

j−1∑
n=i+1

Xkn
(ω)

∣∣∣∣∣ =
∣∣∣∣∣

j∑
n=i+1

Xkn
(ω)−

j−1∑
n=i

Xkn
(ω)

∣∣∣∣∣ .
By shifting indices and using the triangle inequality, for j > i > N ,

|Xkj (ω)−Xki(ω)| =

∣∣∣∣∣
j−1∑
n=i

Xkn+1(ω)−Xkn(ω)

∣∣∣∣∣ ≤
j−1∑
n=i

∣∣Xkn+1(ω)−Xkn(ω)
∣∣ < ϵ.

For j = i > N , note that |Xkj
(ω) −Xki

(ω)| = 0 < ϵ. Therefore, for every ϵ > 0 there is an N ∈ N such that
j > N and i > N implies |Xkj (ω)−Xki(ω)| < ϵ, such that (Xkn(ω) | n ∈ N) is a Cauchy sequence of real numbers.

Because every Cauchy sequence of real numbers converges to a real number, consider the random variable
X = lim supn→∞ Xkn

such that limn→∞ Xkn
(ω) = lim supn→∞ Xkn

(ω) = X(ω).
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Since {
∑

n |Xkn+1 −Xkn | < ∞} ⊆ {limn→∞ Xkn = X},

P
(
lim
n→∞

Xkn
= X

)
≥ P

(∑
n

|Xkn+1
−Xkn

| < ∞

)
= 1.

Suppose limn→∞ Xkn
(ω) = X(ω) for some ω ∈ Ω. For every r ∈ N,∣∣∣ lim

n→∞
Xkn(ω)−Xr(ω)

∣∣∣p = lim
n→∞

|Xkn(ω)−Xr(ω)|p = |X(ω)−Xr(ω)|p.

Because {limn→∞ Xkn = X} ⊆ {limn→∞ |Xkn −Xr|p = |X −Xr|p} for every r ∈ N,

P
(
lim

n→∞
|Xkn −Xr|p = |X −Xr|p

)
≥ P

(
lim
n→∞

Xkn = X
)
= 1.

Because |Xkn −Xr|p ≥ 0 for every n ∈ N, by the Fatou lemma,

E(|X −Xr|p) ≤ lim inf
n→∞

E(|Xkn
−Xr|p).

For any t ∈ N, suppose r ≥ kt and recall that kn ≥ kt whenever n ≥ t. In that case,

E(|Xkn −Xr|p) = ∥Xkn −Xr∥pp <
1

2tp
.

For any ϵ > 0, choose t ∈ N such that 1/2tp < ϵ. In that case, for any r ≥ kt,

E(|X −Xr|p) ≤ lim inf
n→∞

E(|Xkn
−Xr|p) ≤

1

2tp
< ϵ.

Because Lp(Ω,F ,P) is a vector space over the field R, the fact that (X−Xr) ∈ Lp(Ω,F ,P) and Xr ∈ Lp(Ω,F ,P)
implies that X ∈ Lp(Ω,F ,P). The previous inequality also shows that

lim
r→∞

E(|X −Xr|p) = lim
r→∞

∥X −Xr∥pp = 0.

A vector space K ⊆ Lp(Ω,F ,P) is said to be complete if for every sequence (Vn ∈ K | n ∈ N) such that

lim
k→∞

sup
r,s≥k

∥Vr − Vs∥p = 0

there is a V ∈ K such that

lim
n→∞

∥Vn − V ∥p = 0.

We will now show that if the vector space K ⊆ L2(Ω,F ,P) is complete, then for every X ∈ L2(Ω,F ,P) there is
a so-called version Y ∈ K of the orthogonal projection of X onto K such that ∥X −Y ∥2 = inf{∥X −W∥2 | W ∈ K}
and X − Y ⊥ Z for every Z ∈ K. Furthermore, if Y and Ỹ are versions of the orthogonal projection of X onto K,
then P(Y = Ỹ ) = 1.

For some X ∈ L2(Ω,F ,P), let ∆ = inf{∥X −W∥2 | W ∈ K}. First, we will show that it is possible to choose a
sequence (Yn ∈ K | n ∈ N) such that limn→∞ ∥X − Yn∥2 = ∆. Recall that for every ϵ > 0 there is a W ∈ K such
that ∥X −W∥2 < ∆+ ϵ. Choose Yn such that ∥X − Yn∥ < ∆+ 1

n+1 . For every ϵ > 0, there is an N ∈ N such that
n ≥ N implies that ∥X − Yn∥2 < ∆+ ϵ, which is equivalent to |∥X − Yn∥2 −∆| < ϵ since ∆ ≤ ∥X − Yn∥2.

Let U = X − 1
2 (Yr + Ys) and V = 1

2 (Yr − Ys) such that U + V = X − Ys and U − V = X − Yr. Because
U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P), the parallelogram law guarantees that

∥X − Ys∥22 + ∥X − Yr∥22 = 2

∥∥∥∥X − 1

2
(Yr + Ys)

∥∥∥∥2
2

+ 2

∥∥∥∥12(Yr − Ys)

∥∥∥∥2
2

.

Therefore,

2

∥∥∥∥12(Yr − Ys)

∥∥∥∥2
2

= 2

〈
1

2
(Yr − Ys),

1

2
(Yr − Ys)

〉
= ∥X − Ys∥22 + ∥X − Yr∥22 − 2

∥∥∥∥X − 1

2
(Yr + Ys)

∥∥∥∥2
2

.
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Using properties of the inner product and reorganizing terms,

∥Yr − Ys∥22 = 2∥X − Ys∥22 + 2∥X − Yr∥22 − 4

∥∥∥∥X − 1

2
(Yr + Ys)

∥∥∥∥2
2

.

Because (Yr + Ys)/2 ∈ K, we know that ∥X − (Yr + Ys)/2∥22 ≥ ∆2. Therefore,

∥Yr − Ys∥22 ≤ 2∥X − Ys∥22 + 2∥X − Yr∥22 − 4∆2.

For every ϵ > 0, since limn→∞ ∥X − Yn∥22 = ∆2, there is a k such that n ≥ k implies |∥X − Yn∥22 −∆2| < ϵ
4 ,

which is equivalent to ∥X − Yn∥22 < ϵ
4 +∆2. Therefore, whenever r, s ≥ k,

∥Yr − Ys∥22 ≤ 2∥X − Ys∥22 + 2∥X − Yr∥22 − 4∆2 < 2
( ϵ
4
+ ∆2

)
+ 2

( ϵ
4
+ ∆2

)
− 4∆2 = ϵ,

which implies

lim
k→∞

sup
r,s≥k

∥Yr − Ys∥2 = 0.

Because K is complete, there is an Y ∈ K such that

lim
n→∞

∥Yn − Y ∥2 = 0.

Let U = X − Yn and V = Yn − Y such that U + V = X − Y . Because U ∈ L2(Ω,F ,P) and V ∈ L2(Ω,F ,P),

∆ ≤ ∥X − Y ∥2 ≤ ∥X − Yn∥2 + ∥Yn − Y ∥2.

Using the squeeze theorem when n → ∞ shows that ∥X − Y ∥2 = ∆ = inf{∥X −W∥2 | W ∈ K}.
For some Z ∈ K and t ∈ R, let U = X−Y and V = −tZ such that U+V = X−Y −tZ. Because U ∈ L2(Ω,F ,P)

and V ∈ L2(Ω,F ,P) and considering the bilinearity of the inner product,

∥X − Y − tZ∥22 = ∥X − Y ∥22 + ∥ − tZ∥22 + 2⟨X − Y,−tZ⟩ = ∥X − Y ∥22 + t2∥Z∥22 − 2t⟨X − Y,Z⟩.

Because (Y + tZ) ∈ K, we know that ∥X − Y ∥22 ≤ ∥X − (Y + tZ)∥22. Therefore, for every Z ∈ K and t ∈ R,

t2∥Z∥22 ≥ 2t⟨X − Y, Z⟩.

We will now show that the previous inequation can only be true for every Z ∈ K and t ∈ R if ⟨X − Y,Z⟩ = 0
for every Z ∈ K, which implies X − Y ⊥ Z for every Z ∈ K.

In order to find a contradiction, suppose that ⟨X − Y,Z⟩ ̸= 0 for some Z ∈ K. Because (X − Y ) ∈ L2(Ω,F ,P)
and Z ∈ L2(Ω,F ,P), the Schwarz inequality implies that

∥X − Y ∥2∥Z∥2 ≥ E(|(X − Y )Z|) ≥ |E((X − Y )Z)| ≥ 0.

Clearly, |E((X−Y )Z)| = 0 when ∥Z∥2 = 0, which implies E((X−Y )Z) = ⟨X−Y, Z⟩ = 0. Therefore, we can suppose
that ∥Z∥2 > 0. If ⟨X −Y, Z⟩ > 0, then choose a t ∈ R such that 0 < t < 2⟨X −Y, Z⟩/∥Z∥22. If ⟨X −Y, Z⟩ < 0, then
choose a t ∈ R such that 2⟨X−Y, Z⟩/∥Z∥22 < t < 0. In either case, t2∥Z∥22 < 2t⟨X−Y,Z⟩, which is a contradiction.

Suppose that Y and Ỹ are versions of the orthogonal projection of X onto K. Because (Ỹ − Y ) ∈ K,

⟨X − Y, Ỹ − Y ⟩ = ⟨X − Ỹ , Ỹ − Y ⟩ = 0.

By the bilinearity of the inner product,

⟨X, Ỹ − Y ⟩+ ⟨−Y, Ỹ − Y ⟩ − ⟨X, Ỹ − Y ⟩ − ⟨−Ỹ , Ỹ − Y ⟩ = ⟨−Y, Ỹ − Y ⟩ − ⟨−Ỹ , Ỹ − Y ⟩ = ⟨Ỹ − Y, Ỹ − Y ⟩ = 0

Because ⟨Ỹ − Y, Ỹ − Y ⟩ = E((Ỹ − Y )2) = 0 and (Ỹ − Y )2 is a non-negative random variable, we know that
P((Ỹ − Y )2 ̸= 0) = 0, which implies that P(Ỹ = Y ) = 1.

Consider a probability triple (Ω,F ,P) and a random variable X : Ω → R. Recall that (R,B(R),ΛX) is also a
probability triple, where ΛX : B(R) → [0, 1] is the law of X given by ΛX(B) = P(X−1(B)) for every B ∈ B(R). We
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will now show that if h : R → R is a Borel function, then (h ◦X) ∈ L1(Ω,F ,P) if and only if h ∈ L1(R,B(R),ΛX).
Furthermore, in that case, ∫

Ω

(h ◦X) dP = P(h ◦X) = ΛX(h) =

∫
R
h dΛX .

First, suppose h = IB for some B ∈ B(R). For every ω ∈ Ω,

(h ◦X)(ω) = IB(X(ω)) = IX−1(B)(ω) =

{
1, if X(ω) ∈ B,
0, if X(ω) /∈ B.

Therefore, P(h◦X) = P(IX−1(B)) = P(X−1(B)) = ΛX(B) = ΛX(IB) = ΛX(h) < ∞. Because h is B(R)-measurable
and (h ◦X) is F-measurable, this step is complete.

Next, suppose h is a simple function that can be written as h =
∑m

k=1 akIAk
for some fixed a1, a2, . . . , am ∈ [0,∞]

and A1, A2, . . . , Am ∈ B(R). For every ω ∈ Ω,

(h ◦X)(ω) =

m∑
k=1

akIAk
(X(ω)) =

m∑
k=1

akIX−1(Ak)(ω).

Therefore, P(h ◦ X) =
∑m

k=1 akP(X−1(Ak)) =
∑m

k=1 akΛX(Ak) = ΛX(
∑m

k=1 akIAk
) = ΛX(h). Because h is

B(R)-measurable and (h ◦X) is F-measurable, this step is complete since ΛX(h) < ∞ if and only if P(h ◦X) < ∞.
Next, suppose h is a non-negative Borel function. For any n ∈ N, consider the simple function hn = αn◦h, where

αn is the n-th staircase function. Because hn ↑ h, the monotone-convergence theorem implies that ΛX(hn) ↑ ΛX(h).
Similarly, consider the simple function αn◦(h◦X) = (αn◦h)◦X = hn◦X. Because (hn◦X) ↑ (h◦X), the monotone-
convergence theorem implies that P(hn◦X) ↑ P(h◦X). Because our previous result implies that P(hn◦X) = ΛX(hn),
the limit when n → ∞ shows that P(h ◦X) = ΛX(h). Because h is B(R)-measurable and (h ◦X) is F-measurable,
this step is complete since ΛX(h) < ∞ if and only if P(h ◦X) < ∞.

Finally, suppose h is a Borel function. Recall that h = h+ − h−, where h+ and h− are non-negative Borel
functions. Therefore, if either P(|h ◦X|) < ∞ or ΛX(|h|) < ∞, then

P(h ◦X) = P((h ◦X)+)− P((h ◦X)−) = P(h+ ◦X)− P(h− ◦X) = ΛX(h+)− ΛX(h−) = ΛX(h) < ∞,

where the second equality follows from associativity. Because h is B(R)-measurable and (h ◦X) is F-measurable,
this completes the proof, since P(|h ◦X|) = ΛX(|h|) = ∞ implies (h ◦X) /∈ L1(Ω,F ,P) and h /∈ L1(R,B(R),ΛX).

Consider a probability triple (Ω,F ,P). A random variable X : Ω → R has a probability density function fX if
fX : R → [0,∞] is a Borel function such that the law ΛX of X is given by

ΛX(B) = P(X−1(B)) = Leb(fX ;B) = Leb(fXIB) =
∫
B

fX dLeb,

for every B ∈ B(R), where Leb is the Lebesgue measure on the measurable space (R,B(R)).
In that case, since (R,B(R),Leb) is a measure space and fX : R → [0,∞] is B(R)-measurable, recall that the

measure (fX Leb) on the measurable space (R,B(R)) is given by (fX Leb)(B) = Leb(fX ;B) for every B ∈ B(R),
so that ΛX = (fX Leb). Therefore, using the terminology introduced in the previous section, the law ΛX of X has
density fX relative to the Lebesgue measure Leb, which is denoted by

dΛX

dLeb
= fX .

Consider a random variable X : Ω → R that has a probability density function fX : R → [0,∞]. Furthermore,
consider a Borel function gX : R → [0,∞] such that Leb({fX ̸= gX}) = 0. Because these two functions are non-
negative and Leb({fXIB ̸= gXIB}) = 0, we know that Leb(fXIB) = Leb(gXIB), which implies that the random
variable X also has a probability density function gX .

Consider a measure space (S,Σ, µ), a Σ-measurable function f : S → [0,∞], and the measure λ = (fµ) on
(S,Σ). Recall that we say that λ has density f relative to µ, which is denoted by dλ/dµ = f . We will now show
that if h : S → R is a Σ-measurable function, then h ∈ L1(S,Σ, λ) if and only if hf ∈ L1(S,Σ, µ). Furthermore, in
that case, ∫

S

h dλ = λ(h) = µ(hf) =

∫
S

hf dµ.
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First, note that if h is Σ-measurable then hf is also Σ-measurable.
Next, let h = IA for some A ∈ Σ. In that case, µ(hf) = µ(IAf) = µ(f ;A) = λ(A) = λ(IA) = λ(h). This step is

complete since µ(|hf |) < ∞ if and only if λ(|h|) < ∞.
Next, suppose h is a simple function that can be written as h =

∑m
k=1 akIAk

for some fixed a1, a2, . . . , am ∈ [0,∞]
and A1, A2, . . . , Am ∈ Σ. By the linearity of the integral and considering the previous step,

µ(hf) = µ

(
m∑

k=1

akIAk
f

)
=

m∑
k=1

akµ(IAk
f) =

m∑
k=1

akλ(IAk
) = λ

(
m∑

k=1

akIAk

)
= λ(h).

This step is complete since µ(|hf |) < ∞ if and only if λ(|h|) < ∞.
Next, suppose h is a non-negative Σ-measurable function. For any n ∈ N, consider the simple function hn =

αn ◦ h, where αn is the n-th staircase function. Because hn ↑ h, the monotone-convergence theorem implies that
λ(hn) ↑ λ(h). Similarly, because hnf ↑ hf , the monotone-convergence theorem implies that µ(hnf) ↑ µ(hf).
Because our previous result implies that λ(hn) = µ(hnf), the limit when n → ∞ shows that µ(hf) = λ(h). This
step is complete since µ(|hf |) < ∞ if and only if λ(|h|) < ∞.

Finally, suppose h : S → R is a Σ-measurable function. Recall that h = h+ − h−, where h+ and h− are
non-negative Σ-measurable functions. If either λ(|h|) < ∞ or µ(|hf |) < ∞, then

µ(hf) = µ((h+ − h−)f) = µ(h+f)− µ(h−f) = λ(h+)− λ(h−) = λ(h) < ∞.

Since λ(|h|) = µ(|hf |) = ∞ implies h /∈ L1(S,Σ, λ) and hf /∈ L1(S,Σ, µ), the proof is complete.
Consider a probability triple (Ω,F ,P) and a random variable X : Ω → R with a probability density function

fX : R → [0,∞]. Recall that the law ΛX = (fX Leb) of X has density fX relative to Leb, which is denoted by
dΛX/dLeb = fX . If h : R → R is a Borel function, the fact that (R,B(R),Leb) is a measure space implies that
h ∈ L1(R,B(R),ΛX) if and only if hfX ∈ L1(R,B(R),Leb). Furthermore, in that case,∫

R
h dΛX = ΛX(h) = Leb(hfX) =

∫
R
hfX dLeb .

Consider a measure space (S,Σ, µ). For every p ∈ [1,∞), the set Lp(S,Σ, µ) contains exactly each Σ-measurable
function f : S → R such that µ(|f |p) < ∞. If f ∈ Lp(S,Σ, µ), the p-norm ∥f∥p of the function f is given by
∥f∥p = µ(|f |p)1/p.

Suppose that p > 1 and p−1 + q−1 = 1. Furthermore, suppose f, g ∈ Lp(S,Σ, µ) and h ∈ Lq(S,Σ, µ). Hölder’s
inequality states that fh ∈ L1(S,Σ, µ) and µ(|fh|) ≤ ∥f∥p∥h∥q. Minkowski’s inequality states that ∥f + g∥p ≤
∥f∥p + ∥g∥p. We will now show these inequalities.

First, note that fh ∈ L1(S,Σ, µ) and µ(|fh|) ≤ ∥f∥p∥h∥q if and only if |f ||h| ∈ L1(S,Σ, µ) and µ(||f ||h||) ≤
∥|f |∥p∥|h|∥q. Therefore, we only need to consider the case where f and h are non-negative. In that case, if µ(fp) = 0,
then 0 = µ({fp > 0}) = µ({f ̸= 0}) ≥ µ({fh ̸= 0}) and µ(fh) = 0, so that Hölder’s inequality is trivial.

Consider the case where f and h are non-negative and 0 < µ(fp) < ∞. Let P : Σ → [0, 1] be given by

P(A) =
(fpµ)(A)

µ(fp)
=

µ(fp;A)

µ(fp)
=

µ(fpIA)
µ(fp)

= µ

(
fp

µ(fp)
IA
)

= µ

(
fp

µ(fp)
;A

)
.

The function P is a probability measure on (S,Σ). Clearly, P(S) = 1 and P(∅) = 0. Because (fpµ) is a measure
on (S,Σ), for any sequence (An ∈ Σ | n ∈ N) such that An ∩Am = ∅ for n ̸= m,

P

(⋃
n

An

)
=

(fpµ)(∪nAn)

µ(fp)
=

∑
n(f

pµ)(An)

µ(fp)
=
∑
n

(fpµ)(An)

µ(fp)
=
∑
n

P(An).

Note that the probability measure P has density fp/µ(fp) relative to µ, so that dP/dµ = fp/µ(fp). Therefore,
if v : S → R is a Σ-measurable function, then v ∈ L1(S,Σ,P) if and only if vfp/µ(fp) ∈ L1(S,Σ, µ). In that case,∫

S

v dP = P(v) = µ

(
vfp

µ(fp)

)
=

∫
S

vfp

µ(fp)
dµ.

Consider the Σ-measurable function u : S → [0,∞] given by

u(s) =

{
h(s)

f(s)p−1 , if f(s) > 0,

0, if f(s) = 0.
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By inspecting the pointwise definition of ufp,

P(u) = µ

(
ufp

µ(fp)

)
=

µ (ufp)

µ(fp)
=

µ(hf)

µ(fp)
.

Similarly, by inspecting the pointwise definition of uqfp and using the fact that q(p− 1) = p,

P(uq) = µ

(
uqfp

µ(fp)

)
=

µ (uqfp)

µ(fp)
=

µ(hqI{f>0})

µ(fp)
.

Suppose P(u) = ∞. In that case, P(u) = P(uI{u<1})+P(uI{u≥1}) = ∞. The fact that P(uI{u<1}) ≤ P(I{u<1}) =
P({u < 1}) ≤ 1 implies that P(uI{u≥1}) = ∞. Consequently, P(uq) ≥ P(uqI{u≥1}) ≥ P(uI{u≥1}) = ∞, so that
P(uq) ≥ P(u)q. In contrast, suppose P(u) < ∞. Consider the convex function ϕ : R → R given by ϕ(x) = |x|q.
Jensen’s inequality also guarantees that P(uq) ≥ P(u)q. Therefore,

µ(hqI{f>0})

µ(fp)
≥ µ(hf)q

µ(fp)q
.

By multiplying both sides of the previous inequality by µ(fp)q,

µ(hqI{f>0})
µ(fp)q

µ(fp)
= µ(hqI{f>0})µ(f

p)q−1 ≥ µ(hf)q.

Because µ(hq) ≥ µ(hqI{f>0}),

µ(hq)µ(fp)q−1 ≥ µ(hf)q.

From the definition of norm and using the fact that p(q − 1) = q,

∥h∥qq∥f∥qp ≥ µ(hf)q,

which completes the proof of Hölder’s inequality.
In order to show Minkowski’s inequality, recall that |f + g| ≤ |f |+ |g|. Therefore,

|f + g|p = |f + g||f + g|p−1 ≤ |f ||f + g|p−1 + |g||f + g|p−1.

By integrating both sides of the previous inequality with respect to µ and employing Hölder’s inequality,

µ(|f + g|p) ≤ µ(|f ||f + g|p−1) + µ(|g||f + g|p−1) ≤ ∥f∥p∥|f + g|p−1∥q + ∥g∥p∥|f + g|p−1∥q.

Note that ∥|f + g|p−1∥q = µ(||f + g|p−1|q)1/q = µ(|f + g|p)1/q < ∞ because q(p− 1) = p. Therefore,

µ(|f + g|p) ≤ (∥f∥p + ∥g∥p)µ(|f + g|p)1/q.

By dividing both sides of the previous inequality by µ(|f + g|p)1/q and using the fact that p−1 = 1− q−1,

∥f + g∥p = µ(|f + g|p)1/p ≤ ∥f∥p + ∥g∥p.

7 Strong law
Consider a probability triple (Ω,F ,P), a random variable X ∈ L1(Ω,F ,P) and a random variable Y ∈ L1(Ω,F ,P).
We will now show that if X and Y are independent, then XY ∈ L1(Ω,F ,P) and E(XY ) = E(X)E(Y ).

First, suppose that X and Y are non-negative and let αn denote the n-th staircase function. For any n ∈
N, consider the simple function Xn = αn ◦ X =

∑mx

kx=1 akx
IAkx

, where a1, . . . , amx
∈ [0, n] are distinct and

A1, . . . , Amx ∈ F partition Ω. Similarly, consider the simple function Yn = αn ◦ Y =
∑my

ky=1 bky IBky
, where

b1, . . . , bmy
∈ [0, n] are distinct and B1, . . . , Bmy

∈ F partition Ω. In that case,

E(Xn) = E

(
mx∑

kx=1

akxIAkx

)
=

mx∑
kx=1

akx
P(Akx

),

E(Yn) = E

 my∑
ky=1

bky
IBky

 =

my∑
ky=1

bky
P(Bky

).
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Because Xn ↑ X, the monotone-convergence theorem guarantees that E(Xn) ↑ E(X). Similarly, because Yn ↑ Y ,
the monotone-convergence theorem guarantees that E(Yn) ↑ E(Y ). Because E(X) < ∞ and E(Y ) < ∞, we also
know that E(Xn)E(Yn) ↑ E(X)E(Y ). By distributing terms and using the fact that IAkx

IBky
= IAkx∩Bky

,

E(XnYn) = E

( mx∑
kx=1

akx
IAkx

) my∑
ky=1

bky
IBky

 = E

 mx∑
kx=1

my∑
ky=1

akx
bky

IAkx∩Bky

 =

mx∑
kx=1

my∑
ky=1

akx
bky

P(Akx
∩Bky

).

Recall that if f : R → R is a Borel function and Z : Ω → R is a random variable, then

σ(f ◦ Z) = {(f ◦ Z)−1(B) | B ∈ B(R)} = {Z−1(f−1(B)) | B ∈ B(R)} ⊆ {Z−1(A) | A ∈ B(R)} = σ(Z).

Recall that X and Y are independent if and only if P(A ∩ B) = P(A)P(B) for every A ∈ σ(X) and B ∈ σ(Y ).
Therefore, Xn and Yn are also independent. Because Akx = X−1

n ({akx}), we know that Akx ∈ σ(Xn). Because
Bky = Y −1

n ({bky}), we know that Bky ∈ σ(Yn). Therefore,

E(XnYn) =

mx∑
kx=1

my∑
ky=1

akxbkyP(Akx)P(Bky ) =

(
mx∑

kx=1

akxP(Akx)

) my∑
ky=1

bkyP(Bky )

 = E(Xn)E(Yn).

Since Xn ↑ X and Yn ↑ Y imply XnYn ↑ XY , the monotone-convergence theorem guarantees that E(XnYn) ↑
E(XY ). Since E(XnYn) = E(Xn)E(Yn), taking the limit when n → ∞ shows that E(XY ) = E(X)E(Y ) < ∞,
which completes the proof when X and Y are non-negative.

Finally, let X = X+ −X−, where X+ ∈ L1(Ω,F ,P) and X− ∈ L1(Ω,F ,P) are non-negative. Analogously, let
Y = Y + − Y −. Because the absolute value function is Borel, we know that XY ∈ L1(Ω,F ,P). Therefore,

E(XY ) = E
(
(X+ −X−)(Y + − Y −)

)
= E(X+Y +)− E(X+Y −)− E(X−Y +) + E(X−Y −).

Since X and Y are independent, each pair of variables inside an expectation above is independent. Therefore,

E(XY ) = E(X+)E(Y +)− E(X+)E(Y −)− E(X−)E(Y +) + E(X−)E(Y −) = (E(X+)− E(X−))(E(Y +)− E(Y −)),

which completes the proof.
Consider the random variables X ∈ L2(Ω,F ,P) and Y ∈ L2(Ω,F ,P). If X and Y are independent, the previous

result guarantees that Cov(X,Y ) = 0 and Var(X + Y ) = Var(X) + Var(Y ).
Consider a probability triple (Ω,F ,P), a random variable X : Ω → R, and the random variables Y1, . . . , Yn,

where n ∈ N+. Suppose that X,Y1, . . . , Yn are independent. We will now show that if f : Rn → R is a Borel
function and Z : Ω → R is a random variable given by Z(ω) = f(Y1(ω), . . . , Yn(ω)), then X and Z are independent.

First, recall that a previous result establishes that Z is σ({Y1, . . . , Yn})-measurable, so that

σ(Z) ⊆ σ({Y1, . . . , Yn}) = σ({Y −1
i (B) | i ∈ {1, . . . , n}, B ∈ B(R)}) = σ

(
n⋃

i=1

σ(Yi)

)
.

Therefore, if σ(X) and σ({Y1, . . . , Yn}) are independent, then X and Z are independent.
Consider the set I = {∩n

i=1Ai | (A1, . . . , An) ∈ σ(Y1)× · · · × σ(Yn)}. If B ∈ I and C ∈ I, then B = ∩n
i=1Ai and

C = ∩n
i=1A

′
i, where Ai ∈ σ(Yi) and A′

i ∈ σ(Yi) for every i ∈ {1, . . . , n}. Because

B ∩ C =

(
n⋂

i=1

Ai

)
∩

(
n⋂

i=1

A′
i

)
=

n⋂
i=1

(Ai ∩A′
i)

and (Ai ∩A′
i) ∈ σ(Yi) for every i ∈ {1, . . . , n}, we know that (B ∩ C) ∈ I. Therefore, I is a π-system on Ω.

Let J = σ(X) and note that J is also a π-system on Ω. Consider a set (∩n
i=1Ai) ∈ I, where Ai ∈ σ(Yi) for

every i ∈ {1, . . . , n}, and a set B ∈ J . Since X,Y1, . . . , Yn are independent,

P

((
n⋂

i=1

Ai

)
∩B

)
=

(
n∏

i=1

P(Ai)

)
P(B) = P

(
n⋂

i=1

Ai

)
P(B),

which implies that I and J are independent. Because σ(I) and σ(J ) are then independent from a previous result
and σ(J ) = σ(X), the proof will be complete if σ(I) = σ({Y1, . . . , Yn}), which we will now show.
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Note that Ω ∈ σ(Yi) for every i ∈ {1, . . . , n}, which implies σ(Yi) ⊆ I for every i ∈ {1, . . . , n}. Therefore,
∪n
i=1σ(Yi) ⊆ I and σ(∪n

i=1σ(Yi)) = σ({Y1, . . . , Yn}) ⊆ σ(I).
Consider a set (∩n

i=1Ai) ∈ I, where Ai ∈ σ(Yi) for every i ∈ {1, . . . , n}. Clearly, Ai ∈ ∪n
j=1σ(Yj). Because

σ(∪n
j=1σ(Yj)) = σ({Y1, . . . , Yn}) is a σ-algebra, we know that (∩n

i=1Ai) ∈ σ({Y1, . . . , Yn}), which implies I ⊆
σ({Y1, . . . , Yn}) and σ(I) ⊆ σ({Y1, . . . , Yn}).

Consider a probability triple (Ω,F ,P) and a sequence of independent random variables (Xk : Ω → R | k ∈ N+).
Furthermore, suppose E(Xk) = 0 and E(X4

k) ≤ K for some K ∈ [0,∞), for every k ∈ N+. The strong law of large
numbers for a finite fourth moment guarantees that

P

(
lim
n→∞

1

n

n∑
k=1

Xk = 0

)
= 1.

We will now prove this law. Consider the random variable Sn =
∑n

k=1 Xk. From the multinomial theorem,

S4
n =

(
n∑

k=1

Xk

)4

=
∑

(k1,...,kn)∈I
(n)
4

4!

k1! · · · kn!

n∏
t=1

Xkt
t ,

where I(n)p = {(k1, . . . , kn) | ki ∈ {0, . . . , p} for every i ∈ {1, . . . , n} and
∑

i ki = p}. By the linearity of expectation,

E(S4
n) =

∑
(k1,...,kn)∈I

(n)
4

4!

k1! · · · kn!
E

(
n∏

t=1

Xkt
t

)
.

From the restrictions imposed on (k1, . . . , kn) ∈ I
(n)
4 , the expectation E

(∏n
t=1 X

kt
t

)
can be written as either

E(X4
i ), E(X3

i Xj), E(X2
i X

2
j ), E(X2

i XjXk), or E(XiXjXkXl), where i, j, k, l ∈ {1, . . . , n} are distinct indices.
Consider the expectation E(X3

i Xj). Because Xi and Xj are independent, X3
i and Xj are independent. By the

monotonicity of the norm, X3
i ∈ L1(Ω,F ,P) and Xj ∈ L1(Ω,F ,P). Therefore, E(X3

i Xj) = E(X3
i )E(Xj) = 0.

Consider the expectation E(X2
i XjXk). Because X2

i , Xj , Xk are independent, X2
i Xj and Xk are independent. By

the monotonicity of the norm, X2
i ∈ L1(Ω,F ,P), Xj ∈ L1(Ω,F ,P), and Xk ∈ L1(Ω,F ,P). Due to independence,

X2
i Xj ∈ L1(Ω,F ,P). Therefore, E(X2

i XjXk) = E(X2
i Xj)E(Xk) = 0.

Consider the expectation E(XiXjXkXl). Because Xi, Xj , Xk, Xl are independent, XiXjXk and Xl are in-
dependent. By the monotonicity of the norm, Xi, Xj , Xk, Xl ∈ L1(Ω,F ,P). Because Xi and Xj are inde-
pendent, XiXj ∈ L1(Ω,F ,P). Because XiXj and Xk are independent, XiXjXk ∈ L1(Ω,F ,P). Therefore,
E(XiXjXkXl) = E(XiXjXk)E(Xl) = 0.

These observations allow rewriting the expectation E(S4
n) as

E(S4
n) =

n∑
i=1

E(X4
i ) + 6

n−1∑
i=1

n∑
j=i+1

E(X2
i X

2
j ).

For every k ∈ N+, recall that ∥Xk∥2 = E(X2
k)

1/2 ≤ E(X4
k)

1/4 = ∥Xk∥4. Therefore, E(X2
k) ≤ E(X4

k)
1/2 ≤ K1/2.

For every i ̸= j, X2
i and X2

j are independent and X2
i , X

2
j ∈ L1(Ω,F ,P) by the monotonicity of the norm. Therefore,

E(X2
i X

2
j ) = E(X2

i )E(X2
j ) ≤ E(X4

i )
1/2E(X4

j )
1/2 ≤ K.

Consequently,

E(S4
n) ≤

n∑
i=1

K + 6

n−1∑
i=1

n∑
j=i+1

K = nK + 3n(n− 1)K = K(3n2 − 2n) ≤ 3Kn2.

Because E(S4
n/n

4) ≤ 3K/n2 for every n ∈ N+,

k∑
n=1

E
(
S4
n

n4

)
≤ 3K

k∑
n=1

1

n2
.
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Because the summation on the right of the inequality above converges to a real number when k → ∞,∑
n

E
(
S4
n

n4

)
< ∞.

Since S4
n/n

4 is a non-negative random variable for every n ∈ N+, a previous result guarantees that

P
(

lim
n→∞

S4
n

n4
= 0

)
= P

(
lim

n→∞

Sn

n
= 0

)
= P

(
lim
n→∞

1

n

n∑
k=1

Xk = 0

)
= 1.

Consider a probability triple (Ω,F ,P) and a sequence of independent random variables (Xk : Ω → R | k ∈ N+).
Furthermore, suppose E(Xk) = µ and E(X4

k) ≤ K for some µ ∈ R and K ∈ [0,∞), for every k ∈ N+. As a corollary,
the strong law of large numbers for a finite fourth moment guarantees that

P

(
lim
n→∞

1

n

n∑
k=1

Xk = µ

)
= 1.

We will now show this corollary. For every k ∈ N+, let Yk = Xk − µ. By the monotonicity of the norm,
Xk ∈ L1(Ω,F ,P), so that E(Yk) = E(Xk)−µ = 0. Furthermore, (Yk : Ω → R | k ∈ N+) is a sequence of independent
random variables, since σ(Yk) ⊆ σ(Xk). Using Minkowski’s inequality and the fact that Xk ∈ L4(Ω,F ,P),

∞ > ∥Xk∥4 + |µ| = ∥Xk∥4 + ∥ − µIΩ∥4 ≥ ∥Xk − µIΩ∥4 = ∥Xk − µ∥4 = ∥Yk∥4.

Therefore, E(Y 4
k ) ≤ K ′ for some K ′ ∈ [0,∞). Using the strong law of large numbers for a finite fourth moment,

P

(
lim
n→∞

1

n

n∑
k=1

Yk = 0

)
= P

(
lim

n→∞

1

n

n∑
k=1

Xk = µ

)
= 1

Consider a random variable X ∈ L2(Ω,F ,P) and let µ = E(X). For c ≥ 0, Chebyshev’s inequality states that

Var(X) = E(|X − µ|2) ≥ c2P(|X − µ| ≥ c),

where the inequality above is a consequence of Markov’s inequality.
As an application of Chebyshev’s inequality, consider the probability triple (Ω,F ,P) and a sequence of inde-

pendent and identically distributed random variables (Xk : Ω → {0, 1} | k ∈ N+). Let p = E(Xk) = E(I{Xk=1}) =
P(Xk = 1). Since X2

k = Xk, Xk ∈ L2(Ω,F ,P) and Var(Xk) = E(X2
k)− E(Xk)

2 = p− p2, so that Var(Xk) ≤ 1/4.
Let Sn =

∑n
k=1 Xk. so that E(Sn) =

∑n
k=1 E(Xk) = np. Due to independence,

Var (Sn) = Var

(
n∑

k=1

Xk

)
=

n∑
k=1

Var(Xk) =

n∑
k=1

p− p2 = n(p− p2) ≤ n

4
.

For any Y ∈ L2(Ω,F ,P) and a ∈ R, Var(aY ) = E((aY )2) − E(aY )2 = a2E(Y 2) − a2E(Y )2 = a2 Var(Y ).
Therefore, E(Sn/n) = p and Var(Sn/n) ≤ 1/4n. Using Chebyshev’s inequality, for any δ > 0,

P

(∣∣∣∣∣
(
1

n

n∑
k=1

Xk

)
− p

∣∣∣∣∣ ≥ δ

)
≤ 1

4nδ2
.

8 Product measure
Consider a measurable space (S1,Σ1) and a measurable space (S2,Σ2). Let S = S1×S2. Consider also the functions
ρ1 : S → S1 and ρ2 : S → S2 given by ρ1(s1, s2) = s1 and ρ2(s1, s2) = s2. For B1 ∈ Σ1 and B2 ∈ Σ2, let

ρ−1
1 (B1) = {(s1, s2) ∈ S | ρ1(s1, s2) ∈ B1} = {(s1, s2) ∈ S | s1 ∈ B1} = B1 × S2,

ρ−1
2 (B2) = {(s1, s2) ∈ S | ρ2(s1, s2) ∈ B2} = {(s1, s2) ∈ S | s2 ∈ B2} = S1 ×B2.

For i ∈ {1, 2}, let Ai = {ρ−1
i (Bi) | Bi ∈ Σi}. We will now show that Ai is a σ-algebra on S. First, note

that ρ−1
i (Si) = S and Si ∈ Σi. Therefore, S ∈ Ai. Consider an element ρ−1

i (Bi) ∈ Ai. Note that Bc
i ∈ Σi and
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ρ−1
i (Bc

i ) = ρ−1
i (Bi)

c. Therefore, ρ−1
i (Bi)

c ∈ Ai. Finally, consider a sequence of sets (ρ−1
i (Bi,j) ∈ Ai | j ∈ N). Note

that ∪jBi,j ∈ Σi and ρ−1
i (∪jBi,j) = ∪jρ

−1
i (Bi,j). Therefore, ∪jρ

−1
i (Bi,j) ∈ Ai.

Considering the previous result, let σ(ρ1) and σ(ρ2) denote the σ-algebras on S given by

σ(ρ1) = A1 = {ρ−1
1 (B1) | B1 ∈ Σ1} = {B1 × S2 | B1 ∈ Σ1},

σ(ρ2) = A2 = {ρ−1
2 (B2) | B2 ∈ Σ2} = {S1 ×B2 | B2 ∈ Σ2}.

The product Σ between the σ-algebras Σ1 and Σ2 is a σ-algebra on S denoted by Σ1 × Σ2 but defined by

Σ = Σ1 × Σ2 = σ({ρ1, ρ2}) = σ(σ(ρ1) ∪ σ(ρ2)),

which should not be confused with the Cartesian product between Σ1 and Σ2.
Consider the set I = {B1 ×B2 | B1 ∈ Σ1 and B2 ∈ Σ2}. For any B1 ∈ Σ1 and B2 ∈ Σ2, note that

B1 ×B2 = (B1 ∩ S1)× (S2 ∩B2) = (B1 × S2) ∩ (S1 ×B2).

Suppose B1 ×B2 ∈ I and B′
1 ×B′

2 ∈ I. In that case, (B1 ×B2)∩ (B′
1 ×B′

2) = (B1 ∩B′
1)× (B2 ∩B′

2). Because
(B1 ∩B′

1) ∈ Σ1 and (B2 ∩B′
2) ∈ Σ2, this implies that I is a π-system on S.

We will now show that σ(I) = Σ. For any B1 ×B2 ∈ I, we know that B1 ×B2 ∈ Σ because (B1 × S2) ∈ σ(ρ1)
and (S1×B2) ∈ σ(ρ1). Since Σ is a σ-algebra, σ(I) ⊆ Σ. For any B1 ∈ Σ1 and B2 ∈ Σ2, we know that B1×S2 ∈ I
and S1 ×B2 ∈ I. Therefore, σ(ρ1) ∪ σ(ρ2) ⊆ I. Because σ(I) is a σ-algebra, Σ ⊆ σ(I).

Consider a measurable space (S1,Σ1) and a measurable space (S2,Σ2). Furthermore, consider the measurable
space (S,Σ), where S = S1 × S2 and Σ = Σ1 × Σ2. Let H denote a set that contains exactly each bounded
Σ-measurable function f : S → R for which there is a Σ2-measurable function fs1 : S2 → R and a Σ1-measurable
function fs2 : S1 → R such that f(s1, s2) = fs1(s2) = fs2(s1) for every s1 ∈ S1 and s2 ∈ S2. We will now show that
H contains every bounded Σ-measurable function on S, so that H = bΣ.

Note that the set of bounded Σ-measurable functions bΣ is a vector space over the field R when scalar multi-
plication and addition are performed pointwise, Because H ⊆ bΣ, showing that H is a vector space only requires
showing that H is non-empty and closed under scalar multiplication and addition. For every s1 ∈ S1 and s2 ∈ S2,
let f = IS , fs1 = IS2 , and fs2 = IS1 , so that that IS(s1, s2) = IS2(s2) = IS1(s1) = 1. Clearly, f ∈ H. Now suppose
f ∈ H and a ∈ R. Note that af ∈ bΣ. For every s1 ∈ S1 and s2 ∈ S2, also note that afs1 is Σ2-measurable, afs2 is
Σ1-measurable, and (af)(s1, s2) = (afs1)(s2) = (afs2)(s1). Therefore, af ∈ H. Finally, suppose that g, h ∈ H. Note
that g + h ∈ bΣ. For every s1 ∈ S1 and s2 ∈ S2, note that gs1 + hs1 is Σ2-measurable, gs2 + hs2 is Σ1-measurable,
and (g + h)(s1, s2) = (gs1 + hs1)(s2) = (gs2 + hs2)(s1). Therefore, g + h ∈ H.

Suppose (fn ∈ H | n ∈ N) is a sequence of non-negative functions in H such that fn ↑ f , where f : S → [0,∞) is
a bounded function. Note that f ∈ bΣ, since f is the limit of a sequence of (bounded) Σ-measurable functions. For
every s1 ∈ S1 and s2 ∈ S2, note that fs1 = limn→∞ fn,s1 is Σ2-measurable, fs2 = limn→∞ fn,s2 is Σ1-measurable,
and f(s1, s2) = fs1(s2) = fs2(s1). Therefore, f ∈ H.

Consider the π-system I = {B1 × B2 | B1 ∈ Σ1 and B2 ∈ Σ2} and the indicator function f = IB1×B2
of a set

B1 ×B2 ∈ I. Note that f is a bounded Σ-measurable function, since B1 ×B2 ∈ Σ. For every s1 ∈ S1 and s2 ∈ S2,
note that fs1 = IB1(s1)IB2 is Σ2-measurable, fs2 = IB2(s2)IB1 is Σ1-measurable, and f(s1, s2) = fs1(s2) = fs2(s1).
Therefore, f ∈ H. Since σ(I) = Σ, the monotone-class theorem completes the proof.

Consider a measure space (S1,Σ1, µ1), a measure space (S2,Σ2, µ2), and the measurable space (S,Σ), where
S = S1 × S2 and Σ = Σ1 × Σ2. Furthermore, suppose µ1 and µ2 are finite measures.

For any bounded Σ-measurable function f : S → R, let If1 : S1 → R and If2 : S2 → R be given by

If1 (s1) =

∫
S2

f(s1, s2)µ2(ds2) =

∫
S2

fs1(s2)µ2(ds2) = µ2(fs1),

If2 (s2) =

∫
S1

f(s1, s2)µ1(ds1) =

∫
S1

fs2(s1)µ1(ds1) = µ1(fs2),

where fs1 : S2 → R is a Σ2-measurable function, fs2 : S1 → R is a Σ1-measurable function, and f(s1, s2) =
fs1(s2) = fs2(s1), for every s1 ∈ S1 and s2 ∈ S2. Note that µ2(|fs1 |) < ∞ because µ2 is finite and |fs1 | ∈ bΣ2.
Similarly, µ1(|fs2 |) < ∞ because µ1 is finite and |fs2 | ∈ bΣ1. Therefore, If1 and If2 are bounded.

Let H denote a set that contains exactly each function f ∈ bΣ such that If1 ∈ bΣ1 and If2 ∈ bΣ2 and

µ1(I
f
1 ) =

∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2) = µ2(I
f
2 ).
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We will now show that H contains every bounded Σ-measurable function on S, so that H = bΣ.
Because H ⊆ bΣ, showing that H is a vector space only requires showing that H is non-empty and closed under

scalar multiplication and addition. For every s1 ∈ S1 and s2 ∈ S2, let f = IS , fs1 = IS2
, and fs2 = IS1

, so that
If1 (s1) = µ2(IS2

) = µ2(S2)IS1
(s1) and If2 (s2) = µ1(IS1

) = µ1(S1)IS2
(s2). Because S1 ∈ Σ1, we have If1 ∈ bΣ1.

Similarly, because S2 ∈ Σ2, we have If2 ∈ bΣ2. In that case, f ∈ H, since

µ1(I
f
1 ) =

∫
S1

µ2(S2)IS1(s1)µ1(ds1) = µ1(S1)µ2(S2) =

∫
S2

µ1(S1)IS2(s2)µ2(ds2) = µ2(I
f
2 ).

Now suppose that f ∈ H and a ∈ R. Note that af ∈ bΣ. For every s1 ∈ S1 and s2 ∈ S2, note that
Iaf1 (s1) = µ2(afs1) = aµ2(fs1) = aIf1 (s1) and Iaf2 (s2) = µ1(afs2) = aµ1(fs2) = aIf2 (s2). Clearly, Iaf1 ∈ bΣ1 and
Iaf2 ∈ bΣ2. Therefore, af ∈ H, since the fact that µ1(I

f
1 ) = µ2(I

f
2 ) implies

µ1(I
af
1 ) =

∫
S1

aIf1 (s1)µ1(ds1) = aµ1(I
f
1 ) = aµ2(I

f
2 ) =

∫
S2

aIf2 (s2)µ2(ds2) = µ2(I
af
2 ).

Finally, suppose that g, h ∈ H. Note that g + h ∈ bΣ. For every s1 ∈ S1 and s2 ∈ S2, note that Ig+h
1 (s1) =

µ2(gs1+hs1) = µ2(gs1)+µ2(hs1) = Ig1 (s1)+Ih1 (s1) and Ig+h
2 (s2) = µ1(gs2+hs2) = µ1(gs2)+µ1(hs2) = Ig2 (s2)+Ih2 (s2).

Clearly, Ig+h
1 ∈ bΣ1 and Ig+h

2 ∈ bΣ2. Therefore, g + h ∈ H, since µ1(I
g
1 ) = µ2(I

g
2 ) and µ1(I

h
1 ) = µ2(I

h
2 ) imply∫

S1

[
Ig1 (s1) + Ih1 (s1)

]
µ1(ds1) = µ1(I

g
1 ) + µ1(I

h
1 ) = µ2(I

g
2 ) + µ2(I

h
2 ) =

∫
S2

[
Ig2 (s2) + Ih2 (s2)

]
µ2(ds2).

Suppose (fn ∈ H | n ∈ N) is a sequence of non-negative functions in H such that fn ↑ f , where f : S → [0,∞)
is a bounded function. Note that f ∈ bΣ, since f is the limit of a sequence of (bounded) Σ-measurable functions.

For every s1 ∈ S1 and s2 ∈ S2, note that fn,s1 ↑ fs1 and fn,s2 ↑ fs2 , so that the monotone-convergence theorem
implies that µ2(fn,s1) ↑ µ2(fs1) and µ1(fn,s2) ↑ µ1(fs2). Therefore,

If1 (s1) = µ2(fs1) = lim
n→∞

µ2(fn,s1) = lim
n→∞

Ifn1 (s1),

If2 (s2) = µ1(fs2) = lim
n→∞

µ1(fn,s2) = lim
n→∞

Ifn2 (s2).

Because If1 is the limit of (bounded) Σ1-measurable functions, If1 ∈ bΣ1. Similarly, because If2 is the limit of
(bounded) Σ2-measurable functions, If2 ∈ bΣ2. Furthermore, Ifn1 ↑ If1 and Ifn2 ↑ If2 , since fn+1 ≥ fn implies

I
fn+1

1 (s1) = µ2(fn+1,s1) ≥ µ2(fn,s1) = Ifn1 (s1),

I
fn+1

2 (s2) = µ1(fn+1,s2) ≥ µ1(fn,s2) = Ifn2 (s2).

Therefore, f ∈ H, since the monotone-convergence theorem implies that

µ1(I
f
1 ) = lim

n→∞
µ1(I

fn
1 ) = lim

n→∞
µ2(I

fn
2 ) = µ2(I

f
2 ).

Consider the π-system I = {B1 × B2 | B1 ∈ Σ1 and B2 ∈ Σ2} and the indicator function f = IB1×B2
of a

set B1 × B2 ∈ I. Note that f is a bounded Σ-measurable function, since B1 × B2 ∈ Σ. For every s1 ∈ S1 and
s2 ∈ S2, note that If1 (s1) = µ2(IB1(s1)IB2) = IB1(s1)µ2(B2) and If2 (s2) = µ1(IB2(s2)IB1) = IB2(s2)µ1(B1). Clearly,
If1 ∈ bΣ1 and If2 ∈ bΣ2. Therefore, f ∈ H, since

µ1(I
f
1 ) = µ1(µ2(B2)IB1

) = µ1(B1)µ2(B2) = µ2(µ1(B1)IB2
) = µ2(I

f
2 ).

Because σ(I) = Σ, the monotone-class theorem completes the proof.
Consider a measure space (S1,Σ1, µ1), a measure space (S2,Σ2, µ2), and the measurable space (S,Σ), where

S = S1×S2 and Σ = Σ1×Σ2. Furthermore, suppose µ1 and µ2 are finite measures. For any F ∈ Σ, define µ(F ) by

µ(F ) = µ1(I
IF
1 ) =

∫
S1

IIF1 (s1)µ1(ds1) =

∫
S2

IIF2 (s2)µ2(ds2) = µ2(I
IF
2 ).

We will now show that µ is a measure on (S,Σ). The measure µ is called the product measure of µ1 and µ2 and
denoted by µ = µ1 × µ2. The measure space (S,Σ, µ) is denoted by (S,Σ, µ) = (S1,Σ1, µ1)× (S2,Σ2, µ2).
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Consider the π-system I = {B1 × B2 | B1 ∈ Σ1 and B2 ∈ Σ2}, the indicator function f = IB1×B2 of a set
B1 ×B2 ∈ I, and recall that µ1(I

f
1 ) = µ1(B1)µ2(B2) = µ2(I

f
2 ). Therefore, µ(∅) = µ1(∅)µ2(∅) = 0.

Consider a sequence (Fn ∈ Σ | n ∈ N) such that Fn ∩ Fm = ∅ for n ̸= m. Furthermore, consider the sequence of
non-negative (bounded) Σ-measurable functions (fn : S → {0, 1} | n ∈ N) given by

fn = I∪n
k=0Fk

=

n∑
k=0

IFk
.

Let f = I∪kFk
so that fn ↑ f . Because f is a bounded function,

µ

(⋃
k

Fk

)
= µ1(I

f
1 ) = lim

n→∞
µ1(I

fn
1 ) = lim

n→∞
µ2(I

fn
2 ) = µ2(I

f
2 ).

By the linearity of the integral with respect to µ2,

Ifn1 (s1) =

∫
S2

n∑
k=0

IFk
(s1, s2)µ2(ds2) =

n∑
k=0

∫
S2

IFk
(s1, s2)µ2(ds2) =

n∑
k=0

I
IFk
1 (s1).

By the linearity of the integral with respect to µ1,

µ

(⋃
k

Fk

)
= lim

n→∞
µ1(I

fn
1 ) = lim

n→∞

∫
S1

n∑
k=0

I
IFk
1 (s1)µ1(ds1) = lim

n→∞

n∑
k=0

∫
S1

I
IFk
1 (s1)µ1(ds1) =

∑
k

µ(Fk),

which completes the proof that µ is a measure on (S,Σ). The measure µ is also finite since µ(S1×S2) = µ1(S1)µ2(S2).
Notably, µ is the unique measure on (S,Σ) such that µ(B1 × B2) = µ1(B1)µ2(B2) for every B1 ∈ Σ1 and

B2 ∈ Σ2, since I is a π-system on S such that σ(I) = Σ and µ is a finite measure on (S,Σ).
We will now show that if f : S → R is a bounded Σ-measurable function, then

µ(f) = µ1(I
f
1 ) =

∫
S1

If1 (s1)µ(ds1) =

∫
S2

If2 (s2)µ2(ds2) = µ2(I
f
2 ).

Let H denote a set that contains exactly each function f ∈ bΣ such that µ(f) = µ1(I
f
1 ) = µ2(I

f
2 ).

Consider the π-system I = {B1 × B2 | B1 ∈ Σ1 and B2 ∈ Σ2}. Suppose that f = IB1×B2 is the indicator
function of a set B1 × B2 ∈ I. In that case, µ(f) = µ(B1 × B2) = µ1(I

f
1 ) = µ2(I

f
2 ), so that f ∈ H. In particular,

IS ∈ H, since S1 × S2 ∈ I.
Because H ⊆ bΣ and H is non-empty, showing that H is a vector space only requires showing that H is closed

under scalar multiplication and addition.
Suppose that f ∈ H and a ∈ R. Note that af ∈ bΣ and af ∈ L1(S,Σ, µ), so that µ(af) = aµ(f). Because

f ∈ H, we have µ(af) = µ1(aI
f
1 ) = µ1(I

af
1 ) and µ(af) = µ2(aI

f
2 ) = µ2(I

af
2 ), so that af ∈ H.

Now suppose that g, h ∈ H. Note that g + h ∈ bΣ and g + h ∈ L1(S,Σ, µ), so that µ(g + h) = µ(g) + µ(h).
Because g, h ∈ H, we have µ(g + h) = µ1(I

g
1 + Ih1 ) = µ1(I

g+h
1 ) and µ(g + h) = µ2(I

g
2 + Ih2 ) = µ2(I

g+h
2 ), so that

g + h ∈ H.
Finally, suppose (fn ∈ H | n ∈ N) is a sequence of non-negative functions in H such that fn ↑ f , where

f : S → [0,∞) is a bounded function. By the monotone-convergence theorem, µ(fn) ↑ µ(f). Since fn ∈ H,

µ(f) = lim
n→∞

µ(fn) = lim
n→∞

µ1(I
fn
1 ) = lim

n→∞
µ2(I

fn
2 ) = µ1(I

f
1 ) = µ2(I

f
2 ),

which implies f ∈ H. Because σ(I) = Σ, the monotone-class theorem completes the proof.
We will now show that if f : S → [0,∞] is a Σ-measurable function, then

µ(f) = µ1(I
f
1 ) =

∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2) = µ2(I
f
2 ),

where the Σ1-measurable function If1 : S1 → [0,∞] and the Σ2-measurable function If2 : S2 → [0,∞] are given by

If1 (s1) =

∫
S2

f(s1, s2)µ2(ds2) =

∫
S2

fs1(s2)µ2(ds2) = µ2(fs1),

If2 (s2) =

∫
S1

f(s1, s2)µ1(ds1) =

∫
S1

fs2(s1)µ1(ds1) = µ1(fs2),
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where fs1 : S2 → [0,∞] is a Σ2-measurable function, fs2 : S1 → [0,∞] is a Σ1-measurable function, and f(s1, s2) =
fs1(s2) = fs2(s1), for every s1 ∈ S1 and s2 ∈ S2.

For any n ∈ N, let fn = αn ◦ f , where αn is the n-th staircase function. Because fn : S → [0, n] is bounded
and Σ-measurable, there is a bounded Σ2-measurable function fn,s1 : S2 → [0, n] and a bounded Σ1-measurable
function fn,s2 : S1 → [0, n] such that fn(s1, s2) = fn,s1(s2) = fn,s2(s1) for every s1 ∈ S1 and s2 ∈ S2. Since fn ↑ f ,
consider the Σ2-measurable function fs1 = limn→∞ fn,s1 and the Σ1-measurable function fs2 = limn→∞ fn,s2 . Note
that f(s1, s2) = fs1(s2) = fs2(s1).

For every s1 ∈ S1 and s2 ∈ S2, note that fn,s1 ↑ fs1 and fn,s2 ↑ fs2 , so that the monotone-convergence theorem
implies that µ2(fn,s1) ↑ µ2(fs1) and µ1(fn,s2) ↑ µ1(fs2). Therefore,

If1 (s1) = µ2(fs1) = lim
n→∞

µ2(fn,s1) = lim
n→∞

Ifn1 (s1),

If2 (s2) = µ1(fs2) = lim
n→∞

µ1(fn,s2) = lim
n→∞

Ifn2 (s2).

Since fn ∈ bΣ, recall that Ifn1 ∈ bΣ1 and Ifn2 ∈ bΣ2. Because If1 is the limit of Σ1-measurable functions,
If1 ∈ mΣ1. Similarly, because If2 is the limit of Σ2-measurable functions, If2 ∈ mΣ2. Furthermore, Ifn1 ↑ If1 and
Ifn2 ↑ If2 , since fn+1 ≥ fn implies

I
fn+1

1 (s1) = µ2(fn+1,s1) ≥ µ2(fn,s1) = Ifn1 (s1),

I
fn+1

2 (s2) = µ1(fn+1,s2) ≥ µ1(fn,s2) = Ifn2 (s2).

Because fn ↑ f , the monotone-convergence theorem implies that µ(fn) ↑ µ(f). Because Ifn1 ↑ If1 and Ifn2 ↑ If2 ,
the monotone-convergence theorem implies that µ1(I

fn
1 ) ↑ µ1(I

f
1 ) and µ2(I

fn
2 ) ↑ µ2(I

f
2 ). Because fn ∈ bΣ,

µ(f) = lim
n→∞

µ(fn) = lim
n→∞

µ1(I
fn
1 ) = µ1(I

f
1 ) = lim

n→∞
µ2(I

fn
2 ) = µ2(I

f
2 ).

Consider the measure space (S,Σ, µ) = (S1,Σ1, µ1)×(S2,Σ2, µ2), where µ1 and µ2 are finite measures. Consider
also a function f ∈ L1(S,Σ, µ), and recall that f = f+ − f− and |f | = f+ + f−, where f+ : S → [0,∞] and
f− : S → [0,∞] are non-negative Σ-measurable functions. Therefore, for every s1 ∈ S1 and s2 ∈ S2,

f(s1, s2) = f+(s1, s2)− f−(s1, s2) = f+
s1(s2)− f−

s1(s2) = f+
s2(s1)− f−

s2(s1),

|f(s1, s2)| = f+(s1, s2) + f−(s1, s2) = f+
s1(s2) + f−

s1(s2) = f+
s2(s1) + f−

s2(s1),

where f+
s1 : S2 → [0,∞] and f−

s1 : S2 → [0,∞] are non-negative Σ2-measurable functions and f+
s2 : S1 → [0,∞] and

f−
s2 : S1 → [0,∞] are non-negative Σ1-measurable functions.

For every s1 ∈ S1 and s2 ∈ S2, let fs1 = f+
s1 − f−

s1 and fs2 = f+
s2 − f−

s2 , so that f(s1, s2) = fs1(s2) = fs2(s1).
Note that fs1 is Σ2-measurable and fs2 is Σ1-measurable. Furthermore, |fs1 | = f+

s1 + f−
s1 and |fs2 | = f+

s2 + f−
s2 .

Finally, let F f
1 = {s1 ∈ S1 | µ2(|fs1 |) < ∞} and F f

2 = {s2 ∈ S2 | µ1(|fs2 |) < ∞}. We will now show that

µ(f) = µ1(I
f
1 ;F

f
1 ) =

∫
F f

1

If1 (s1)µ1(ds1) =

∫
F f

2

If2 (s2)µ2(ds2) = µ2(I
f
2 ;F

f
2 ),

where If1 : S1 → R and If2 : S2 → R are given by

If1 (s1) =

∫
S2

f(s1, s2)µ2(ds2) =

∫
S2

fs1(s2)µ2(ds2) = µ2(fs1),

If2 (s2) =

∫
S1

f(s1, s2)µ1(ds1) =

∫
S1

fs2(s1)µ1(ds1) = µ1(fs2),

for every s1 ∈ F f
1 and s2 ∈ F f

2 .
Because |f | : S → [0,∞] is a non-negative Σ-measurable function such that µ(|f |) < ∞,

µ(|f |) = µ1(I
|f |
1 ) = µ1(I

f++f−

1 ) = µ1(I
f+

1 + If
−

1 ) < ∞,

µ(|f |) = µ2(I
|f |
2 ) = µ2(I

f++f−

2 ) = µ2(I
f+

2 + If
−

2 ) < ∞.
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For every s1 ∈ S1, note that If
+

1 (s1) + If
−

1 (s1) = µ2(f
+
s1) + µ2(f

−
s1) = µ2(|fs1 |). Because µ1(I

f+

1 + If
−

1 ) < ∞,
we know that µ1(S1 \ F f

1 ) = µ1({s1 ∈ S1 | µ2(|fs1 |) = ∞}) = 0. Similarly, for every s2 ∈ S2, note that
If

+

2 (s2) + If
−

2 (s2) = µ1(f
+
s2) + µ1(f

−
s2) = µ1(|fs2 |). Because µ2(I

f+

2 + If
−

2 ) < ∞, we know that µ2(S2 \ F f
2 ) =

µ2({s2 ∈ S2 | µ1(|fs2 |) = ∞}) = 0. Therefore, by the linearity of the integral,

µ(f) = µ(f+)− µ(f−) = µ1(I
f+

1 )− µ1(I
f−

1 ) = µ1(I
f+

1 IF f
1
)− µ1(I

f−

1 IF f
1
) = µ1((I

f+

1 − If
−

1 )IF f
1
) = µ1(I

f
1 ;F

f
1 ),

µ(f) = µ(f+)− µ(f−) = µ2(I
f+

2 )− µ2(I
f−

2 ) = µ2(I
f+

2 IF f
2
)− µ2(I

f−

2 IF f
2
) = µ2((I

f+

2 − If
−

2 )IF f
2
) = µ2(I

f
2 ;F

f
2 ).

The previous result is also valid when µ1 and µ2 are σ-finite measures.
Consider the measure space (S,Σ, µ) = (Ω,F ,P)×([0,∞),B([0,∞)),Leb), where (Ω,F ,P) is a probability triple.

Furthermore, consider a random variable X : Ω → [0,∞]. We will now show that

E(X) =

∫
[0,∞)

P(X ≥ x) Leb(dx).

First, let A = {(ω, x) ∈ S | x ≤ X(ω)} and f(ω, x) = x − X(ω) = ρ2(ω, x) − X(ρ1(ω, x)). Because f is
Σ-measurable and f−1((−∞, 0]) = A, we know that A ∈ Σ. For every (ω, x) ∈ S, note that

IA(ω, x) = I{ω∈Ω|x≤X(ω)}(ω) = I{x∈[0,∞)|x≤X(ω)}(x).

Because IA is a bounded Σ-measurable function,

IIA1 (ω) = Leb({x ∈ [0,∞) | x ≤ X(ω)}) = X(ω),

IIA2 (x) = P({ω ∈ Ω | x ≤ X(ω)}) = P(X ≥ x).

By the definition of the product measure µ,

µ(A) = P(IIA1 ) = E(X) = Leb(IIA2 ) =

∫
[0,∞)

P (X ≥ x) Leb(dx).

Let C denote the set of open subsets of R2. The Borel σ-algebra B(R2) on R2 is defined as B(R2) = σ(C). We
will now show that B(R2) = B(R)2, where B(R)2 is the product between the Borel σ-algebra B(R) on R and itself.

Because the functions ρ1 : R2 → R and ρ2 : R2 → R given by ρ1(x, y) = x and ρ2(x, y) = y for every (x, y) ∈ R2

are continuous, recall that ρ−1
1 (A) ∈ C and ρ−1

2 (A) ∈ C for every open set A ⊆ R, so that a previous result guarantees
that ρ1 and ρ2 are B(R2)-measurable. Therefore, σ(ρ1) ∪ σ(ρ2) ⊆ B(R2). Because B(R)2 = σ(σ(ρ1) ∪ σ(ρ2)), we
know that B(R)2 ⊆ B(R2).

Recall that every open subset C ⊆ R2 can be written as C = ∪n(an, bn)× (cn, dn), where an ≤ bn and cn ≤ dn
for every n ∈ N. Because B(R) contains every open interval and B(R)2 = σ({B1 × B2 | B1, B2 ∈ B(R)}), we know
that C ⊆ B(R)2, so that B(R2) ⊆ B(R2). Therefore, B(R2) = B(R)2.

Consider the set I = {(−∞, x] × (−∞, y] | x, y ∈ R}. We will now show that I is a π-system on R2 such that
σ(I) = B(R)2, where B(R)2 is the product between the Borel σ-algebra B(R) on R and itself.

Let A1 = (−∞, x1]× (−∞, y1] and A2 = (−∞, x2]× (−∞, y2] be elements of I. In that case,

A1 ∩A2 = ((−∞, x1] ∩ (−∞, x2])× ((−∞, y1] ∩ (−∞, y2]) = (−∞,min(x1, x2)]× (−∞,min(y1, y2)],

so that A1 ∩A2 ∈ I. Therefore, I is a π-system.
Because (−∞, x] ∈ B(R) and (−∞, y] ∈ B(R) for every x, y ∈ R and B(R)2 = σ({B1 × B2 | B1, B2 ∈ B(R)}),

we know that I ⊆ B(R)2, so that σ(I) ⊆ B(R)2.
Note that (a, b]× (c, d] ∈ σ(I) for every a ≤ b and c ≤ d, since

(a, b]× (c, d] = ((−∞, b]× (−∞, d]) ∩ (((−∞, b]× (−∞, c]) ∪ ((−∞, a]× (−∞, d]))c.

Also note that (a, b)× (c, d] ∈ σ(I) for every a ≤ b and c ≤ d, since

(a, b)× (c, d] =

( ⋃
n∈N+

(a, b− ϵ1n
−1]

)
× (c, d] =

⋃
n∈N+

(a, b− ϵ1n
−1]× (c, d],

where ϵ1 = (b− a)/2.
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Finally, note that (a, b)× (c, d) ∈ σ(I) for every a ≤ b and c ≤ d, since

(a, b)× (c, d) = (a, b)×
⋃

n∈N+

(c, d− ϵ2n
−1] =

⋃
n∈N+

(a, b)× (c, d− ϵ2n
−1],

where ϵ2 = (d− c)/2.
Because every open set C ∈ C can be written as C = ∪n(an, bn)× (cn, dn), where an ≤ bn and cn ≤ dn for every

n ∈ N, we know that C ⊆ σ(I). Since σ(C) = B(R2) = B(R)2, we know that B(R)2 ⊆ σ(I).
Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R. Let Z : Ω → R2

be given by Z(ω) = (X(ω), Y (ω)). We will now show that Z is F/B(R)2-measurable.
Let ρ1 : R2 → R be given by ρ1(x, y) = x and ρ2 : R2 → R be given by ρ2(x, y) = y. Note that X = ρ1 ◦ Z and

Y = ρ2 ◦ Z, so that X−1(B) = (ρ1 ◦ Z)−1(B) = Z−1(ρ−1
1 (B)) and Y −1(B) = (ρ2 ◦ Z)−1(B) = Z−1(ρ−1

2 (B)) for
every B ∈ B(R). Because X and Y are F-measurable, Z−1(C) ∈ F for every C ∈ (σ(ρ1) ∪ σ(ρ2)).

Note that E = {Γ ∈ B(R)2 | Z−1(Γ) ∈ F} is a σ-algebra on R2. Because (σ(ρ1)∪ σ(ρ2)) ⊆ B(R)2, we know that
σ(σ(ρ1) ∪ σ(ρ2)) = B(R)2 ⊆ E , so that E = B(R)2. Therefore, Z is F/B(R)2-measurable.

Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R. For any Γ ∈ B(R)2,
the joint law LX,Y : B(R)2 → [0, 1] of X and Y is defined by

LX,Y (Γ) = P({ω ∈ Ω | (X(ω), Y (ω)) ∈ Γ}) = P((X,Y ) ∈ Γ).

Note that LX,Y is a probability measure on (R2,B(R)2). Clearly, LX,Y (R2) = P(Ω) = 1 and LX,Y (∅) = P(∅) = 0.
Furthermore, for any sequence of sets (Γn ∈ B(R)2 | n ∈ N) such that Γn ∩ Γm = ∅ for n ̸= m,

LX,Y

(⋃
n

Γn

)
= P

({
ω ∈ Ω | (X(ω), Y (ω)) ∈

⋃
n

Γn

})
= P

(⋃
n

{ω ∈ Ω | (X(ω), Y (ω)) ∈ Γn}

)
=
∑
n

LX,Y (Γn).

The joint distribution FX,Y : R2 → [0, 1] of X and Y is defined by

FX,Y (x, y) = P({ω ∈ Ω | X(ω) ≤ x and Y (ω) ≤ y}) = P(X ≤ x, Y ≤ y) = LX,Y ((−∞, x]× (−∞, y]).

Because the π-system I = {(−∞, x] × (−∞, y] | x, y ∈ R} generates B(R)2, the joint law LX,Y of X and Y
is the unique measure on the measurable space (R2,B(R)2) such that LX,Y ((−∞, x] × (−∞, y]) = FX,Y (x, y) for
every (x, y) ∈ R2. Therefore, the joint distribution FX,Y completely determines the joint law LX,Y .

Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R. Consider also the
measure space (R2,B(R)2,Leb2) = (R,B(R),Leb)2. The random variables X and Y have a joint probability density
function fX,Y if fX,Y : R2 → [0,∞] is a B(R)2-measurable function such that the joint law LX,Y is given by

LX,Y (Γ) =

∫
Γ

fX,Y (z) Leb
2(dz) =

∫
R2

IΓ(z)fX,Y (z) Leb
2(dz).

In that case, the joint law LX,Y has density fX,Y relative to Leb2, which is denoted by dLX,Y /dLeb
2 = fX,Y .

Furthermore, because IΓfX,Y is a non-negative B(R)2-measurable function,

LX,Y (Γ) =

∫
R

[∫
R
IΓ(x, y)fX,Y (x, y) Leb(dy)

]
Leb(dx) =

∫
R

[∫
R
IΓ(x, y)fX,Y (x, y) Leb(dx)

]
Leb(dy).

Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R. Note that

LX(B) = P(X−1(B)) = P({ω ∈ Ω | X(ω) ∈ B}) = P({ω ∈ Ω | (X(ω), Y (ω)) ∈ (B × R)}) = LX,Y (B × R),
LY (B) = P(Y −1(B)) = P({ω ∈ Ω | Y (ω) ∈ B}) = P({ω ∈ Ω | (X(ω), Y (ω)) ∈ (R×B)}) = LX,Y (R×B),

for every B ∈ B(R), where LX is the law of X and LY is the law of Y . Therefore,

LX(B) =

∫
R

[∫
R
IB×R(x, y)fX,Y (x, y) Leb(dy)

]
Leb(dx) =

∫
R

[∫
R
IB(x)fX,Y (x, y) Leb(dy)

]
Leb(dx),

LY (B) =

∫
R

[∫
R
IR×B(x, y)fX,Y (x, y) Leb(dx)

]
Leb(dy) =

∫
R

[∫
R
IB(y)fX,Y (x, y) Leb(dx)

]
Leb(dy),
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for every B ∈ B(R). By the linearity of the integral with respect to Leb,

LX(B) =

∫
R
IB(x)

[∫
R
fX,Y (x, y) Leb(dy)

]
Leb(dx) =

∫
R
IB(x)fX(x) Leb(dx) =

∫
B

fX(x) Leb(dx),

LY (B) =

∫
R
IB(y)

[∫
R
fX,Y (x, y) Leb(dx)

]
Leb(dy) =

∫
R
IB(y)fY (y) Leb(dy) =

∫
B

fY (y) Leb(dy),

where fX : R → [0,∞] and fY : R → [0,∞] are Borel functions given by

fX(x) =

∫
R
fX,Y (x, y) Leb(dy),

fY (y) =

∫
R
fX,Y (x, y) Leb(dx).

By definition, fX is a probability density function for X and fY is a probability density function for Y .
Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R. Let LX,Y denote

the joint law of X and Y , LX denote the law of X, LY denote the law of Y , FX,Y denote the joint distribution
function of X and Y , FX denote the distribution function of X, and FY denote the distribution function of Y . We
will now show that the following are equivalent: X and Y are independent; LX,Y = LX ×LY ; and FX,Y = FXFY .

Suppose X and Y are independent. In that case, for every B1, B2 ∈ B(R),

LX,Y (B1 ×B2) = P({ω ∈ Ω | (X(ω), Y (ω)) ∈ (B1 ×B2)}) = P(X−1(B1) ∩ Y −1(B2)) = LX(B1)LY (B2).

Because LX × LY is the unique measure on (R2,B(R)2) such that (LX × LY )(B1 × B2) = LX(B1)LY (B2) for
every B1, B2 ∈ B(R) and LX,Y is a measure on (R2,B(R)2), we know that LX,Y = LX × LY .

Suppose LX,Y = LX × LY . In that case, for every x, y ∈ R,

FX,Y (x, y) = (LX × LY )((−∞, x]× (−∞, y]) = LX((−∞, x])LY ((−∞, y]) = FX(x)FY (y).

Finally, suppose that FX,Y = FXFY . In that case, for every x, y ∈ R,

P(X ≤ x, Y ≤ y) = FX,Y (x, y) = FX(x)FY (y) = P(X ≤ x)P(Y ≤ y),

so that a previous result implies that X and Y are independent, which completes the proof.
Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R. Suppose fX,Y is a

joint probability density function for X and Y , fX is a probability density function for X, and fY is a probability
density function for Y . Furthermore, let F = {(x, y) ∈ R2 | fX(x)fY (y) ̸= fX,Y (x, y)}. We will now show that
Leb2(F ) = 0 if and only if X and Y are independent random variables.

Suppose Leb2(F ) = 0. For every Γ ∈ B(R)2, let FΓ = {z ∈ R2 | IΓ(z)fX(ρ1(z))fY (ρ2(z)) ̸= IΓ(z)fX,Y (z)}, so
that FΓ ⊆ Γ. Because FΓ ⊆ FR2 = F , we know that Leb2(FΓ) = 0. Therefore, because IΓ(fX ◦ ρ1)(fY ◦ ρ2) and
IΓfX,Y are non-negative B(R)2-measurable functions,

LX,Y (Γ) =

∫
R2

IΓ(z)fX,Y (z) Leb
2(dz) =

∫
R2

IΓ(z)fX(ρ1(z))fY (ρ2(z)) Leb
2(dz).

For every B1, B2 ∈ B(R), since IΓ(fX ◦ ρ1)(fY ◦ ρ2) is a non-negative B(R)2-measurable function,

LX,Y (B1 ×B2) =

∫
R

[∫
R
IB1×B2

(x, y)fX(x)fY (y) Leb(dy)

]
Leb(dx).

Using the fact that IB1×B2
(x, y) = IB1

(x)IB2
(y) and the linearity of the integral with respect to Leb,

LX,Y (B1 ×B2) =

[∫
R
IB1

(x)fX(x) Leb(dx)

] [∫
R
IB2

(y)fY (y) Leb(dy)

]
= LX(B1)LY (B2).

Because LX × LY is the unique measure on (R2,B(R)2) such that (LX × LY )(B1 × B2) = LX(B1)LY (B2) for
every B1, B2 ∈ B(R) and LX,Y is a measure on (R2,B(R)2), we know that X and Y are independent.

Suppose X and Y are independent. Let f = (fX ◦ ρ1)(fY ◦ ρ2). Because f is a B(R)2-measurable non-negative
function, recall that (f Leb2) is a measure on (R2,B(R)2) given by

(f Leb2)(Γ) =

∫
Γ

fdLeb2 =

∫
R2

IΓ(z)fX(ρ1(z))fY (ρ2(z)) Leb
2(dz) =

∫
R

[∫
R
IΓ(x, y)fX(x)fY (y) Leb(dy)

]
Leb(dx).
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By the linearity of the integral with respect to Leb, for every B1, B2 ∈ B(R),

LX(B1)LY (B2) =

∫
R

[∫
R
IB1×B2

(x, y)fX(x)fY (y) Leb(dy)

]
Leb(dx) = (f Leb2)(B1 ×B2).

Because LX × LY is the unique measure on (R2,B(R)2) such that (LX × LY )(B1 × B2) = LX(B1)LY (B2) for
every B1, B2 ∈ B(R) and (f Leb2) is a measure on (R2,B(R)2), we know that LX × LY = (f Leb2). Since X and
Y are independent, LX,Y = (f Leb2). Therefore, f is a joint probability density function for X and Y .

Let F1 = {z ∈ R2 | f(z) − fX,Y (z) > 0} and F2 = {z ∈ R2 | fX,Y (z) − f(z) > 0}, so that F = F1 ∪ F2. Since
F1 ∩ F2 = ∅, we have Leb2(F ) = Leb2(F1) + Leb2(F2). In order to find a contradiction, suppose Leb2(F ) > 0, so
that Leb2(F1) > 0 or Leb2(F2) > 0. Because (f − fX,Y )IF1

and (fX,Y − f)IF2
are non-negative B(R)2-measurable

functions, a previous result then implies that Leb2((f − fX,Y )IF1
) > 0 or Leb2((fX,Y − f)IF2

) > 0. The linearity
of the integral with respect to Leb2 then implies that LX,Y (F1) = Leb2(fIF1

) > Leb2(fX,Y IF1
) = LX,Y (F1) or

LX,Y (F2) = Leb2(fX,Y IF2) > Leb2(fIF2) = LX,Y (F2), which is a contradiction. Therefore, Leb2(F ) = 0.
The results in this section can be generalized to products between any number of measure spaces.
Consider the measurable space (R,B(R)) and a sequence of probability measures (Λn | n ∈ N). Let Ω =

∏
n R,

so that each ω ∈ Ω corresponds to a sequence (ωn ∈ R | n ∈ N). For every n ∈ N, let Xn : Ω → R be given by
Xn(ω) = ωn. Furthermore, consider the σ-algebra F on Ω given by F = σ(∪nσ(Xn)). Kolmogorov’s extension
theorem guarantees that there is a unique probability measure P on the measurable space (Ω,F) such that, for
every sequence (Bn ∈ B(R) | n ∈ N),

P

(∏
n

Bn

)
=
∏
n

Λn(Bn).

The measure space (Ω,F ,P) is denoted by (Ω,F ,P) =
∏

n(R,B(R),Λn). The sequence (Xn : Ω → R | n ∈ N) is
composed of independent random variables on (Ω,F ,P) so that Λn is the law of Xn.

9 Conditional expectation
Consider a probability triple (Ω,F ,P) and a random variable X : Ω → R. For every ω ∈ Ω, note that knowing
I{X=x}(ω) for every x ∈ R is equivalent to knowing X(ω). Furthermore, from a previous result,

σ(X) =

{
X−1

(⋃
x∈B

{x}

)
| B ∈ B(R)

}
=

{⋃
x∈B

X−1({x}) | B ∈ B(R)

}
=

{⋃
x∈B

{X = x} | B ∈ B(R)

}
.

Let F = ∪x∈B{X = x} for some B ∈ B(R). For every ω ∈ Ω, note that IF (ω) =
∑

x∈B I{X=x}(ω), since F is a
union of disjoint sets. Finally, note that {X = x} ∈ σ(X) for every x ∈ R. Therefore, for every ω ∈ Ω, knowing
I{X=x}(ω) for every x ∈ R is also equivalent to knowing IF (ω) for every F ∈ σ(X).

In conclusion, for every ω ∈ Ω, knowing X(ω) is equivalent to knowing IF (ω) for every F ∈ σ(X).
More generally, consider a probability triple (Ω,F ,P) and a set of random variables {Yγ | γ ∈ C} where

Yγ : Ω → R for every γ ∈ C. Suppose that an unknown outcome ω ∈ Ω results in a known value Yγ(ω) ∈ R for every
γ ∈ C. The σ-algebra σ({Yγ | γ ∈ C}) contains exactly each event F ∈ F such that it is possible to state whether
ω ∈ F . In other words, for every ω ∈ Ω, knowing Yγ(ω) ∈ R for every γ ∈ C is equivalent to knowing IF (ω) for
every F ∈ σ({Yγ | γ ∈ C}).

Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Y : Ω → R. Suppose
σ(Y ) ⊆ σ(X). For every ω ∈ Ω, knowing X(ω) allows knowing IF (ω) for every F ∈ σ(Y ). Therefore, knowing
X(ω) allows knowing Y (ω).

In fact, it is possible to show that for every function Z : Ω → R, a function Y : Ω → R is σ(Z)-measurable if
and only if there is a Borel function f : R → R such that Y = f ◦ Z. Furthermore, if Z1, Z2, . . . , Zn are functions
from Ω to R, then a function Y : Ω → R is σ({Z1, Z2, . . . , Zn})-measurable if and only if there is a Borel function
f : Rn → R such that Y (ω) = f(Z1(ω), Z2(ω), . . . , Zn(ω)) for every ω ∈ Ω.

Consider the probability triple (Ω,F ,P), a random variable X : Ω → R such that E(|X|) < ∞, and a σ-algebra
G ⊆ F . A random variable Y : Ω → R is called a version of the conditional expectation E(X | G) of X given G if
and only if Y is G-measurable, E(|Y |) < ∞, and, for every set G ∈ G,∫

G

Y dP =

∫
G

XdP.
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In that case, we say that Y = E(X | G) almost surely. We will now show that a version Y of the conditional
expectation E(X | G) of X given G always exists. Furthermore, if Y and Ỹ are such versions, then P(Y = Ỹ ) = 1.

First, suppose X ∈ L2(Ω,F ,P) and recall that L2(Ω,G,P) is a complete vector space. Because L2(Ω,G,P) ⊆
L2(Ω,F ,P), there is a version Y ∈ L2(Ω,G,P) of the orthogonal projection of X onto L2(Ω,G,P) such that
∥X − Y ∥2 = inf{∥X − W∥2 | W ∈ L2(Ω,G,P)} and E((X − Y )Z) = 0, for every Z ∈ L2(Ω,G,P). Clearly, Y is
G-measurable. By the monotonicity of norm, E(|Y |) < ∞. For every G ∈ G, we have IG ∈ L2(Ω,G,P), so that
E((X − Y )IG) = 0. Therefore, by the linearity of expectation, E(XIG) = E(Y IG), which completes this step.

Suppose that X is a bounded non-negative random variable, so that X ∈ L2(Ω,F ,P). As an auxiliary step, we
will now show that if Y = E(X | G) almost surely, then P(Y ≥ 0) = 1. In order to find a contradiction, suppose
that P(Y ≥ 0) < 1, so that P(Y < 0) > 0. Let An = {Y < −n−1} = Y −1((−∞,−n−1)), so that An ⊆ An+1

and ∪nAn = {Y < 0}. Since An ↑ {Y < 0}, the monotone-convergence property of measure guarantees that
P(An) ↑ P(Y < 0). Because we supposed that P(Y < 0) > 0, there is an n ∈ N such that P(An) = P(Y < −n−1) > 0.
Consider the random variable Y IAn given by

(Y IAn
)(ω) = Y (ω)IAn

(ω) =

{
Y (ω), if Y (ω) < −n−1,
0, if Y (ω) ≥ −n−1.

Because Y IAn
< −n−1IAn

, we know that E(Y IAn
) ≤ −n−1P(An) < 0. Because X ≥ 0, we know that E(XIAn

) ≥ 0.
However, An ∈ G, so that E(XIAn

) = E(Y IAn
). Because this is a contradiction, we know that P(Y ≥ 0) = 1.

Next, suppose X ∈ L1(Ω,F ,P) is non-negative. For every n ∈ N, let Xn = αn◦X, where αn is the n-th staircase
function, so that Xn ∈ L2(Ω,F ,P). Furthermore, let Yn = E(Xn | G) almost surely. Because Xn is a bounded
non-negative random variable, we know that P(Yn ≥ 0) = 1. For every n ∈ N and G ∈ G, note that

E((Yn+1 − Yn)IG) = E(Yn+1IG)− E(YnIG) = E(Xn+1IG)− E(XnIG) = E((Xn+1 −Xn)IG).

Because Yn ∈ L1(Ω,G,P) and Yn+1 ∈ L1(Ω,G,P), we know that Yn+1 − Yn = E(Xn+1 −Xn | G) almost surely.
Because Xn+1 −Xn is non-negative and bounded for every n ∈ N, we know that P(Yn+1 − Yn ≥ 0) = 1.

Consider the set Ac =
⋃

n{Yn < 0} ∪ {Yn+1 − Yn < 0}. Note that A ∈ G and P(A) = 1, since

P(Ac) = P

(⋃
n

{Yn < 0} ∪ {Yn+1 − Yn < 0}

)
≤
∑
n

P(Yn < 0) + P(Yn+1 − Yn < 0) = 0.

For every n ∈ N, note that YnIA ≥ 0 and Yn+1IA ≥ YnIA. Let Y = lim supn→∞ YnIA. For every G ∈ G, because
every non-decreasing sequence of real numbers converges (possibly to infinity), we know that YnIAIG ↑ Y IG. By
the monotone-convergence theorem, we know that E(YnIAIG) ↑ E(Y IG).

For every n ∈ N and G ∈ G, we have (A ∩G) ∈ G and P(XnIGIAc ̸= 0) = 0, so that

E(YnIAIG) = E(YnIA∩G) = E(XnIA∩G) = E(XnIAIG) + E(XnIAcIG) = E(XnIG),

which implies E(XnIG) ↑ E(Y IG). Since XnIG ↑ XIG, we also know that E(XnIG) ↑ E(XIG), so that E(Y IG) =
E(XIG). Because Y is G-measurable and Ω ∈ G, we know that Y = E(X | G) almost surely.

Finally, suppose X ∈ L1(Ω,F ,P). Let X = X+ − X−, where X+ : Ω → [0,∞] and X− : Ω → [0,∞]. Let
Y + = E(X+ | G) almost surely and Y − = E(X− | G) almost surely. For every G ∈ G,

E(XIG) = E((X+ −X−)IG) = E(X+IG)− E(X−IG) = E(Y +IG)− E(Y −IG) = E((Y + − Y −)IG),

so that Y + − Y − = E(X | G) almost surely.
It remains to show that if Y = E(X | G) almost surely and Ỹ = E(X | G) almost surely then P(Y = Ỹ ) = 1.

For the purpose of finding a contradiction, suppose that P(Y = Ỹ ) < 1, so that P(Y ̸= Ỹ ) > 0. In that case,
P(Y > Ỹ ) + P(Ỹ > Y ) > 0, so that P(Y > Ỹ ) > 0 or P(Ỹ > Y ) > 0. Suppose P(Y > Ỹ ) > 0. Let An = {Y >
Ỹ + n−1} = (Y − Ỹ )−1((n−1,∞)), so that An ⊆ An+1 and ∪nAn = {Y > Ỹ }. By the monotone-convergence
property of measure, we know that P(An) ↑ P(Y > Ỹ ). Because P(Y > Ỹ ) > 0, there is an n ∈ N such that
P(An) = P(Y > Ỹ + n−1) > 0. Note that (Y − Ỹ )IAn

> n−1IAn
, since

(Y − Ỹ )(ω)IAn(ω) =

{
(Y − Ỹ )(ω), if (Y − Ỹ )(ω) > n−1,
0, if (Y − Ỹ )(ω) ≤ n−1.
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Therefore, E((Y − Ỹ )IAn) ≥ E(n−1IAn) = n−1P(An) > 0. However, for every G ∈ G, note that E(Y IG) =
E(Ỹ IG), so that E((Y − Ỹ )IG) = 0. Because An ∈ G, we arrived at a contradiction. An analogous contradiction is
found by supposing that P(Ỹ > Y ) > 0. Therefore, P(Y = Ỹ ) = 1.

Consider the probability triple (Ω,F ,P), a random variable X : Ω → R such that E(|X|) < ∞, and a random
variable Z : Ω → R. A random variable Y : Ω → R is called a version of the conditional expectation E(X | Z) of
X given Z if and only if it is a version of the conditional expectation E(X | σ(Z)) of X given σ(Z). An analogous
definition applies when Z is a set of random variables.

Suppose X ∈ L2(Ω,F ,P) and Z : Ω → R are random variables and let Y = E(X | Z) almost surely. Recall that
for every W ∈ L2(Ω, σ(Z),P) there is a Borel function f : R → R such that W = f ◦ Z and that E((X − Y )2) ≤
E((X −W )2). In this sense, if g : R → R is a Borel function such that Y = g ◦ Z, then Y (ω) = g(Z(ω)) is almost
surely the best prediction about X(ω) that can be made given Z(ω).

The next three examples illustrate the definition of conditional expectation.
Consider a probability triple (Ω,F ,P) and the random variables X : Ω → X and Z : Ω → Z, where X =

{x1, . . . , xm} and Z = {z1, . . . , zn}. Furthermore, suppose P(Z = z) > 0 for every z ∈ Z.
Let P(Z) denote the set of all subsets of Z and consider the P(Z)-measurable function E : Z → R given by

E(z) =
∑
i

xi
P(X = xi, Z = z)

P(Z = z)
.

We will now show that Y = E ◦ Z is a σ(Z)-measurable function such that∫
G

Y dP =

∫
G

XdP,

for every G ∈ σ(Z), so that Y = E(X | Z) almost surely.
For every B ∈ B(R), recall that Y −1(B) = Z−1(E−1(B)). Because E−1(B) ∈ P(Z) and P(Z) ⊆ B(R), we know

that Y −1(B) ∈ σ(Z). Therefore, Y is σ(Z)-measurable.
Because Y is a bounded F-measurable function and {Z = z} ∈ F for every z ∈ Z,∫

{Z=z}
Y dP =

∫
Ω

I{Z=z}(ω)E(Z(ω))P(dω) =
∫
Ω

I{Z=z}(ω)E(z)P(dω) = E(z)P(Z = z) =
∑
i

xiP(X = xi, Z = z).

By the definition of the integral of a simple function with respect to P,∫
{Z=z}

Y dP =

∫
Ω

(∑
i

xiI{X=xi,Z=z}

)
dP =

∫
Ω

(
I{Z=z}

∑
i

xiI{X=xi}

)
dP =

∫
Ω

I{Z=z}XdP =

∫
{Z=z}

XdP.

Because Z(ω) ∈ Z for every ω ∈ Ω and P(Z) ⊆ B(R),

σ(Z) =

{⋃
z∈B

{Z = z} | B ∈ B(R)

}
=

{⋃
z∈B

{Z = z} | B ∈ P(Z)

}
.

Let G =
⋃

z∈B{Z = z} for some B ∈ P(Z). For every ω ∈ Ω, note that IG(ω) =
∑

z∈B I{Z=z}(ω), since G is a
union of disjoint sets. Therefore, because Y is a bounded F-measurable function and G ∈ F ,∫

G

Y dP =

∫
Ω

∑
z∈B

I{Z=z}(ω)Y (ω)P(dω) =
∑
z∈B

∫
Ω

I{Z=z}(ω)Y (ω)P(dω) =
∑
z∈B

∫
Ω

I{Z=z}(ω)X(ω)P(dω).

By the linearity of the integral with respect to P and the fact that IG(ω) =
∑

z∈B I{Z=z}(ω),∫
G

Y dP =

∫
Ω

IG(ω)X(ω)P(dω) =
∫
G

XdP,

which completes the proof.
Consider the probability triple (Ω,F ,P) = ([0, 1],B([0, 1]),Leb)× ([0, 1],B([0, 1]),Leb) and the bounded random

variables X : Ω → R and Z : Ω → [0, 1], where Z(a, b) = a. Furthermore, consider the bounded B([0, 1])-measurable
function IX1 : [0, 1] → R given by

IX1 (a) =

∫
[0,1]

X(a, b) Leb(db).
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We will now show that Y = IX1 ◦ Z is a σ(Z)-measurable function such that∫
G

Y dP =

∫
G

XdP,

for every G ∈ σ(Z), so that Y = E(X | Z) almost surely.
Recall that σ(Z) = {A × [0, 1] | A ∈ B([0, 1])}. For every B ∈ B(R), note that Y −1(B) = Z−1((IX1 )−1(B)).

Because (IX1 )−1(B) ∈ B([0, 1]), we know that Y is σ(Z)-measurable.
Let G = A× [0, 1] for some A ∈ B([0, 1]). Because Y is a bounded F-measurable function and G ∈ F ,∫

G

Y dP =

∫
[0,1]

[∫
[0,1]

IA×[0,1](a, b)Y (a, b) Leb(db)

]
Leb(da) =

∫
[0,1]

[∫
[0,1]

IA(a)IX1 (a) Leb(db)

]
Leb(da).

By the linearity of the integral with respect to Leb and using the fact that Leb([0, 1]) = 1,∫
G

Y dP =

[∫
[0,1]

Leb(db)

][∫
[0,1]

IA(a)IX1 (a) Leb(da)

]
=

∫
[0,1]

IA(a)

[∫
[0,1]

X(a, b) Leb(db)

]
Leb(da).

Therefore, using the fact that IA(a) = IA×[0,1](a, b) = IG(a, b),∫
G

Y dP =

∫
[0,1]

[∫
[0,1]

IG(a, b)X(a, b) Leb(db)

]
Leb(da) =

∫
G

XdP.

Consider a probability triple (Ω,F ,P) and the random variables X : Ω → R and Z : Ω → R. Suppose that
fX,Z : R2 → [0,∞] is a joint probability density function for X and Z. Let fX : R → [0,∞] be a probability density
function for X and fZ : R → [0,∞] be a probability density function for Z such that

fX(x) =

∫
R
fX,Z(x, z) Leb(dz),

fZ(z) =

∫
R
fX,Z(x, z) Leb(dx).

Furthermore, consider the elementary conditional probability density function fX|Z : R2 → [0,∞] given by

fX|Z(x, z) =


0, if fZ(z) = 0,
fX,Z(x, z)/fZ(z), if 0 < fZ(z) < ∞,
0, if fZ(z) = ∞.

Let h : R → R be a Borel function such that E(|h ◦X|) < ∞, so that

E(h ◦X) =

∫
Ω

(h ◦X)dP =

∫
R
h dLX =

∫
R
h(x)fX(x) Leb(dx),

where LX is the law of X. Finally, consider the function g : R → R given by

g(z) =

{
0, if z /∈ F g

2 ,∫
R h(x)fX|Z(x, z) Leb(dx), if z ∈ F g

2 ,

where F g
2 = {z ∈ R |

∫
R |h(x)fX|Z(x, z)|Leb(dx) < ∞}.

We will now show that Y = g ◦ Z is a σ(Z)-measurable function such that E(|Y |) < ∞ and∫
G

Y dP =

∫
G

(h ◦X)dP

for every G ∈ σ(Z), so that Y = E((h ◦X) | Z) almost surely.
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First, we will show that (h◦ρ1)fX|Z is B(R)2-measurable. Let A1 = {z ∈ R | fZ(z) > 0}∩{z ∈ R | fZ(z) < ∞}.
Because fZ is Borel, we know that R×A1 ∈ B(R)2. Furthermore, note that

fX|Z(x, z) = IR×A1
(x, z)

fX,Z(x, z)

fZ(ρ2(x, z)) + IR×Ac
1
(x, z)

.

Because the function u : (0,∞] → [0,∞) given by u(r) = 1/r is Borel, we know that fX|Z is B(R)2-measurable.
Because h is Borel, we also know that (h ◦ ρ1)fX|Z is B(R)2-measurable.

We will now show that g is Borel. Because |(h ◦ ρ1)fX|Z | is non-negative and B(R)2-measurable, we know that
the function I2 : R → [0,∞] given by I2(z) =

∫
R |h(x)fX|Z(x, z)|Leb(dx) is Borel, so that F g

2 ∈ B(R). Furthermore,

g(z) = IF g
2
(z)

∫
R
((h ◦ ρ1)fX|Z)

+(x, z) Leb(dx)− IF g
2
(z)

∫
R
((h ◦ ρ1)fX|Z)

−(x, z) Leb(dx).

Since ((h ◦ ρ1)fX|Z)
+ and ((h ◦ ρ1)fX|Z)

− are non-negative and B(R)2-measurable, we know that g is Borel, which
also implies that Y = g ◦ Z is a σ(Z)-measurable function.

We will now show that E(|Y |) < ∞. Because |g(z)| ≤ I2(z) for every z ∈ R,

|g(z)|fZ(z) ≤ I2(z)fZ(z) =

∫
R
|h(x)fX|Z(x, z)|fZ(z) Leb(dx) =

∫
R
|h(x)|IA1

(z)fX,Z(x, z) Leb(dx).

Because |g|fZ and I2fZ are non-negative and Borel,∫
R
|g(z)|fZ(z) Leb(dz) ≤

∫
R

[∫
R
|h(x)|IA1(z)fX,Z(x, z) Leb(dx)

]
Leb(dz).

Because a previous result for probability density functions extends to joint probability density functions,∫
R
|g(z)|fZ(z) Leb(dz) ≤

∫
R2

|h ◦ ρ1|(IA1 ◦ ρ2)fX,Z dLeb2 = E(|h ◦X|IZ−1(A1)) < ∞,

since (IA1
◦ Z) = IZ−1(A1). Because Leb(|g|fZ) = E(|g ◦ Z|), we know that Y ∈ L1(Ω,F ,P).

Let LX,Z : B(R)2 → [0, 1] denote the joint law of X and Z.
We will now show that LX,Z(IR×Ac

1
) = 0. Because a previous result for laws extends to joint laws,∫

R2

IR×Ac
1
dLX,Z =

∫
R2

IR×Ac
1
fX,Z dLeb2 =

∫
R

[∫
R
IAc

1
(z)fX,Z(x, z) Leb(dx)

]
Leb(dz).

By rearranging terms,∫
R2

IR×Ac
1
dLX,Z =

∫
R
IAc

1
(z)

[∫
R
fX,Z(x, z) Leb(dx)

]
Leb(dz) =

∫
R
IAc

1
(z)fZ(z) Leb(dz).

Because Ac
1 = {fZ = 0} ∪ {fZ = ∞} is a union of disjoint sets, we know that IAc

1
= I{fZ=0} + I{fZ=∞}. Therefore,∫

R2

IR×Ac
1
dLX,Z =

∫
R
I{fZ=0}(z)fZ(z) Leb(dz) +

∫
R
I{fZ=∞}(z)fZ(z) Leb(dz) = 0,

since I{fZ=0}fZ = 0 and Leb(fZ) < ∞.
Let A2 = {z ∈ R |

∫
R |h(x)|fX,Z(x, z) Leb(dx) < ∞}, so that A2 ∈ B(R). We will now show that LX,Z(IR×Ac

2
) =

0. From a previous result about probability density functions,

E(|h ◦X|) =
∫
R
|h(x)|fX(x) Leb(dx) =

∫
R

[∫
R
|h(x)|fX,Z(x, z) Leb(dz)

]
Leb(dx) =

∫
R2

|h ◦ ρ1|fX,Z dLeb2 .

Because E(|h◦X|) < ∞, we know that Leb(Ac
2) = 0. Because a previous result about laws extends to joint laws,∫

R2

IR×Ac
2
dLX,Z =

∫
R2

IR×Ac
2
fX,Z dLeb2 =

∫
R

[∫
R
IAc

2
(z)fX,Z(x, z) Leb(dx)

]
Leb(dz).

47



By rearranging terms and the using fact that Leb(IAc
2
) = 0 implies Leb({IAc

2
fZ > 0}) ≤ Leb({IAc

2
> 0}) = 0,∫

R2

IR×Ac
2
dLX,Z =

∫
R
IAc

2
(z)fZ(z) Leb(dz) = 0.

Finally, we will show that E(Y IG) = E((h ◦X)IG) for every G ∈ σ(Z). Note that, for every G ∈ σ(Z),

IG(ω) = IZ−1(B)(ω) = (IB ◦ Z)(ω) =

{
1, if Z(ω) ∈ B,

0, if Z(ω) /∈ B,

for some B ∈ B(R). Let S = (R×A1)∩ (R×A2), so that Sc = (R×Ac
1)∪ (R×Ac

2) and LX,Z(ISc) = 0. Note that∫
Ω

(h ◦X)IG dP =

∫
Ω

(h ◦X)(IB ◦ Z) dP =

∫
R2

(h ◦ ρ1)(IB ◦ ρ2) dLX,Z =

∫
R2

(h ◦ ρ1)(IB ◦ ρ2)IS dLX,Z ,

since (h ◦ ρ1)(IB ◦ ρ2) and (h ◦ ρ1)(IB ◦ ρ2)IS are LX,Z-integrable and equal almost everywhere.
Because a previous result for probability density functions extends to joint probability density functions,∫

Ω

(h ◦X)IG dP =

∫
R2

(h ◦ ρ1)(IB ◦ ρ2)ISfX,Z dLeb2 .

Because IS(x, z) = IA1
(z)IA2

(z) for every (x, z) ∈ R2,∫
Ω

(h ◦X)IG dP =

∫
F

[∫
R
h(x)IB(z)IA1

(z)IA2
(z)fX,Z(x, z) Leb(dx)

]
Leb(dz),

where F = {z ∈ R |
∫
R |h(x)|IB(z)IA1(z)IA2(z)fX,Z(x, z) Leb(dx) < ∞}.

Because A2 ⊆ F , we know that IF IA2 = IA2 . Therefore,∫
Ω

(h ◦X)IG dP =

∫
R

[∫
R
h(x)IB(z)IA1(z)IA2(z)fX,Z(x, z) Leb(dx)

]
Leb(dz).

Because fX,Z(x, z)IA1(z) = fX|Z(x, z)fZ(z)IA1(z) for every (x, z) ∈ R2,∫
Ω

(h ◦X)IG dP =

∫
R

[∫
R
h(x)IB(z)IA1

(z)IA2
(z)fX|Z(x, z)fZ(z) Leb(dx)

]
Leb(dz).

By rearranging terms,∫
Ω

(h ◦X)IG dP =

∫
R
IB(z)fZ(z)IA1∩A2

(z)

[∫
R
h(x)fX|Z(x, z) Leb(dx)

]
Leb(dz).

For any z ∈ (A1 ∩A2), by the linearity of the integral with respect to Leb,

IA1(z)

∫
R
|h(x)|fX,Z(x, z) Leb(dx) = fZ(z)

∫
R
|h(x)|fX|Z(x, z) Leb(dx) < ∞.

Because fZ(z) > 0, we know that
∫
R |h(x)|fX|Z(x, z) Leb(dx) < ∞, so that z ∈ F g

2 .
Because (A1 ∩A2) ⊆ F g

2 implies IA1∩A2
= IA1∩A2

IF g
2
,∫

Ω

(h ◦X)IG dP =

∫
R
IB(z)fZ(z)IA1∩A2

(z)IF g
2
(z)

[∫
R
h(x)fX|Z(x, z) Leb(dx)

]
Leb(dz).

By the definition of g, ∫
Ω

(h ◦X)IG dP =

∫
R
IB(z)fZ(z)IA1∩A2(z)g(z) Leb(dz).

By once again applying results about probability density functions and joint laws,∫
Ω

(h ◦X)IG dP =

∫
Ω

(IB ◦ Z)(IA1∩A2
◦ Z)(g ◦ Z) dP =

∫
R2

(IB ◦ ρ2)(IA1∩A2
◦ ρ2)(g ◦ ρ2) dLX,Z .
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Because IS(x, z) = IA1(z)IA2(z) for every (x, z) ∈ R2,∫
Ω

(h ◦X)IG dP =

∫
R2

(g ◦ ρ2)(IB ◦ ρ2)IS dLX,Z .

Because (g ◦ ρ2)(IB ◦ ρ2) and (g ◦ ρ2)(IB ◦ ρ2)IS are LX,Z-integrable functions that are equal almost everywhere,∫
Ω

(h ◦X)IG dP =

∫
R2

(g ◦ ρ2)(IB ◦ ρ2) dLX,Z =

∫
Ω

(g ◦ Z)(IB ◦ Z) dP =

∫
Ω

Y IG dP,

which completes the proof.
Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . For the remainder of this text, we let

E(X | G) denote an arbitrary version of the conditional expectation of X given G.
Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . Note that E(E(X | G)) = E(E(X | G)IΩ) =

E(XIΩ) = E(X).
Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . Note that if X is G-measurable, then

X = E(X | G) almost surely.
Consider a random variable X ∈ L1(Ω,F ,P) and let Y = E(X)IΩ. We will now show that Y = E(X | {∅,Ω})

almost surely. For every B ∈ B(R), we have Y −1(B) = ∅ if E(X) /∈ B and Y −1(B) = Ω if E(X) ∈ B. Furthermore,
E(|Y |) = E(|E(X)IΩ|) = E(|X|) < ∞. Therefore, Y ∈ L1(Ω, {∅,Ω},P). Finally, E(Y IΩ) = E(E(X)IΩIΩ) = E(XIΩ)
and E(Y I∅) = 0 = E(XI∅).

Consider the probability triple (Ω,F ,P), a random variable X : Ω → R, and a σ-algebra G ⊆ F . We will now
show that if X = 0 almost surely, then 0 = E(X | G) almost surely, where 0 denotes the zero function. Clearly,
0 ∈ L1(Ω,G,P). For every G ∈ G, because P(XIG = 0) = 1, we know that E(XIG) = 0 = E(0IG).

Consider the random variables X1 ∈ L1(Ω,F ,P) and X2 ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . We will now
show that a1E(X1 | G) + a2E(X2 | G) = E(a1X1 + a2X2 | G) almost surely for every a1, a2 ∈ R.

Because L1(Ω,G,P) is a vector space, we know that a1E(X1 | G) + a2E(X2 | G) ∈ L1(Ω,G,P). For every G ∈ G,

E((a1E(X1 | G) + a2E(X2 | G))IG) = a1E(E(X1 | G)IG) + a2E(E(X2 | G)IG).

From the definition of a version of the conditional expectation,

E((a1E(X1 | G) + a2E(X2 | G))IG) = a1E(X1IG) + a2E(X2IG) = E((a1X1 + a2X2)IG).

Consider the random variables X1 ∈ L1(Ω,F ,P) and X2 ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . We will now
show that if X1 = X2 almost surely, then E(X1 | G) = E(X2 | G) almost surely. Because P(X1 −X2 = 0) = 1, we
know that P(E(X1 −X2 | G) = 0) = 1. Therefore, by linearity, P(E(X1 | G) = E(X2 | G)) = 1.

Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . We will again show that if X ≥ 0, then
P(E(X | G) ≥ 0) = 1.

In order to find a contradiction, suppose that P(E(X | G) ≥ 0) < 1, so that P(E(X | G) < 0) > 0. Let
An = {E(X | G) < −n−1} = E(X | G)−1((−∞,−n−1)), so that An ⊆ An+1 and ∪nAn = {E(X | G) < 0}. Since
An ↑ {E(X | G) < 0}, the monotone-convergence property of measure guarantees that P(An) ↑ P(E(X | G) < 0).
Because we supposed that P(E(X | G) < 0) > 0, there is an n ∈ N such that P(An) = P(E(X | G) < −n−1) > 0.
Consider the random variable E(X | G)IAn given by

(E(X | G)IAn
)(ω) = E(X | G)(ω)IAn

(ω) =

{
E(X | G)(ω), if E(X | G)(ω) < −n−1,
0, if E(X | G)(ω) ≥ −n−1.

Because E(X | G)IAn < −n−1IAn , we know that E(E(X | G)IAn) ≤ −n−1P(An) < 0. Because X ≥ 0, we know that
E(XIAn

) ≥ 0. However, An ∈ G, so that E(XIAn
) = E(E(X | G)IAn

). Because this is a contradiction, we know
that P(E(X | G) ≥ 0) = 1.

Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra G ⊆ F . We will now show that |E(X | G)| ≤
E(|X| | G) almost surely. By the linearity of conditional expectation,

P
(
|E(X | G)| =

∣∣E(X+ −X− | G)
∣∣ = ∣∣E(X+ | G)− E(X− | G)

∣∣) = 1,

P
(
E(|X| | G) = E(X+ +X− | G) = E(X+ | G) + E(X− | G)

)
= 1.

By the triangle inequality, |E(X+ | G)− E(X− | G)| ≤ |E(X+ | G)|+ |E(X− | G)|.
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Because P(|E(X+ | G)| = E(X+ | G)) = 1 and P(|E(X− | G)| = E(X− | G)) = 1,

P
(
|E(X | G)| ≤

∣∣E(X+ | G)
∣∣+ ∣∣E(X− | G)

∣∣ = E(X+ | G) + E(X− | G) = E(|X| | G)
)
= 1.

Consider a sequence of non-negative random variables (Xn ∈ L1(Ω,F ,P) | n ∈ N), a non-negative random
variable X ∈ L1(Ω,F ,P), and a σ-algebra G ⊆ F . The conditional monotone-convergence theorem states that if
Xn ↑ X, then P(E(Xn | G)IA ↑ E(X | G)) = 1, where A ∈ G is a set such that P(A) = 1.

We will now show this theorem. Because Xn is a non-negative random variable, P(E(Xn | G) ≥ 0) = 1. For
every n ∈ N, because Xn+1 −Xn is non-negative and E(Xn+1 | G)− E(Xn | G) = E(Xn+1 −Xn | G) almost surely,
P(E(Xn+1 | G)− E(Xn | G) ≥ 0) = 1.

Let Ac =
⋃

n{E(Xn | G) < 0} ∪ {E(Xn+1 | G)− E(Xn | G) < 0}. Note that A ∈ G and P(A) = 1, since

P(Ac) ≤
∑
n

P(E(Xn | G) < 0) + P(E(Xn+1 | G)− E(Xn | G) < 0) = 0.

For every n ∈ N, note that E(Xn | G)IA ≥ 0 and E(Xn+1 | G)IA ≥ E(Xn | G)IA.
Let Y = lim supn→∞ E(Xn | G)IA. For every G ∈ G, because every non-decreasing sequence of real numbers

converges (possibly to infinity), we know that E(Xn | G)IAIG ↑ Y IG, which also implies E(Xn | G)IA ↑ Y . By the
monotone-convergence theorem, we know that E(E(Xn | G)IAIG) ↑ E(Y IG).

For every n ∈ N and G ∈ G, we have (A ∩G) ∈ G and P(XnIGIAc ̸= 0) = 0, so that

E(E(Xn | G)IAIG) = E(E(Xn | G)IA∩G) = E(XnIA∩G) = E(XnIAIG) + E(XnIAcIG) = E(XnIG),

which implies E(XnIG) ↑ E(Y IG). Since XnIG ↑ XIG, we also know that E(XnIG) ↑ E(XIG), so that E(Y IG) =
E(XIG). Because Y is G-measurable and Ω ∈ G, we know that Y = E(X | G) almost surely.

Consider a sequence of non-negative random variables (Xn ∈ L1(Ω,F ,P) | n ∈ N) and a σ-algebra G ⊆ F . The
conditional Fatou lemma states that if E(lim infn→∞ Xn) < ∞, then

P
(
E
(
lim inf
n→∞

Xn | G
)
≤ lim inf

n→∞
E(Xn | G)

)
= 1.

We will now show this lemma. For any m ∈ N, consider the function Zm = infn≥m Xn, such that

lim inf
n→∞

Xn = lim
m→∞

inf
n≥m

Xn = lim
m→∞

Zm.

Because Zm ≤ Zm+1 for every m ∈ N, we have Zm ↑ lim infn→∞ Xn. Furthermore, Zm ≥ 0 and Zm ∈ L1(Ω,F ,P)
for every m ∈ N. Therefore, by the conditional monotone-convergence theorem,

P
(
E(Zm | G)IA ↑ E

(
lim inf
n→∞

Xn | G
))

= 1,

where A ∈ G and P(A) = 1.
For any n ≥ m, note that Xn ≥ Zm. Therefore, P (E(Xn − Zm | G) ≥ 0) = 1 and P (E(Xn | G) ≥ E(Zm | G)) = 1.

Furthermore, for every m ∈ N, because P(Ac) = 0,

P
(

inf
n≥m

E(Xn | G) ≥ E(Zm | G)IA
)

= 1.

By taking the limit of both sides of the previous inequation when m → ∞,

P
(
lim inf
n→∞

E(Xn | G) ≥ E
(
lim inf
n→∞

Xn | G
))

= 1.

Consider a sequence of non-negative random variables (Xn ∈ L1(Ω,F ,P) | n ∈ N), a σ-algebra G ⊆ F , and a
non-negative random variable Y ∈ L1(Ω,F ,P) such that Xn ≤ Y for every n ∈ N. The reverse conditional Fatou
lemma states that

P
(
E
(
lim sup
n→∞

Xn | G
)

≥ lim sup
n→∞

E(Xn | G)
)

= 1.

We will now show this lemma. Because Xn ≤ Y for every n ∈ N, we know that E(lim supn→∞ Xn) ≤ E(Y ) < ∞.
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For every n ∈ N, consider the non-negative function Zn = Y − Xn, so that Zn ∈ L1(Ω,F ,P). From the
conditional Fatou lemma, since E(lim infn→∞ Zn) < ∞,

P
(
E
(
lim inf
n→∞

Y −Xn | G
)
≤ lim inf

n→∞
E(Y −Xn | G)

)
= 1.

For every n ∈ N, by moving constants outside the corresponding limits and linearity,

P
(
E (Y | G) + E

(
lim inf
n→∞

−Xn | G
)
≤ E(Y | G) + lim inf

n→∞
−E(Xn | G)

)
= 1.

By the relationship between limit inferior and limit superior and linearity,

P
(
E (Y | G)− E

(
lim sup
n→∞

Xn | G
)

≤ E(Y | G)− lim sup
n→∞

E(Xn | G)
)

= 1.

The proof is completed by reorganizing terms in the inequation above.
Consider a probability triple (Ω,F ,P), a sequence of random variables (Xn | n ∈ N), a σ-algebra G ⊆ F , a

random variable X, and a non-negative random variable V ∈ L1(Ω,F ,P) such that |Xn| ≤ V for every n ∈ N. The
conditional dominated convergence theorem states that if P (limn→∞ Xn = X) = 1, then X ∈ L1(Ω,F ,P) and

P
(
lim
n→∞

E(Xn | G)IC = E(X | G)
)
= 1.

where C ∈ G is a set such that P(C) = 1.
We will now show this theorem. Because |Xn| ≤ V for every n ∈ N, we know that E(|Xn|) ≤ E(V ) < ∞, which

implies that Xn ∈ L1(Ω,F ,P). Because the function | · | is continuous, we know that P(limn→∞ |Xn| = |X|) = 1.
Because P (limn→∞ |Xn| ≤ V ) = 1, we know that P (|X| ≤ V ) = 1. Because P(|X| ̸= |X|I{|X|≤V }) = 0, we know
that E(|X|) = E(|X|I{|X|≤V }) ≤ E(V ) < ∞, so that X ∈ L1(Ω,F ,P).

Since P(|Xn| ≤ V ) = 1 and P(|X| ≤ V ) = 1, we have P(|Xn|+ |X| ≤ 2V ) = 1. By the triangle inequality,

|Xn −X| = |Xn + (−X)| ≤ |Xn|+ |X|,

which implies that P(|Xn −X| ≤ 2V ) = 1.
Let A = {|Xn −X| ≤ 2V }, so that P(|Xn −X| = |Xn −X|IA) = 1 and E(|Xn −X|) = E(|Xn −X|IA). Because

|Xn − X|IA is an F-measurable function and |Xn − X|IA ≤ 2V for every n ∈ N, where 2V : Ω → [0,∞] is an
F-measurable function such that E(2V ) = 2E(V ) < ∞, the reverse conditional Fatou lemma states that

P
(
E
(
lim sup
n→∞

|Xn −X|IA | G
)

≥ lim sup
n→∞

E (|Xn −X|IA | G)
)

= 1.

Since | · | is continuous, we have P (limn→∞ |Xn −X|IA = 0) = 1, where 0 is the zero function. Therefore,

P
(
lim sup
n→∞

|Xn −X|IA = lim inf
n→∞

|Xn −X|IA = lim
n→∞

|Xn −X|IA = 0

)
= 1.

Because each of the random variables above is almost surely equal to zero,

P
(
E
(
lim sup
n→∞

|Xn −X|IA | G
)

= E
(
lim inf
n→∞

|Xn −X|IA | G
)
= E

(
lim

n→∞
|Xn −X|IA | G

)
= 0

)
= 1.

Since (Xn − X)IA ∈ L1(Ω,F ,P) for every n ∈ N, we have P (|E((Xn −X)IA | G)| ≤ E (|Xn −X| IA | G)) = 1.
By taking the limit superior of both sides of the previous inequation and employing the previous results,

P
(
0 ≤ lim sup

n→∞
|E((Xn −X)IA | G)| ≤ lim sup

n→∞
E (|Xn −X| IA | G) ≤ E

(
lim sup
n→∞

|Xn −X|IA | G
)

= 0

)
= 1.

Therefore, by the relationship between limits,

P
(
lim inf
n→∞

E((Xn −X)IA | G) = lim sup
n→∞

E((Xn −X)IA | G) = 0

)
= 1.
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Because P ((Xn −X)IA = (Xn −X)) = 1 implies P (E((Xn −X)IA | G) = E(Xn −X | G)) = 1.

P
(
lim inf
n→∞

E(Xn −X | G) = lim sup
n→∞

E(Xn −X | G) = 0

)
= 1.

By the linearity of conditional expectation,

P
(
lim inf
n→∞

E(Xn | G) = lim sup
n→∞

E(Xn | G) = E(X | G)
)

= 1.

Let C = {ω ∈ Ω | limn→∞ E(Xn | G)(ω) exists in R}. Because E(Xn | G) is G-measurable for every n ∈ N, recall
that C ∈ G. Because E(|E(X | G)|) < ∞, recall that P (|E(X | G)| < ∞) = 1, so that P(C) = 1. Furthermore,

P
(
lim

n→∞
E(Xn | G)IC = E(X | G)

)
= 1.

Consider a random variable X ∈ L1(Ω,F ,P), a σ-algebra G ⊆ F , and a convex function ϕ : R → R. The
conditional Jensen’s inequality states that if (ϕ ◦X) ∈ L1(Ω,F ,P), then P ((ϕ ◦ E(X | G)) ≤ E((ϕ ◦X) | G)) = 1.

We will now show this inequality. Because ϕ is a convex function, it is possible to show that there is a sequence
((an, bn) ∈ R2 | n ∈ N) such that ϕ(x) = supn anx+ bn for every x ∈ R. Therefore, ϕ(x) ≥ anx+ bn for every x ∈ R
and n ∈ N. Furthermore, if (ϕ ◦X) ∈ L1(Ω,F ,P), then (ϕ ◦X)− anX − bn ≥ 0 for every n ∈ N and

P (E((ϕ ◦X)− anX − bn | G) ≥ 0) = 1.

For every n ∈ N, by the linearity of conditional expectation,

P (E((ϕ ◦X) | G) ≥ anE(X | G) + bn) = 1.

By taking the supremum of both sides of the previous inequation,

P
(
E((ϕ ◦X) | G) ≥ sup

n
anE(X | G) + bn = (ϕ ◦ E(X | G))

)
= 1.

Consider a random variable X ∈ Lp(Ω,F ,P), where p ∈ [1,∞), and a σ-algebra G ⊆ F . We will now show that
∥E(X | G)∥p ≤ ∥X∥p.

From the monotonicity of norm, we know that X ∈ L1(Ω,F ,P). Consider the convex function ϕ : R → R
given by ϕ(x) = |x|p, so that (ϕ ◦X) = |X|p. Because E(|X|p) < ∞, we know that |X|p ∈ L1(Ω,F ,P). From the
conditional Jensen’s inequality, P (|E(X | G)|p ≤ E(|X|p | G)) = 1. Let A = {|E(X | G)|p ≤ E(|X|p | G)}.

Because |E(X | G)|p is non-negative and G-measurable and E(|X|p | G) ∈ L1(Ω,G,P),

E (|E(X | G)|p) = E (|E(X | G)|pIA) ≤ E (E(|X|p | G)IA) = E (E(|X|p | G)) = E(|X|p).

Consider a random variable X ∈ L1(Ω,F ,P), a σ-algebra G ⊆ F , and a σ-algebra H ⊆ G. The tower property
states that E(E(X | G) | H) = E(X | H) almost surely. We will now show this property.

Because E(X | G) ∈ L1(Ω,G,P), we know that E(E(X | G) | H) ∈ L1(Ω,H,P). For every H ∈ H, since H ∈ G,∫
Ω

E(E(X | G) | H)IH dP =

∫
Ω

E(X | G)IH dP =

∫
Ω

XIH dP,

as we wanted to show. For the remainder of this text, we let E(X | G | H) denote E(E(X | G) | H).
Consider a random variable X ∈ L1(Ω,F ,P), a σ-algebra G ⊆ F , and a G-measurable random variable Z : Ω →

R. We will now show that if E(|ZX|) < ∞, then E(ZX | G) = ZE(X | G) almost surely.
We will start by assuming that X ≥ 0.
First, suppose that Z = IA, where A ∈ G. For every G ∈ G, since ZX ∈ L1(Ω,F ,P) and A ∩G ∈ G,

E(ZXIG) = E(XIA∩G) = E(E(X | G)IA∩G) = E(ZE(X | G)IG).

Because ZE(X | G) is G-measurable and E(ZE(X | G)) = E(ZX) < ∞, we know that ZE(X | G) = E(ZX | G)
almost surely.
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Next, suppose that Z is a simple function that can be written as Z =
∑m

k=1 akIAk
for some fixed a1, a2, . . . , am ∈

[0,∞] and A1, A2, . . . , Am ∈ G. By the linearity of the conditional expectation and the previous step,

P

(
E(ZX | G) = E

(
m∑

k=1

akIAk
X | G

)
=

m∑
k=1

akE (IAk
X | G) =

m∑
k=1

akIAk
E (X | G) = ZE(X | G)

)
= 1,

where we also used the fact that E(IAk
X) ≤ E(X) < ∞.

Next, suppose that Z is a non-negative G-measurable function. For any n ∈ N, consider the simple function
Zn = αn ◦ Z, where αn is the n-th staircase function.

For every G ∈ G, since Zn ↑ Z and XIG ≥ 0, note that ZnXIG ↑ ZXIG. For every G ∈ G, since Zn ↑ Z and
|E(X | G)|IG ≥ 0, note that Zn|E(X | G)|IG ↑ Z|E(X | G)|IG. Therefore, by the monotone-convergence theorem,
we know that E(ZnXIG) ↑ E(ZXIG) and E(Zn|E(X | G)|IG) ↑ E(Z|E(X | G)|IG).

Because Zn is a simple G-measurable function and E(ZnX) ≤ E(ZX) < ∞, note that E(ZnX | G) = ZnE(X | G)
almost surely. Because ZnE(X | G) = Zn|E(X | G)| almost surely, E(ZnXIG) = E(Zn|E(X | G)|IG) for every
G ∈ G. Therefore, the previous result implies that E(ZXIG) = E(Z|E(X | G)|IG) for every G ∈ G, so that
Z|E(X | G)| = E(ZX | G) almost surely. Because Z|E(X | G)| = ZE(X | G) almost surely, this step is complete.

Next, suppose that Z is a G-measurable function. Recall that Z = Z+−Z−, where Z+ and Z− are non-negative
G-measurable functions. By the linearity of the conditional expectation and the previous step,

P
(
E(ZX | G) = E(Z+X | G)− E(Z−X | G) = Z+E(X | G)− Z−E(X | G) = ZE(X | G)

)
= 1,

where we have also used the fact that E(Z+X) + E(Z−X) = E((Z+ + Z−)X) = E(|ZX|) < ∞.
Finally, suppose that X ∈ L1(Ω,F ,P). Recall that X = X+ − X−, where X+ and X− are non-negative

F-measurable functions By the linearity of the conditional expectation,

P
(
E(ZX | G) = E(ZX+ | G)− E(ZX− | G) = ZE(X+ | G)− ZE(X− | G) = ZE(X | G)

)
= 1,

where we have also used the fact that E(|Z|X+) + E(|Z|X−) = E(|Z|(X+ +X−)) = E(|ZX|) < ∞.
Consider a random variable X ∈ L1(Ω,F ,P), a σ-algebra G ⊆ F , and a σ-algebra H ⊆ F . We will now show

that if H and σ(σ(X) ∪ G) are independent, then E(X | σ(G ∪ H)) = E(X | G) almost surely.
We will start by assuming that X ≥ 0.
For every G ∈ G, note that |E(X | G)|IG is G-measurable. Consider the Borel function f : R2 → R given by

f(a, b) = ab. Since (XIG)(ω) = f(X(ω), IG(ω)) for every ω ∈ Ω, we also know that XIG is σ(σ(X)∪G)-measurable.
For every G ∈ G and H ∈ H, we know that XIG and IH are independent, since IH is H-measurable. We also

know that |E(X | G)|IG and IH are independent, since G ⊆ σ(σ(X) ∪ G).
For every G ∈ G and H ∈ H, because XIG ∈ L1(Ω,F ,P), |E(X | G)|IG ∈ L1(Ω,F ,P), and IH ∈ L1(Ω,F ,P),

E(X;G ∩H) = E(XIGIH) = E(XIG)E(IH) = E(|E(X | G)|IG)E(IH) = E(|E(X | G)|IGIH) = E(|E(X | G)|;G ∩H).

Consider the set I = {G ∩H | G ∈ G and H ∈ H}. Suppose that (G1 ∩H1) ∈ I and (G2 ∩H2) ∈ I, and note
that (G1 ∩H1) ∩ (G2 ∩H2) = (G1 ∩G2) ∩ (H1 ∩H2). Because (G1 ∩G2) ∈ G and (H1 ∩H2) ∈ H, we know that
((G1 ∩H1) ∩ (G2 ∩H2)) ∈ I, so that I is a π-system.

Since Ω ∈ G, we know that H ⊆ I. Since Ω ∈ H, we know that G ⊆ I. Therefore, G ∪ H ⊆ I, so that
σ(G ∪ H) ⊆ σ(I). For every G ∈ G and H ∈ H, we know that (G ∩H) ∈ σ(G ∪ H). Therefore I ⊆ σ(G ∪ H), so
that σ(I) ⊆ σ(G ∪ H). In conclusion, σ(I) = σ(G ∪ H).

Consider the measure (XP) : F → [0,∞] given by (XP)(A) = E(X;A) and the measure (|E(X | G)|P) : F →
[0,∞] given by (|E(X | G)|P)(A) = E(|E(X | G)|;A). For every I ∈ I, we know that (XP)(I) = (|E(X | G)|P)(I).
In particular, we know that (XP)(Ω) = E(X) = (|E(X | G)|P)(Ω) < ∞. Therefore, from a previous result, we
know that E(XIA) = E(|E(X | G)|IA) for every A ∈ σ(G ∪ H). Because |E(X | G)| is σ(G ∪ H)-measurable and
E(|E(X | G)|) = E(X) < ∞, we know that |E(X | G)| = E(X | σ(G∪H)) almost surely. Since |E(X | G)| = E(X | G)
almost surely, this step is complete.

Finally, suppose X ∈ L1(Ω,F ,P). Recall that X = X+ −X−, where X+ ∈ L1(Ω,F ,P) and X− ∈ L1(Ω,F ,P)
are non-negative. By the linearity of the conditional expectation,

P
(
E(X | σ(G ∪ H)) = E(X+ | σ(G ∪ H))− E(X− | σ(G ∪ H)) = E(X+ | G)− E(X− | G) = E(X | G)

)
= 1,

where we used the fact that σ(σ(X+) ∪ G) ⊆ σ(σ(X) ∪ G) and σ(σ(X−) ∪ G) ⊆ σ(σ(X) ∪ G).
Consider a random variable X ∈ L1(Ω,F ,P) and a σ-algebra H ⊆ F . We will now show that if H and σ(X)

are independent, then E(X | H) = E(X) almost surely.
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Let G = {∅,Ω}. Using the previous result, we know that E(X | H) = E(X | G) almost surely. Based on a
previous result, we know that E(X) = E(X | G) almost surely.

Consider the probability triple (Ω,F ,P) and a σ-algebra G ⊆ F . For every F ∈ F , we let P(F | G) denote a
version of the conditional expectation E(IF | G) of IF given G, so that P(F | G) = E(IF | G) almost surely. Note
that P(F | {∅,Ω}) = E(IF | {∅,Ω}) = E(IF ) = P(F ) almost surely.

Consider a probability triple (Ω,F ,P) and the random variables IF : Ω → {0, 1} and Z : Ω → Z, where F ∈ F
and Z = {z1, . . . , zn}. Furthermore, suppose P(Z = z) > 0 for every z ∈ Z. Recall that if E : Z → [0, 1] is given by

E(z) =
P(IF = 1, Z = z)

P(Z = z)
=

P(F ∩ {Z = z})
P(Z = z)

,

then E ◦ Z = E(IF | Z) = P(F | Z) almost surely.
Consider a sequence of events (Fn ∈ F | n ∈ N) such that Fn ∩Fm = ∅ for every n ̸= m. We will now show that

P (
⋃

n Fn | G) =
∑

n IAP (Fn | G) almost surely, where A ∈ G is a set such that P(A) = 1.
For every k ∈ N, by the linearity of conditional expectation,

P

(
P

(
k⋃

i=0

Fi | G

)
= E

(
I⋃k

i=0 Fi
| G
)
= E

(
k∑

i=0

IFi
| G

)
=

k∑
i=0

E (IFi
| G) =

k∑
i=0

P (Fi | G)

)
= 1.

Because I⋃k
i=0 Fi

↑ I⋃
n Fn

with respect to k, by the conditional monotone-convergence theorem,

P

(∑
n

IAP (Fn | G) = lim
k→∞

k∑
i=0

IAP (Fi | G) = lim
k→∞

E
(
I⋃k

i=0 Fi
| G
)
IA = E

(
I⋃

n Fn
| G
)
= P

(⋃
n

Fn | G

))
= 1,

where A ∈ G is a set such that P(A) = 1.
Consider the probability triple (Ω,F ,P) and a σ-algebra G ⊆ F . A function PG : Ω × F → [0, 1] is called a

regular conditional probability given G if

• There is a set A ∈ F such that P(A) = 1 and, for every ω ∈ A, the function PG(ω, ·) : F → [0, 1] is a
probability measure on (Ω,F).

• For every F ∈ F , the function PG(·, F ) : Ω → [0, 1] is a version of the conditional expectation E(IF | G) of IF
given G, so that PG(·, F ) = P(F | G) = E(IF | G) almost surely.

It can be shown that a regular conditional probability given G exists under very permissive assumptions.
Consider the probability triple (Ω,F ,P), a bounded Borel function h : Rn → R, and the independent random

variables X1, X2, . . . , Xn. Let h(X1, X2, . . . , Xn) : Ω → R be given by

h(X1, X2, . . . , Xn)(ω) = h(X1(ω), X2(ω), . . . , Xn(ω)).

Furthermore, for every x1 ∈ R, let h(x1, X2, . . . , Xn) : Ω → R be given by

h(x1, X2, . . . , Xn)(ω) = h(x1, X2(ω), . . . , Xn(ω)).

Finally, let γ : R → R be given by

γ(x1) = E(h(x1, X2, . . . , Xn)).

We will now show that γ(X1) = E(h(X1, X2, . . . , Xn) | X1) almost surely, where γ(X1) = γ ◦X1.
For every (x1, x2, . . . , xn) ∈ Rn, let hx1

: Rn−1 → R be given by hx1
(x2, . . . , xn) = h(x1, x2, . . . , xn), and

recall that hx1 is a bounded Borel function. Furthermore, recall that the function Z : Ω → Rn given by
Z(ω) = (X1(ω), X2(ω), . . . , Xn(ω)) is F/B(R)n-measurable and that the function Y : Ω → Rn−1 given by
Y (ω) = (X2(ω), . . . , Xn(ω)) is F/B(R)n−1-measurable.

For every x1 ∈ R, note that h(X1, X2, . . . , Xn) = h ◦ Z and h(x1, X2, . . . , Xn) = hx1
◦ Y . Because h and hx1

are Borel, for every B ∈ B(R), we know that Z−1(h−1(B)) ∈ F and Y −1(h−1
x1

(B)) ∈ F . Because h and hx1
are

bounded, h(X1, X2, . . . , Xn) ∈ L1(Ω,F ,P) and h(x1, X2, . . . , Xn) ∈ L1(Ω,F ,P).
For every k ∈ {1, . . . , n}, let Lk : B(R) → [0, 1] denote the law of Xk. Because the random variables

X1, X2, . . . , Xn are independent, recall that the joint law of Xi, Xi+1, . . . , Xn is given by Li × Li+1 × · · · × Ln.
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For every x1 ∈ R, because a previous result for laws extends to joint laws,

γ(x1) =

∫
Ω

h(x1, X2, . . . , Xn) dP =

∫
Ω

(hx1
◦ Y ) dP =

∫
Rn−1

hx1
d(L2 × · · · × Ln).

Because hx1 is a bounded Borel function,

γ(x1) =

∫
R
· · ·
∫
R
h(x1, x2, . . . , xn)Ln(dxn) · · · L2(dx2),

which also implies that γ is B(R)-measurable, so that γ(X1) is σ(X1)-measurable.
For every B ∈ B(R), recall that IX−1

1 (B) = IB(X1). Therefore, for every X−1
1 (B) ∈ σ(X1),∫

Ω

h(X1, X2, . . . , Xn)IX−1
1 (B) dP =

∫
Rn

hIB(ρ1) d(L1 × · · · × Ln).

Because hIB(ρ1) is bounded Borel function,∫
Ω

h(X1, X2, . . . , Xn)IX−1
1 (B) dP =

∫
R
IB(x1)

[∫
R
· · ·
∫
R
h(x1, x2, . . . , xn)Ln(dxn) · · · L2(dx2)

]
L1(dx1).

Using the previous expression for γ(x1) and a previous result for laws,∫
Ω

h(X1, X2, . . . , Xn)IX−1
1 (B) dP =

∫
R
IB(x1)γ(x1)L1(dx1) =

∫
Ω

γ(X1)IX−1
1 (B) dP.

Because E(γ(X1)) = E(h(X1, X2, . . . , Xn)) < ∞, the proof is complete.
Consider a measurable space (Ω,F) and the sequence of σ-algebras (Fn ⊆ F | n ∈ N+). For every n ∈ N+, let

In = {∩n
i=1Fi | Fi ∈ Fi for every i ∈ {1, . . . , n}}. We will now show that I = ∪nIn is a π-system on Ω such that

σ(I) = σ(F1,F2, . . .), where σ(F1,F2, . . .) = σ({F1,F2, . . .}) = σ(∪nFn).
For some n ∈ N+, consider the sets B ∈ In and C ∈ In such that B = ∩n

i=1Fi and C = ∩n
i=1F

′
i , where Fi ∈ Fi

and F ′
i ∈ Fi for every i ∈ {1, . . . , n}. In that case,

B ∩ C =

(
n⋂

i=1

Fi

)
∩

(
n⋂

i=1

F ′
i

)
=

n⋂
i=1

(Fi ∩ F ′
i ).

Because (Fi ∩ F ′
i ) ∈ Fi for every i ∈ {1, . . . , n}, we know that (B ∩ C) ∈ In. Therefore, In is a π-system on Ω.

Because Ω ∈ Fn for every n ∈ N+, we know that In ⊆ In+1 . Therefore, I = ∪nIn is also a π-system on Ω.
Since Ω ∈ Fn for every n ∈ N+, we also know that Fn ⊆ I for every n ∈ N+. Therefore, ∪nFn ⊆ I and

σ(∪nFn) ⊆ σ(I). Consider a set (∩m
i=1Fi) ∈ I, where m ∈ N+ and Fi ∈ Fi for every i ∈ {1, . . . ,m}. Clearly,

Fi ∈ ∪nFn for every i ∈ {1, . . . ,m}. Because σ(∪nFn) is a σ-algebra, we know that (∩m
i=1Fi) ∈ σ(∪nFn), which

implies I ⊆ σ(∪nFn) and σ(I) ⊆ σ(∪nFn), completing the proof.
Consider a probability triple (Ω,F ,P) and the sequence of independent σ-algebras (Fn ⊆ F | n ∈ N+). We will

now show that σ(F1, . . . ,Fk) and σ(Fk+1,Fk+2, . . .) are independent for every k ∈ N+.
From the previous proof, we know that I = {∩k

i=1Fi | Fi ∈ Fi for every i ∈ {1, . . . , k}} is a π-system on Ω such
that σ(I) = σ(F1, . . . ,Fk). We also know that J = ∪n{∩k+n

i=k+1Fi | Fi ∈ Fi for every i ∈ {k + 1, . . . , k + n}} is a
π-system on Ω such that σ(J ) = σ(Fk+1,Fk+2, . . .).

Consider a set (∩k
i=1Fi) ∈ I, where Fi ∈ Fi for every i ∈ {1, . . . , k}, and a set (∩k+n

i=k+1Fi) ∈ J , where n ∈
N+ and Fi ∈ Fi for every i ∈ {k + 1, . . . , k + n}. Because F1, . . . ,Fk+n are independent,

P

((
k⋂

i=1

Fi

)
∩

(
k+n⋂

i=k+1

Fi

))
=

(
k∏

i=1

P (Fi)

)(
k+n∏

i=k+1

P (Fi)

)
= P

(
k⋂

i=1

Fi

)
P

(
k+n⋂

i=k+1

Fi

)
,

which implies that I and J are independent. Because σ(I) and σ(J ) are then independent, the proof is complete.
Consider a probability triple (Ω,F ,P) and a sequence of independent identically distributed random variables

(Xn : Ω → R | n ∈ N+), each of which has the same law LX as the random variable X ∈ L1(Ω,F ,P). Let
Sn : Ω → R be a random variable given by Sn = X1 + · · ·+Xn. We will now show that

E(Xk | Sn) = E(Xk | Sn, Sn+1, . . .) =
Sn

n
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almost surely, where n ∈ N+ and k ∈ {1, . . . , n}.
We will start by showing that σ(Sn, Sn+1, . . .) = σ(Sn, Xn+1, Xn+2, . . .) for every n ∈ N+. For every i ∈ N+,

note that Sn+i = Sn +Xn+1 + · · ·+Xn+i, so that σ(Sn+i) ⊆ σ(Sn, Xn+1, Xn+2, . . .). Therefore, σ(Sn, Sn+1, . . .) ⊆
σ(Sn, Xn+1, Xn+2, . . .). For every i ∈ N+, note that Xn+i = Sn+i − Sn+i−1, so that σ(Xn+i) ⊆ σ(Sn, Sn+1, . . .).
Therefore, σ(Sn, Xn+1, Xn+2, . . .) ⊆ σ(Sn, Sn+1, . . .).

Next, we will show that σ(Sn, Xk) and σ(Xn+1, Xn+2, . . .) are independent for every n ∈ N+ and k ∈ {1, . . . , n}.
Note that σ(Sn) ⊆ σ(X1, . . . , Xn). Therefore, σ(Sn, Xk) ⊆ σ(X1, . . . , Xn). From a previous result, we know that
σ(X1, . . . , Xn) and σ(Xn+1, Xn+2, . . .) are independent, so that σ(Sn, Xk) and σ(Xn+1, Xn+2, . . .) are independent.

By considering this independence, for every n ∈ N+ and k ∈ {1, . . . , n},

E (Xk | Sn, Sn+1, . . .) = E (Xk | Sn, Xn+1, Xn+2, . . .) = E (Xk | Sn)

almost surely.
For every n ∈ N+, recall that IS−1

n (B) = IB(Sn) for all B ∈ B(R). Since Xk ∈ L1(Ω,F ,P) for every k ∈ {1, . . . , n},∫
Ω

XkIS−1
n (B) dP =

∫
Ω

XkIB(Sn) dP =

∫
Ω

fB(Xk, X1, . . . , Xk−1, Xk+1, . . . , Xn) dP,

where fB : Rn → R is a Borel function given by fB(x1, . . . , xn) = x1IB(x1 + · · ·+ xn).
Because a previous result for laws extends to joint laws and X1, . . . , Xn are independent,∫

Ω

XkIS−1
n (B) dP =

∫
Rn

fB dLXk,X1,...,Xk−1,Xk+1,...,Xn
=

∫
Rn

fB dLn
X .

Therefore, for every n ∈ N+, B ∈ B(R), S−1
n (B) ∈ σ(Sn), and i, j ∈ {1, . . . , n},∫

Ω

E(Xi | Sn)IS−1
n (B) dP =

∫
Ω

XiIS−1
n (B) dP =

∫
Rn

fB dLn
X =

∫
Ω

XjIS−1
n (B) dP =

∫
Ω

E(Xj | Sn)IS−1
n (B) dP,

so that E(Xi | Sn) = E(Xj | Sn) almost surely.
Finally, for every n ∈ N+ and k ∈ {1, . . . , n},

nE(Xk | Sn) =

n∑
i=1

E(Xk | Sn) =

n∑
i=1

E(Xi | Sn) = E

(
n∑

i=1

Xi | Sn

)
= E(Sn | Sn) = Sn

almost surely, so that E(Xk | Sn) = Sn/n almost surely.

10 Martingales
Consider a probability triple (Ω,F ,P). A filtration (Fn)n is a sequence (Fn ⊆ F | n ∈ N) of σ-algebras such that
Fn ⊆ Fn+1 for every n ∈ N. In that case, we let F∞ = σ(F0,F1, . . .) = σ(∪nFn).

A filtered space (Ω,F , (Fn)n,P) is composed of a probability triple (Ω,F ,P) and a filtration (Fn)n. Intuitively,
at a given time n ∈ N, for every ω ∈ Ω, recall that knowing IFn

(ω) for every Fn ∈ Fn allows knowing Zn(ω) for
every Fn-measurable random variable Zn.

For any set C, recall that a set (or sequence) of random variables Y = (Yγ | γ ∈ C) on a probability triple
(Ω,F ,P) is called a stochastic process (parameterized by C).

Consider a probability triple (Ω,F ,P). The natural filtration (Fn)n of the stochastic process (Wn | n ∈ N) is
given by Fn = σ(W0, . . . ,Wn) for every n ∈ N. Intuitively, at a given time n ∈ N, for every ω ∈ Ω, recall that
knowing IFn

(ω) for every Fn ∈ σ(W0, . . . ,Wn) is equivalent to knowing W0(ω), . . . ,Wn(ω).
Consider a filtered space (Ω,F , (Fn)n,P). A stochastic process (Xn | n ∈ N) is called adapted (to the filtration

(Fn)n) if Xn is Fn-measurable for every n ∈ N. Note that if (Fn)n is the natural filtration of the stochastic process
(Wn | n ∈ N), then there is a Borel function fn : Rn+1 → R such that Xn = fn(W0, . . . ,Wn).

Consider a filtered space (Ω,F , (Fn)n,P).
A stochastic process (Xn | n ∈ N) is called a martingale if (Xn | n ∈ N) is adapted; E(|Xn|) < ∞ for every

n ∈ N; and E(Xn | Fn−1) = Xn−1 almost surely for every n ∈ N+.
A stochastic process (Xn | n ∈ N) is called a supermartingale if (Xn | n ∈ N) is adapted; E(|Xn|) < ∞ for every

n ∈ N; and E(Xn | Fn−1) ≤ Xn−1 almost surely for every n ∈ N+.
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A stochastic process (Xn | n ∈ N) is called a submartingale if (Xn | n ∈ N) is adapted; E(|Xn|) < ∞ for every
n ∈ N; and E(Xn | Fn−1) ≥ Xn−1 almost surely for every n ∈ N+.

Consider an adapted stochastic process (Xn | n ∈ N) and suppose that E(|Xn|) < ∞ for every n ∈ N. For every
n ∈ N+, note that E(Xn | Fn−1) = Xn−1 almost surely if and only if E(Xn | Fn−1) ≤ Xn−1 ≤ E(Xn | Fn−1) almost
surely. Therefore, (Xn | n ∈ N) is a martingale if and only if (Xn | n ∈ N) is a supermartingale and a submartingale.

If (Xn | n ∈ N) is a supermartingale, then (−Xn | n ∈ N) is adapted; E(|−Xn|) = E(|Xn|) < ∞ for every n ∈ N;
and E(−Xn | Fn−1) ≥ −Xn−1 almost surely for every n ∈ N+. Therefore, (−Xn | n ∈ N) is a submartingale.

If (Xn | n ∈ N) is a submartingale, then (−Xn | n ∈ N) is adapted; E(| −Xn|) = E(|Xn|) < ∞ for every n ∈ N;
and E(−Xn | Fn−1) ≤ −Xn−1 almost surely for every n ∈ N+. Therefore, (−Xn | n ∈ N) is a supermartingale.

Consider an adapted stochastic process (Xn | n ∈ N) and suppose that E(|Xn|) < ∞ for every n ∈ N. Further-
more, consider the stochastic process (Xn −X0 | n ∈ N). Because Xn −X0 is Fn-measurable for every n ∈ N, we
know that (Xn −X0 | n ∈ N) is adapted. Because L1(Ω,F ,P) is a vector space, we know that E(|Xn −X0|) < ∞
for every n ∈ N. By the linearity of conditional expectation,

E(Xn −X0 | Fn−1) = E(Xn | Fn−1)− E(X0 | Fn−1) = E(Xn | Fn−1)−X0

almost surely for every n ∈ N+. Therefore:

• For every n ∈ N+, E(Xn | Fn−1) = Xn−1 almost surely if and only if E(Xn−X0 | Fn−1) = Xn−1−X0 almost
surely. Therefore, (Xn | n ∈ N) is a martingale if and only if (Xn −X0 | n ∈ N) is a martingale.

• For every n ∈ N+, E(Xn | Fn−1) ≤ Xn−1 almost surely if and only if E(Xn−X0 | Fn−1) ≤ Xn−1−X0 almost
surely. Therefore, (Xn | n ∈ N) is a supermartingale if and only if (Xn −X0 | n ∈ N) is a supermartingale.

• For every n ∈ N+, E(Xn | Fn−1) ≥ Xn−1 almost surely if and only if E(Xn−X0 | Fn−1) ≥ Xn−1−X0 almost
surely. Therefore, (Xn | n ∈ N) is a submartingale if and only if (Xn −X0 | n ∈ N) is a submartingale.

Consequently, it is common to assume that a stochastic process (Xn | n ∈ N) has X0 = 0 and F0 = {∅,Ω}.
If (Xn | n ∈ N) is a martingale, n ∈ N+, and m < n, then

E(Xn | Fm) = E(Xn | Fn−1 | Fm) = E(E(Xn | Fn−1) | Fm) = E(Xn−1 | Fm)

almost surely. Therefore, almost surely,

E(Xn | Fm) = E(Xn−1 | Fm) = . . . = E(Xm+1 | Fm) = E(Xm | Fm) = Xm.

If (Xn | n ∈ N) is a supermartingale, n ∈ N+, and m < n, then

E(Xn | Fm) = E(Xn | Fn−1 | Fm) = E(E(Xn | Fn−1) | Fm) ≤ E(Xn−1 | Fm)

almost surely. Therefore, almost surely,

E(Xn | Fm) ≤ E(Xn−1 | Fm) ≤ . . . ≤ E(Xm+1 | Fm) ≤ E(Xm | Fm) = Xm.

If (Xn | n ∈ N) is a submartingale, n ∈ N+, and m < n, then

E(Xn | Fm) = E(Xn | Fn−1 | Fm) = E(E(Xn | Fn−1) | Fm) ≥ E(Xn−1 | Fm)

almost surely. Therefore, almost surely,

E(Xn | Fm) ≥ E(Xn−1 | Fm) ≥ . . . ≥ E(Xm+1 | Fm) ≥ E(Xm | Fm) = Xm.

The next three examples illustrate the definition of martingales.
Consider a probability triple (Ω,F ,P), a sequence of independent random variables (Xn ∈ L1(Ω,F ,P)) | n ∈

N+), and suppose that E(Xn) = 0 for every n ∈ N+. Let Sn = X1 + · · · +Xn for every n ∈ N+ and S0 = 0. We
will now show that (Sn | n ∈ N) is a martingale.

Let Fn = σ(X1, . . . , Xn) for every n ∈ N+ and F0 = {∅,Ω}. Clearly, (Sn | n ∈ N) is adapted to the filtration
(Fn)n. Because L1(Ω,F ,P) is a vector space, Sn ∈ L1(Ω,F ,P) for every n ∈ N. For every n ∈ N+,

E(Sn | Fn−1) = E(Sn−1 +Xn | Fn−1) = E(Sn−1 | Fn−1) + E(Xn | Fn−1) = Sn−1 + E(Xn) = Sn−1

almost surely, where we used the fact that σ(Xn) is independent of Fn−1 for every n ∈ N+.
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Consider a probability triple (Ω,F ,P), a sequence of independent random variables (Xn ∈ L1(Ω,F ,P) | n ∈ N+),
and suppose that E(Xn) = 1 for every n ∈ N+. Let Mn = X1 · · · · ·Xn for every n ∈ N+ and M0 = 1. We will now
show that (Mn | n ∈ N) is a martingale.

Let Fn = σ(X1, . . . , Xn) for every n ∈ N+ and F0 = {∅,Ω}. Clearly, (Mn | n ∈ N) is adapted to the filtration
(Fn)n. Because X1, . . . , Xn are independent, Mn ∈ L1(Ω,F ,P) for every n ∈ N. For every n ∈ N+,

E(Mn | Fn−1) = E(Mn−1Xn | Fn−1) = Mn−1E(Xn | Fn−1) = Mn−1E(Xn) = Mn−1

almost surely, where we used the fact that σ(Xn) is independent of Fn−1 for every n ∈ N+.
Consider a filtered space (Ω,F , (Fn)n,P) and a random variable ξ ∈ L1(Ω,F ,P). Let Mn = E(ξ | Fn) almost

surely for every n ∈ N. We will now show that (Mn | n ∈ N) is a martingale.
Clearly, (Mn ∈ L1(Ω,Fn,P) | n ∈ N) is adapted to the filtration (Fn)n. For every n ∈ N+,

E(Mn | Fn−1) = E(E(ξ | Fn) | Fn−1) = E(ξ | Fn | Fn−1) = E(ξ | Fn−1) = Mn−1

almost surely.
Consider a filtered space (Ω,F , (Fn)n,P).
A stochastic process (Cn | n ∈ N) is called previsible if Cn is Fn−1 measurable for every n ∈ N+. Note that if

(Fn)n is the natural filtration of the stochastic process (Wn | n ∈ N), then there is a Borel function gn : Rn → R
such that Cn = gn(W0, . . . ,Wn−1) for every n ∈ N+.

The martingale transform (C •X) of an adapted process X = (Xn | n ∈ N) by a previsible process C = (Cn |
n ∈ N) is the adapted process ((C •X)n | n ∈ N), where (C •X)0 = 0 and

(C •X)n =

n∑
k=1

Ck(Xk −Xk−1)

for every n ∈ N+. Note that (C •X)n = (C •X)n−1 + Cn(Xn −Xn−1) for every n ∈ N+.
The following example illustrates the definition of martingale transform.
For every ω ∈ Ω, suppose that Xn(ω) − Xn−1(ω) represents the profit per unit stake in round n ∈ N+ of a

game. In that case, Cn(ω) can be interpreted as the amount stake in round n ∈ N+ by a particular gambling
strategy C. For every n ∈ N+ and ω ∈ Ω, the amount stake Cn(ω) may rely on knowledge about IFn−1

(ω) for
every Fn−1 ∈ Fn−1, which includes at the very least knowledge about X0(ω), . . . , Xn−1(ω) and C0(ω), . . . Cn−1(ω).
Finally, in this setting, (C •X)n(ω) represents the profit after n ∈ N+ rounds. Note that:

• If (Xn | n ∈ N) is a martingale, then E(Xn − Xn−1 | Fn−1) = E(Xn | Fn−1) − Xn−1 = 0 almost surely for
every n ∈ N+, so that the game is fair.

• If (Xn | n ∈ N) is a supermartingale, then E(Xn −Xn−1 | Fn−1) = E(Xn | Fn−1)−Xn−1 ≤ 0 almost surely
for every n ∈ N+, so that the game is unfavourable.

• If (Xn | n ∈ N) is a submartingale, then E(Xn −Xn−1 | Fn−1) = E(Xn | Fn−1)−Xn−1 ≥ 0 almost surely for
every n ∈ N+, so that the game is favourable.

Consider an adapted process X = (Xn | n ∈ N) and a previsible process C = (Cn | n ∈ N). We will now show
that if Cn ∈ L2(Ω,F ,P) and Xn ∈ L2(Ω,F ,P) for every n ∈ N, then Cn(Xn − Xn−1) ∈ L1(Ω,F ,P) for every
n ∈ N+.

Since L2(Ω,F ,P) is a vector space, (Xn −Xn−1) ∈ L2(Ω,F ,P) for every n ∈ N+. By the Schwarz inequality,
Cn(Xn −Xn−1) ∈ L1(Ω,F ,P).

Consider an adapted process X = (Xn | n ∈ N) and a previsible process C = (Cn | n ∈ N). We will now show
that if |Cn| ≤ K and E(|Xn|) < ∞ for every n ∈ N and some K ∈ [0,∞), then Cn(Xn −Xn−1) ∈ L1(Ω,F ,P) for
every n ∈ N+.

Since |Cn||Xn−Xn−1| ≤ K|Xn−Xn−1| for every n ∈ N+, we know that E(|Cn(Xn−Xn−1)|) ≤ KE(|Xn−Xn−1|).
Because L1(Ω,F ,P) is a vector space, we know that Cn(Xn −Xn−1) ∈ L1(Ω,F ,P).

Consider an adapted process X = (Xn ∈ L1(Ω,Fn,P) | n ∈ N) and a previsible process C = (Cn | n ∈ N).
Furthermore, suppose that Cn(Xn −Xn−1) ∈ L1(Ω,F ,P) for every n ∈ N+.

First, recall that (C •X) is adapted. Because (C •X)0 = 0 and (C •X)n = (C •X)n−1 + Cn(Xn −Xn−1) for
every n ∈ N+, we know that (C •X)n ∈ L1(Ω,F ,P) for every n ∈ N. Finally, for every n ∈ N+,

E((C •X)n | Fn−1) = E((C •X)n−1 + Cn(Xn −Xn−1) | Fn−1) = (C •X)n−1 + CnE(Xn −Xn−1 | Fn−1)

almost surely. Therefore:

58



• If (Xn | n ∈ N) is a martingale, then, E((C •X)n | Fn−1) = (C •X)n−1 almost surely for every n ∈ N+, so
that (C •X) is a martigale.

• If (Xn | n ∈ N) is a supermartingale and C is non-negative, then E((C •X)n | Fn−1) ≤ (C •X)n−1 almost
surely for every n ∈ N+, so that (C •X) is a supermartigale.

• If (Xn | n ∈ N) is a submartingale and C is non-negative, then E((C • X)n | Fn−1) ≥ (C • X)n−1 almost
surely for every n ∈ N+, so that (C •X) is a submartigale.
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