
Notes on Probabilistic Graphical Models
Paulo Eduardo Rauber

2015

1 Probability Theory
Probability theory is a well developed mathematical framework for reasoning under uncertainty. This section
presents the fundamentals of the theory. For more advanced topics, see the measure-theoretic probability notes by
the same author.

A sample space Ω is the set of possible outcomes of an experiment. Elements of Ω are also called sample
outcomes. Events are subsets of Ω. An event is said to occur if the outcome of the experiment belongs to the event.

A set of events {A1, ...} is said to be disjoint if Ai ∩Aj = ∅ for every i ̸= j. A partition of Ω is a disjoint set of
events such that

⋃
iAi = Ω.

If P is a function from the set of all subsets of Ω to R and

P (A) ≥ 0 for every event A,
P (Ω) = 1,

If {A1, ...} is a disjoint set of events, P

(⋃
i

Ai

)
=
∑
i

P (Ai),

then P is a probability distribution over Ω1.
For any events A and B, the following properties of a probability distribution P over Ω can be derived from the

three properties above:

P (∅) = 0,

A ⊆ B =⇒ P (A) ≤ P (B),

0 ≤ P (A) ≤ 1,

P (Ac) = 1− P (A),
P (A ∪B) = P (A) + P (B)− P (A ∩B).

Intuitively, P (A) represents the degree of belief that event A will contain the outcome of an experiment. For
instance, if the sample space is finite and there is no reason to believe that P ({u}) > P ({w}) for any u,w ∈ Ω,
then, for any event A, P (A) = |A|

|Ω| , and P is said to be a uniform distribution.
An example may be useful to illustrate the application of these definitions. Suppose we are interested in

computing the probability of obtaining tails exactly once after tossing two unbiased coins. The sample space can
be represented as Ω = {(H,H), (H,T), (T,H), (T, T)}. We can let P ({w}) = 1

4 for every w ∈ Ω, since there is no
reason to believe that a sample outcome is more likely than any other. The event of obtaining tails exactly once
can be represented as A = {(T,H), (H,T)}. Therefore, P (A) = P ({(T,H)}) + P ({(H,T)}) = 1

2 , since these two
events are disjoint.

Let P (B) > 0 for an event B. The conditional probability of an event A given B is defined as

P (A|B) =
P (A ∩B)

P (B)
.

Intuitively, P (A|B) can be interpreted as the degree of belief that A will occur given that B is already known
to have occurred. The formula for conditional probability also gives the equality P (A ∩B) = P (B)P (A|B).

Let A and B be events on Ω, with P (B) > 0, and Q(A) = P (A|B). Then Q is a probability distribution over
1The function P may also be defined over a set of events that contains Ω and is closed under countable unions and complementation,

but the distinction is not useful in this text.

1

Ω, as it follows the three properties mentioned in the beginning of this section. Therefore,

P (A|B) ≥ 0 for any event A,
P (Ω|B) = 1,

If {A1, ...} is a disjoint set of events, P

(⋃
i

Ai|B

)
=
∑
i

P (Ai|B),

P (∅|B) = 0,

A ⊆ C =⇒ P (A|B) ≤ P (C|B),

0 ≤ P (A|B) ≤ 1,

P (Ac|B) = 1− P (A|B),

P (A ∪ C|B) = P (A|B) + P (C|B)− P (A ∩ C|B),

P (A ∩ C|B) = P (C|B)P (A|B ∩ C).

If A = {A1, ...} is a partition of Ω, then

P

((⋃
i

Ai

)
∩B

)
= P (Ω ∩B) = P (B).

Moreover, if P (B) ̸= 0, the definition of conditional probability can be restated as

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

.

The equation above is called Bayes’ Theorem.
In the special case when P (A ∩B) = P (A)P (B), A and B are said to be independent events.
Introduced the fundamentals, we now present random variables, which are essential to model complicated events.

It is often possible to omit the sample space entirely when modeling problems using random variables.
A random variable X is a function X : Ω→ R. Let P be a probability distribution over Ω. Then, by definition,

P (X = x) = P ({w ∈ Ω | X(w) = x}),
P (a < X < b) = P ({w ∈ Ω | a < X(w) < b}).

In words, P (X = x) represents the probability of an event that contains all sample outcomes that are mapped
by X to x, while P (a < X < b) represents the probability of an event that contains all sample outcomes that are
mapped by X to a real number in the open interval (a, b). If the outcome of the experiment is w and X(w) = x,
random variable X is said to be in state x or assigned to x.

Consider the experiment mentioned earlier of tossing two unbiased coins. We can let X(w) be the number of
tails in a sample outcome w ∈ Ω. Therefore, P (X = 0) = 1

4 , P (X = 1) = 1
2 and P (X = 2) = 1

4 .
When working with random variables X and Y , we write P (X = x∩Y = y) as P (X = x, Y = y) for convenience.
We denote the image of a random variable X by Val(X), i.e., the set of values assigned to some sample outcome.

If Val(X) is countable, then X is said to be a discrete random variable. If Y is also a random variable, Val(X,Y)
denotes the set of valid assignments to X and Y . This notation also extends to sets of random variables. Let
X1, . . .Xn be sets random variables. Then Val(X1, . . .Xn) denotes the set of valid assignments for all variables in
every Xi.

If P is a probability distribution over Ω and X is a discrete random variable over Ω, we define the probability
mass function f as f(x) = P (X = x) for every x ∈ R.

If X is a continuous random variable and f is a function such that f(x) ≥ 0 for all x,
∫∞
−∞ f(x) dx = 1,

P (a < X < b) =
∫ b

a
f(x) dx for every a < b, then f is called a probability density function. It is important to note

that f(x) does not represent P (X = x) in the continuous case.
The Gaussian distribution has the following probability density function p:

p(x) =
e−

(x−µ)2

2σ2

σ
√
2π

.

Some properties of a probability distribution P are restated in terms of random variables bellow.

2

For a discrete random variable distributed according to a probability distribution P ,∑
x∈Val(X)

P (X = x) = 1.

For a continuous random variable distributed according to a probability density function f ,∫ ∞

−∞
f(x) dx = 1.

We let X ∼ f denote that variable X is distributed according to the probability mass/density function f .
In the discrete case, a function fX,Y such that fX,Y (x, y) = P (X = x, Y = y) for every x and y is called a joint

probability mass function of X and Y . A function fX|Y such that fX|Y (x, y) = P (X = x|Y = y) = P (X = x, Y =
y)/P (Y = y) for every x and y is called a conditional mass function of X given Y . It is also common to denote
fX|Y (x, y) as fX|Y (x | y).

In the continuous case, if fX,Y is a joint probability density function of X and Y , then

P (X ∈ [a, b], Y ∈ [c, d]) =

∫ b

a

∫ d

c

fX,Y (x, y)dy dx,

for every choice of a, b, c, d ∈ R.
The conditional density function of X given Y is defined as fX|Y (x|y) = fX,Y (x, y)/fY (y) for every x and y

such that fY (y) > 0, where fY is the pdf for Y , and P (X ∈ [a, b] | Y = y) is defined as

P (X ∈ [a, b] | Y = y) =

∫ b

a

fX|Y (x|y) dx.

If fX,Y is a joint pmf for X and Y and fX is the pmf for X, fX(x) =
∑

y fX,Y (x, y). Analogously, if fX,Y is a
joint pdf for X and Y and fX is the pdf for X, fX(x) =

∫∞
−∞ fX,Y (x, y) dy. In both cases, obtaining fX from fX,Y

is called marginalizing over Y .
For discrete random variables, the probability of the union of events can be restated as

P ((X = x) ∪ (Y = y)) = P (X = x) + P (Y = y)− P (X = x, Y = x),

and Bayes’ theorem can be restated as

P (X = x|Y = y) =
P (Y = y|X = x)P (X = x)∑

x′∈Val(X) P (Y = y|X = x′)P (X = x′)

if P (Y = y) > 0.
Let X , Y and Z be sets of discrete random variables over Ω. Then X ⊥⊥ Y|Z if and only if, for every variable

X ∈ X , every Y ∈ Y and every Z ∈ Z, P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z) for all x, y
and z. Intuitively, this means that the knowledge of the state of variables in Y does not give additional information
about the state of variables in X when the state of the variables in Z is already known. Note that Z may be empty.

When ambiguity is impossible, it is common to omit the name of a random variable when denoting probabilities.
For instance, P (X = x, Y = y) = P (X = x|Y = y)P (Y = y) can be written as P (x, y) = P (x|y)P (y).

Let X be a discrete random variable. The expectation of X under the probability distribution P , denoted
EP [X], is defined as

EP [X] =
∑

x∈Val(X)

xP (X = x).

The expectation of random variables X and Y (under any probability distribution) has the following properties:

E[aX + b] = aE[X] + b,

E[X + Y] = E[X] + E[Y].

If X and Y are independent,

E[X · Y] = E[X]E[Y].

3

Let X = {X1, . . . , Xn} be a set of random variables. A factor ϕ is a function from Val(X) to R. In this case, the
set X is called the scope of the factor. By convention, it is common to denote such factor by ϕ(X) or ϕ(X1, . . . , Xn),
which is not the value of ϕ when applied to an element of its domain. Let x ∈ Val(X) such that Xi = xi. The
value of the factor ϕ for assignment x is denoted by ϕ(X1 = x1, . . . , Xn = xn). When ambiguity is impossible, the
random variables may be omitted. Therefore, despite the fact that ϕ is a function, the order of the parameters is
not relevant by convention. Joint probability distributions and conditional probability distributions are constrained
factors. When all variables involved are discrete, it is useful to imagine a factor as a table.

Let X , Y and Z be three disjoint sets of variables, ϕ1(X ,Y) (short for ϕ1(X ∪ Y)) and ϕ2(Y,Z) two factors.
The product ψ(X ,Y,Z) of factors ϕ1 and ϕ2 is defined as a factor ψ(X ,Y,Z) = ϕ1(X ,Y)ϕ2(Y,Z)

Let ψ(Y) be a factor and u and assignment for U ⊆ Y. The reduction of a factor ψ to the context u, denoted
ψ[U = u] or ψ[u] is a factor over the scope Y ′ = Y − U , such that ψ[u](y′) = ψ(y′,u). When U ̸⊂ Y, ψ[u] = ψ[u′],
where U ′ = U ∩ Y, and u′ = u⟨U ′⟩, where u⟨U ′⟩ denotes the assignment in u to the variables that are in U ′.

Let X be a set of random variables and Y ̸∈ X a variable. Let ϕ(X , Y) be a factor. The factor marginalization
ψ =

∑
Y ϕ, is defined as ψ(X) =

∑
y ϕ[Y = y](X).

Let X be a set of random variables and Y ̸∈ X a variable. Let ϕ(X , Y) be a factor. The factor maximization
ψ = maxY ϕ is defined as ψ(X) = maxy ϕ[Y = y](X).

The definitions of factor product, reduction and marginalization lead to properties on operations over joint or
conditional probability distributions that are analogous to properties on operations over particular assignments of
random variables. For instance, if P is a probability distribution, the fact that P (X = x, Y = y) = P (X = x|Y =
y)P (Y = y) for all x and y relates to the fact that P (X,Y) = P (X|Y)P (Y) for factors P (X) and P (X|Y) and
P (X,Y).

Let P be a joint probability distribution and ϕ1, ϕ2 two factors. If P (X,Y, Z) ∝ ϕ1(X,Z)ϕ2(Y,Z), then
X ⊥⊥ Y |Z.

Probability theory is a very powerful framework. Propositional logic can be seen as a special case subsumed by
probability theory. Suppose, for instance, that A → B is a true logical proposition. It follows that ¬B → ¬A. In
probability theory, this could be represented by random variables A′ and B′, with Val(A′) = Val(B′) = {0, 1}. The
proposition A→ B could be represented as P (B′ = 1|A′ = 1) = 1. From this, it follows that P (B′ = 0|A′ = 1) = 0.
Therefore, P (A′ = 1|B′ = 0) = P (B′=0|A′=1)P (A′=1)

P (B′=0) = 0 and P (A′ = 0|B′ = 0) = 1, which represents ¬B → ¬A,
as we wanted to show. Note that it was not necessary to explicit the sample space to solve this problem, which is
often the case.

Even the scientific method can be framed as probabilistic reasoning. If θ is a random variable representing a
hypothesis and D is a random variable representing the observed data,

P (θ|D) =
P (θ)P (D|θ)

P (D)
.

Therefore,

P (θ|D) ∝ P (θ)P (D|θ).

In words, the probability of a hypothesis given data is proportional to the prior probability of the hypothesis,
which may be proportional to its simplicity, times the probability of the data occurring given the hypothesis, which
may be proportional to how well the data fits the hypothesis.

Probabilistic reasoning consists in the process of identifying all relevant random variables X1, ..., Xn necessary
to model a problem and discovering the joint distribution P (X1, ..., Xn) for all states of the variables. This joint
distribution can be used to perform inference by introducing evidence in the form of knowledge about the state of
some random variables and computing conditional probabilities. Learning to model real problems in this framework
is often a challenging task.

Suppose that each random variable X1, ...Xn that models an experiment has 2 possible states. There would
be 2n elements in a table that represented the joint distribution for all variables. The practical problem is often
filling, and not storing, this table with data. Probabilistic graphical models are powerful tools to represent joint
probability distributions.

2 Graph theory
Graphs are mathematical objects useful for representing problems involving connections and dependencies.

4

A graph is a pair G = (V,E) where E ⊆ [V]2. The elements of V are called vertices or nodes and the elements
of E are called edges. Graphs are commonly represented by drawing a dot for each vertex and a line between each
pair of vertices that form an edge. An edge e = {u, v} is said to end in u and v. In this case, u and v are said to be
incident with e. When no confusion can arise, an edge {u, v} can also be denoted as uv. A vertex v is neighbor to
vertex u if {v, u} ∈ E. A vertex v with exactly n neighbors is said to have degree n. Given a graph G = (A,B), we
also denote the set of vertices A as V (G) and the set of edges B as E(G). A graph with no vertices is called empty.

A directed graph is a pair G = (V,E) of disjoint sets together with two maps: init : E → V and ter : E → V .
An edge e in a directed graph is said to begin at init(e) = u and end at ter(e) = v and can be represented as the
pair e = (u, v). In this case, it is common to say that e ∈ E. In this text, when the correspondence is obvious,
many definitions made for graphs also apply to directed graphs. The underlying (undirected) graph of a directed
graph G is the graph obtained by replacing all edges of G with undirected edges.

Let G and G′ be graphs. By definition, G∪G′ = (V ∪V ′, E ∪E′) and G∩G′ = (V ∩V ′, E ∩E′). If V ′ ⊆ V and
E′ ⊆ E, then G′ is a subgraph of G, written as G′ ⊆ G, and G is a supergraph of G′. If G′ ⊆ G and G′ contains
all the edges xy ∈ E(G) such that x, y ∈ V (G′), then G′ is a subgraph of G induced by V (G′).

A clique C in a graph G is a subset of vertices of V (G) such that there is an edge between every pair of vertices
in C. A clique is maximal if it is not a proper subset of any other clique in G.

A graph G = (V,E) with a function f : E → R is said to be a weighted graph. A weighted graph can represent,
for instance, cities (vertices) connected by roads (edges) with a certain length (the value of f for a given road).

A path is a non-empty graph P = (V,E) of the form V = {x0, . . . , xk}, E = {x0x1, . . . , xk−1xk}, where the xi
are all distinct. The vertices x0 and xk are said to be linked by P . The length of a path is its number of edges.
It is often useful to represent a path simply as a sequence of vertices P = x0 . . . xk. If P = x0 . . . xk is a path, the
graph C = (V (P), E(P)∪{{xk, x0}}) is a cycle. If P ⊆ G, then P is a path in G. An undirected path in a directed
graph G is a path in the underlying graph of G.

A non-empty graph G is called connected if any two of its vertices are linked by some path in G. A maximal
connected subgraph of G is called a (connected) component of G. If there is a single path connecting every pair of
vertices in V (G), then G is singly-connected.

If there is a path linking x and y, then x is an ancestor of y and y is a descendant of x.
A graph that contains no cycles is a forest. A connected forest is a tree. In this way, a forest is a graph whose

components are trees. Vertices in a tree with degree 1 are called leaves.
The following definitions apply to a directed acyclic graph G = (V,E). If x and y are vertices and xy ∈ E, then

y is a parent of x and x is a child of y. The set of parents of x in G is denoted by PaGx . The Markov blanket of x
is the set composed of its children, parents and other parents of its children.

Let G be a connected graph. A spanning tree of G is a tree contained in G that contains all vertices in G. A
spanning tree of a weighted graph is said to have maximum weight if the sum of weights attributed to each of its
edges is not lower than that of any other spanning tree.

A sequence of vertices x0 . . . xk from a directed acyclic graph G is said to be in ancestral order when there is no
path in G from xi to xj when i > j.

A walk of length k in a graph G is a non-empty sequence v0e0v1 . . . ek−1vk such that vi ∈ V (G), ei = vivi+1 and
ei ∈ E. If v0 = vk the walk is closed. If the vertices in a walk are all distinct, the walk corresponds to a path in G.

Let G = ({v0, . . . , vn}, E) be a graph. Let A = (ai,j)n×n be a matrix such that ai,j = 1 if and only if vivj ∈ E
and 0 otherwise. The matrix A is called the adjacency matrix of G. If the graph is undirected, the adjacency matrix
is symmetric. Interestingly, Ak represents the number of walks of length k between any pair of vertices in G.

Let C1, . . . , Ck be distinct cliques of G = ({v0, . . . , vn}, E). Then a clique matrix A = (ai,j)n×k is a matrix such
that ai,j = 1 if and only if vi ∈ Cj and 0 otherwise. If each Cl corresponds to an edge in E, then A is called an
incidence matrix.

3 Bayesian Networks
A Bayesian network is a pair B = (G,P), where G = (V,E) is a directed acyclic graph and P is a joint probability
distribution (a factor, as defined in Section 1). Furthermore, V = {X1, . . . , Xn} is a set of random variables and P
can be written as the following product of other factors:

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|PaGXi
),

5

where PaGXi
denotes the parents of Xi in G. Whenever the equation above holds, it is said that P factorizes

over G.
Let P be any joint probability distribution over random variables X1, . . . , Xn. The following equation, which

can be derived from the definition of conditional probability, is called the chain rule of probability:

P (X1, . . . , Xn) = P (Xn)

n−1∏
i=1

P (Xi|Xi+1, . . . Xn).

Therefore, every joint probability distribution can be represented as a Bayesian network.
In a Bayesian network, every random variable is conditionally independent of its non-descendants given its

parent variables. This is called the local Markov property. Every variable is also independent of every other given
its Markov blanket: its children, parents and other parents of its children.

Bayesian networks are useful to encode independencies between variables. For instance, a joint probability dis-
tribution over binary random variables X1, . . . , Xn may be represented by a table with 2n− 1 values. However, the
number of values needed to represent the same probability distribution may be considerably lower when indepen-
dencies are considered. If a probability distribution is represented by a Bayesian network, only G and PaGXi

need
to be known for every Xi.

The following example illustrates the use of Bayesian networks. Let A,B,E and R be random variables. Variable
A represents whether an alarm in a particular house is sounding, B represents whether the same house has been
burgled recently, E represents whether there was an earthquake recently and R represents whether the radio is
broadcasting an earthquake alert. Let G = ({A,B,E,R}, {(B,A), (E,A), (E,R)}) be a graph and B = (G,P) a
Bayesian network. From the graph, P (A,B,E,R) = P (A|B,E)P (R|E)P (E)P (B). Without loss of generality, P
could also be written as P (A,B,E,R) = P (A|B,E,R)P (R|B,E)p(E|B)P (B). Using the local Markov property,
it is possible to show that P (A|B,E,R) = P (A|B,E), P (R|B,E) = P (R|E), P (E|B) = P (E). In this case, it
is possible to represent P in a table with only 8 values instead of 15. Any posterior probability (probability after
observing the state of some variables) can be inferred from this joint probability distribution.

Different directed acyclic graphs may represent the same independence assumptions between random variables in
a Bayesian network. Two directed acyclic graphs are Markov equivalent if they represent the same set of conditional
independence statements. Let an immorality in a directed acyclic graph G = (V,E) be defined as a set of distinct
vertices {u, v, w} such that (u, v) ∈ E, (w, v) ∈ E, (u,w) /∈ E and (w, u) /∈ E. Two directed acyclic graphs are
Markov equivalent if and only if they they have the same set of immoralities and the same underlying graph.

Causal relationships may be useful for building models intuitively. In this case, a causal variable often has an
edge ending at an effect variable. In causal models, causal reasoning is defined as computing the posterior probability
of effects given causes. The posterior probability of causes given effects is called evidential reasoning. Intercausal
reasoning combines causal and evidential reasoning. Explaining away is the term given to the intercausal reasoning
pattern in that a cause explains an effect and, by consequence, lowers the probability of another cause. However,
it must be clear that independencies in Bayesian networks are not (in general) causal. A model in which the edges
are causally reversed may be equally valid to represent the same set of independencies.

It may be impossible to represent all independence statements on given set of variables by a Bayesian network
without adding variables.

The following steps can be followed to model a real inference problem as a Bayesian network. Firstly, the
relevant random variables need to be identified. If the model is intuitively causal, this is often accomplished from
the bottom up (effects to causes). Hidden variables (which can never observed) may be introduced to represent
additional independence statements. The graph is defined in such a way as to encode the independencies between
variables. The independencies may be checked by inspecting the joint probability distribution defined by the graph
or by the local Markov property. Probabilistic inference is performed by computing the probability of each state of
interest conditioned on the known states of other variables.

The following definitions are useful to establish if a random variable X is independent of Y given Z in a Bayesian
network.

Let G = (V,E) be a directed acyclic graph, G′ its underlying graph and P ′ a path on G′. A set of three distinct
nodes {u, v, w} in P ′ is a v-structure if (u, v) ∈ E and (w, v) ∈ E and these two edges are in P ′. In this structure,
v is called a collider. In simple terms, in a v-structure, a collider v has two distinct neighbors u and w in P ′ with
edges ending in v in the corresponding directed acyclic graph.

An undirected path P is said to be active given the set of random variables Z if all non-colliders in P are not
in Z and all colliders are in Z or have a descendant in Z .

In a Bayesian network B = (G,P), if all undirected paths between random variables X and Y are inactive given
the set of random variables Z, then X ⊥⊥ Y |Z. In such case, it is said that X and Y are d-separated by Z, denoted

6

d-sepG(X;Y |Z). The notation extends to sets of variables naturally. Random variables that are not d-separated are
d-connected. It is important to note that d-connected variables may still be independent according to P . However,
variables that are d-separated by Z are always independent given Z in any joint probability distribution represented
by the Bayesian network.

Let P be a distribution and X , Y and Z be sets of random variables. We define I(P) as the set of independence
statements of the form X ⊥⊥ Y|Z that hold in P . If G is a graph in a Bayesian network, then I(G) denotes the
set of statements of the form X ⊥⊥ Y|Z such that d-sepG(X ;Y|Z). A graph is an I-map for a set of independence
statements I if I(G) ⊆ I. Therefore, if B = (G,P) is a Bayesian network, G is an I-map for I(P). If I(G) = I(P),
then G is a perfect map for P .

A conditional Bayesian network B over Y given X is defined by a graph G and a conditional probability
distribution P . The nodes of G are X ∪ Y ∪ Z, the three sets being disjoint. The variables in X are called inputs,
the variables in Y outputs and in Z encapsulated. The variables in X have no parents in G. The conditional
probability distribution P can be written as

P (Y,Z|X) =
∏

X∈Y∪Z
P (X|PaGX).

In simple terms, a conditional Bayesian network represents a joint probability distribution over Y∪Z conditioned
on X .

In a scientific experiment represented by a Bayesian network, when the value of a variable X is fixed to x,
the variable should not have any parents in the directed graph, otherwise the inferences performed will take into
account the probability of fixing X to x given the state of other variables. Failing to model scientific experiments
in this way leads to counterintuitive results such as Simpson’s paradox. Therefore, such a variable X should belong
to the input of a conditional Bayesian network.

In supervised learning, a subarea of machine learning, naive Bayes is a very simple model for classification based
on a joint probability distribution that factorizes as

P (C,X1, . . . , Xn) = P (C)

n∏
i

P (Xi|C),

where C is a random variable representing the class of a sample and each Xi a random variable representing
an attribute of the same sample. Note the assumption that Xi ⊥⊥ Xj |C for every i ̸= j. Given training data to
estimate P (Xi = x|C = c) for every pair (x, c) and the features for a new sample, it is easy to find its most likely
classification according to the model. Naive Bayes has been traditionally used for textual classification.

4 Template Models
A template model represents a set of probabilistic graphical models that have some structure in common. Two
examples of template models are described in this section: dynamic Bayesian Networks and plate models.

4.1 Dynamic Bayesian Networks
A dynamic Bayesian network is a template model that may be used to represent systems whose evolution is studied
in discrete steps. The evolution is often temporal, and the analogy is used throughout this section. In a dynamic
Bayesian network, the state of a system at time t is represented by an assignment to random variables.

Let X(t) be a random variable that represents some aspect of a system at time t. We use X(t1:t2) to denote the
set {X(t)|t ∈ [t1, t2]}, where all variables have the same set of possible states. If X (t) = {X(t)

1 , . . . , X
(t)
n } is a set of

variables, then X (t1:t2) = {X(t)
i |i ∈ [1, n] and t ∈ [t1, t2]}.

Let X (0:T) be a set of variables as above. By the chain rule of probabilities in its factor formulation,

P (X (0:T)) = P (X (0))

T∏
t=1

P (X (t)|X (0:t−1)).

A system is called Markovian if (X (t+1) ⊥⊥ X (0:t−1)|X (t)) for all t. Intuitively, this means that the state of the
system at a given time represents all information needed to predict the future. If the system is Markovian, its joint

7

probability distribution can be written as

P (X (0:T)) = P (X (0))

T∏
t=1

P (X (t)|X (t−1)). (1)

Using Markovian models for systems of interest depends on including enough information in X (t) so that the
equation above becomes a reasonable approximation.

A Markovian system is stationary if P (X (t+1)|X (t)) is the same factor for all t. In other terms, the Markovian
system is stationary if, for all t,

P (X (t+1) = ξ′|X (t) = ξ) = P (X ′ = ξ′|X = ξ),

for some conditional probability distribution P (X ′|X), called the transition model, over sets of random variables
X and X ′.

Consider a stationary Markovian system represented, at time t, by the set of variables X (t) and P (X ′|X) the
conditional probability distribution that follows the equation above. A 2-time-slice Bayesian network is a conditional
Bayesian network over X ′ given XI ⊆ X , which defines the following conditional probability distribution:

P (X ′|X) =
∏

X′
i∈X ′

P (X ′
i|Pa

G
X′

i
).

Because of the stationary property, the 2-time-slice Bayesian network defines the probability distribution P (X (t+1))|X (t))
for every t.

An edge between elements of X and X ′ is called an inter-time-slice edge, and an edge inside X ′ is called an
intra-time-slice edge. Edges between corresponding variables across time are called persistence edges.

Consider a stationary Markovian system represented, at time t, by the set of variables X (t). A dynamic Bayesian
network is a pair (B0, B→) where B0 is a Bayesian network over X (0) and B→ is a 2-time-slice Bayesian network
for the system.

A Bayesian network BT can be obtained, for any time T , from a dynamic Bayesian network (B0, B→). This
Bayesian network is said to be unrolled from the dynamic Bayesian network. The graph of BT contains the graph
in B0 and the structure represented by B→ replicated for every pair (X (t),X (t+1)), for every 1 ≤ t + 1 ≤ T . The
joint probability distribution over X (0:T) can be written from the conditional probability distributions defined by
B0 and B→.

A hidden Markov model is a very simple dynamic Bayesian network, which has a persisting variable S(t),
which represents the system state, with a single intra-time-slice connection to a variable O(t), which represents the
observed state. This model leads to more complicated models, such as the factorial hidden Markov Model and
the coupled hidden Markov Model, which are widely used in practical problems. A hidden Markov model is often
represented by a graph whose vertices are states (possible assignments to S(t)) and every edge (u, v) is labeled
by P (S(t+1) = v|S(t) = u). This representation should not be confused with the probabilistic graphical models
described in this text.

A linear dynamic system (sometimes called Kalman filter) represents a system of variables that evolve linearly
over time with Gaussian noise. Such systems can be represented by a dynamic Bayesian network where the variables
are all continuous and the dependencies are linear Gaussian.

4.2 Plate Models
A plate model is a compact representation of a set of Bayesian networks whose structure contains many replications
of a simpler structure. A formal definition of this model is available in [1]. This text presents only a superficial
overview of the model. A plate model can be conveniently represented by a graphical depiction, which is also
introduced.

Let Q1, . . . , Qk be disjoint sets called classes. The set of all random variables of the form X(q1, . . . , qk), where
each qi ∈ Qi, can be represented by a circle inscribed with the letter X inside rectangles (called plates) representing
each class (with their respective names also inscribed in unambiguous locations). In this model, X is called an
attribute. Arrows drawn between attributes represent that there should be a directed edge between every random
variable represented by an attribute in an instance of the plate model. In a plate model, there are no arrows between
an attribute X and an attribute Y if the classes associated with X are not a subset of the classes associated with
Y . In a manner similar to dynamic Bayesian networks, valid plate models can be unraveled into Bayesian networks.

8

The conditional probability distributions can be shared or not among replicated structures, often diminishing the
number of parameters to be described.

For example, consider the problem of modeling how the difficulty of a course and intelligence of a student
determine the grade of the student in the course. For a particular student, course, and grade, this could be
represented by a Bayesian network whose graph is G = ({D, I,G}, {(D,G), (I,G)}).

However, suppose one is interested in using the same model to reason about all courses, students and grades
in a school (ignoring the fact that not all students have frequented all courses). This could be accomplished by
defining a plate model (using the graphical language described above) containing the attribute I inside a plate for
the class “Students”, an attribute D inside a plate for the class “Courses” and an attribute G inside both plates.
The graphical depiction should also contain an arrow between D and G and I and G. From this graphical depiction
defining a plate model, the unraveled Bayesian network would represent the fact that, for a specific student s and a
class c, the grade G(s, c) (a random variable) is directly dependent of D(c) and I(s). Additionally, if the assumption
is made that the joint probability distribution P (D(c), I(s), G(s, c)) is the same across all pairs of students and
courses, very powerful inferences can be performed with very few parameters.

Additional template models are covered in [1]. Alternatively, algorithms are powerful tools to describe complex
Bayesian networks.

5 Structured Conditional Probability Distributions
This section presents several ways to represent conditional probability distributions (factors) for variables in a
Bayesian network.

In a tabular representation, a conditional probability distribution P (X|PaGX) is a table with one entry for each
valid assignment x to the random variable X and each valid assignment paX to its parents PaGX in the Bayesian
network. Naturally, P (x|paX) must be positive for every x and paX . Also,

∑
x P (x|paX) = 1.

Let X be a random variable with k parents PaGX . If m = |Val(X)| and n = maxY ∈PaGX
(|Val(Y)|), a tabular

representation requires O((m− 1)nk) memory.
A conditional distribution P (X|PaGX) is deterministic if there is a function f : Val(PaGX) → Val(X) such that

P (x|paX) = 1 if f(paX) = x and 0 otherwise. In other words, given an assignment to the parents, the assignment
to X is fully determined. A variable in a Bayesian network with a deterministic conditional distribution may induce
additional independence statements, since the observation of PaGX reveals the state of X.

Let X ,Y and Z be pairwise disjoint sets of variables and C a set of variables. Let c ∈ Val(C). X and Y are
contextually independent given Z and the context c if P (X|Y,Z, c) = P (X|Z, c) whenever P (Y,Z, c) > 0. This is
denoted by (X ⊥⊥ c Y|Z, c).

As an example of contextual independence, consider a binary random variable X that is a deterministic and of
its parents Y and Z. Clearly,

P (X = 0|Z = 0) = P (X = 0|Z = 0, Y = 1) = P (X = 0|Z = 0, Y = 0) = 1.

Therefore, (X ⊥⊥ c Y |Z = 0). However, it is not necessary that P (X = 0|Z = 1) = P (X = 0|Z = 1, Y = 1) = 0.
Therefore, in general, it is not true that (X ⊥⊥ Y |Z).

There are several ways to use context-specific independencies to simplify the representation of conditional prob-
ability distributions. A tree conditional probability distribution is one of the simplest.

A tree conditional probability distribution for variable X is a rooted tree. Each leaf is labeled with a probability
distribution over X. Each interior node is labeled with a variable Z ∈ PaGX . Every interior node Z has, for each
z ∈ Val(Z), an edge labeled with z. A branch β in a tree conditional probability distribution is a path from the
root to a leaf. In a valid tree conditional probability distribution, no branch contains two nodes labeled by the same
variable. The context c induced by a branch β is the set of variable assignments Z = z such that z is an edge in β.
For a context c induced by any branch β, the conditional probability distribution represented by the tree has the
property (X ⊥⊥ c Y|c), where Y is the set of variables not in the branch. Also, the probability distribution over X
that labels the leaf in β is P (X|c).

A tree conditional probability distribution is a representation of a factor, not a joint probability distribution,
and should not be confused with a Bayesian network. Not all context-specific independence statements can be
represented by a tree conditional probability distribution.

A conditional probability distribution P (Y |A,Z1, . . . , Zk) is a multiplexer if Val(A) = {1, . . . , k} and P (Y =
y|A = a, Z1 = z1, . . . , Zk = zk) = 1 if y = za (and 0 otherwise). Such conditional probability distributions are useful
to represent that a choice A = a makes Y independent of every parent except Za. Introducing the variables A and

9

Y may considerably reduce the number of parents that a variable dependent on Z1, . . . , Zk must have, making the
conditional probability distribution simpler to represent.

A conditional probability distribution P (Y |X1, . . . , Xk) over binary variables is a noisy-or if there are k+1 noise
parameters λ0, λ1, . . . , λk such that

P (Y = 0|X1 = x1, . . . , Xk = xk) = (1− λ0)
k∏

i=1

(1− λi)xi .

Intuitively, when applied to causal modeling, this conditional distribution represents that, for i > 1, when no
other cause is present and λ0 = 0, Xi causes Y with probability λi. The parameter λ0 can be interpreted as the
probability that Y is caused by unspecified causes, when no specified cause is present.

Another way to understand the noisy-or model is to consider Y as a deterministic or function of parents
X ′

0, . . . , X
′
k, such that P (X ′

i = 1|Xi = 1) = λi and P (X ′
i = 1|Xi = 0) = 0, for i > 1, and P (X ′

0 = 1) = λ0.
The sigmoid (or logistic) function f is defined as f(x) = 1

1+e−x . For every x ∈ R, 0 < f(x) < 1.
Let Y and X1, . . . , Xk be binary random variables. Then P (Y |X1, . . . , Xk) is a logistic conditional probability

distribution if there are k + 1 weights w0, . . . , wk such that

P (Y = 1|X1 = x1, . . . , Xk = xk) =
1

1 + e−(w0+
∑

i wixi)
.

Intuitively, the weight wi dictates whether Xi makes Y more or less likely. The sigmoid function is monotonically
increasing and guarantees that P (Y = 1|·) is between 0 and 1. This model can be further generalized to deal with
the discrete multinomial case using a binary coding scheme [1].

All the conditional probability distributions described so far involved only discrete random variables.
Let Y and X1, . . . , Xk be continuous random variables. Then P (Y |X1, . . . , Xk) is a linear Gaussian model if

there are parameters β0, . . . , βk and σ2 such that

f(Y |x1, . . . , xk) = N (β0 + β1x1 + . . .+ βkxk;σ),

where f is the probability density function for P , σ2 is a constant and N (µ;σ) is the Gaussian distribution. In
this model, Y can be interpreted as a linear combination of X1, . . . , Xk with Gaussian noise.

6 Markov Networks
Markov networks are undirected graphical models. Undirected models are more natural representations for some
problems.

Let Φ = {ϕ1(D1), . . . , ϕK(DK)} be a set of non-negative factors such that every Di ⊆ {X1, . . . , Xn}. A joint
probability distribution P is a Gibbs distribution parameterized by Φ if it can be written as

P (X1, . . . , Xn) =

∏K
i=1 ϕi(Di)

Z
,

where Z (historically called partition function) is defined as

Z =
∑

X1,...,Xn

K∏
i=1

ϕi(Di).

It is important to notice that the the factor P as defined above is a joint probability distribution for any set of
non-negative factors as long as Z > 0.

A Gibbs distribution P parameterized by Φ = {ϕ1(D1), . . . , ϕK(DK)} factorizes over the (undirected) graph H
if each Di induces a complete subgraph in H. In this context, H is called a Markov network. Also, each ϕi(Di) is
called a potential.

Intuitively, for a factor ϕ(X) ∈ Φ, the value ϕ(X = x) should be proportional to the compatibility of the
assignment x to the variables in X . In general, this compatibility should not be interpreted as the joint probability
of the assignment. However, when ϕ(X = x) = 0, it follows that P (X = x) = 0.

From the definition of factorization of a Gibbs distribution P over a Markov network H, it follows that it is
always possible to define a joint probability distribution equivalent to P using factors defined on maximal cliques

10

of H. However, in general, doing so may obscure the definition of each factor. It is important to note that Gibbs
distributions over the same set of variables, but parameterized by different factors, may factorize over the same
Markov network graph.

If a Gibbs distribution is parameterized by factors whose scope has always 2 variables or less and factorizes over
a Markov Network H, then H is called a pairwise Markov network. These networks are widely used in practice.

Let X and Y be disjoint sets of random variables. A conditional random field is an undirected graph H whose
nodes are X ∪ Y. The graph H is associated with a set of factors Φ = {ϕ1(D1), . . . , ϕK(DK)}, such that each
Di ̸⊆ X and induces a complete subgraph in H. The conditional random field represents the following conditional
distribution:

P (Y|X) =
∏K

i=1 ϕi(Di)

Z(X)
,

Z(X) =
∑
Y

K∏
i=1

ϕi(Di).

It is important to notice that the the factor P as defined above is a conditional probability distribution as long
as Z is a positive factor. By definition, there is no factor whose scope involves only variables in X .

The advantage of using a conditional random field over a Markov network appears when the model only needs to
represent probabilities conditioned on X , since the definition of the factors may become much simpler. A conditional
random field is an idea analogous to conditional Bayesian networks.

Let H = (X , E) be a Markov network and P = X1, . . . , Xk a path in H. Let Z ⊆ X be a set of variables. The
path P is active given Z if Xi ̸∈ Z for all i.

A set of nodes Z separates X and Y in a Markov network H, denoted sepH(X ;Y|Z) if there is no active path
between any two nodes X ∈ X and Y ∈ Y given Z.

The set of independencies associated with H is I(H) = {(X ⊥⊥ Y|Z)| sepH(X ;Y|Z)}. It can be shown that I(H)
is an I-map for any Gibbs distribution that factorizes over H.

In contrast with Bayesian networks, it is important to note that observing more variables can never cause
additional dependencies in a Markov network.

Let P be a positive distribution over X and H a Markov network graph over X . If H is an I-map for P , then
P is a Gibbs distribution that factorizes over H.

A factor graph F is an undirected graph containing nodes representing random variables and factors. There
are edges only between factors and random variables, and only when a random variable belongs to the scope of a
factor. Factor graphs are useful to unambiguously represent the structure of a Gibbs distribution.

As already mentioned, a Gibbs distribution P can be uniquely defined by a set of non-negative factors Φ =
{ϕ1(D1), . . . , ϕK(DK)}. When all factors in Φ are positive, another way to define P is using the factors ϵi(Di) such
that

ϵi(Di) = − ln(ϕi(Di)).

The Gibbs distribution P can be written as

P (X1, . . . , Xn) =

∏K
i=1 ϕi(Di)

Z
=
e−

∑K
i=1 ϵi(Di)

Z
,

where (using factor marginalization)

Z =
∑

X1,...,Xn

e−
∑K

i=1 ϵi(Di).

A distribution P is a log-linear model over a Markov network H if it can be written as

P (X1, . . . , Xn) =
e−

∑K
i=1 wifi(Di)

Z
,

for a set of weights {w1, . . . , wK} and a set of factors {f1(D1), . . . , fK(DK)}. This is a very useful representation
for many models of practical interest.

The rest of this section describes the application of the undirected models in practical problems.
The objective of image denoising is to restore the value of possibly noisy pixel values. Each pixel i can be

associated to a random variable Xi representing its denoised intensity value and a variable Yi representing its

11

observed intensity value. The conditional probability distribution P (X1, . . . , Xn|Y1, . . . , Yn) can be represented
by a conditional random field. This conditional random field is parameterized by energy functions for every pair
(Xi, Xj) of adjacent pixels, e.g., ϵ(Xi = xi, Xj = xj) = min(||xi − xj ||, dmax) and energy functions for every pair
(Xi, Yi) in a similar manner. The denoised image is encoded by the assignment to the variables Xi, conditioned
on the variables Yi, with maximum probability. A similar idea can be applied to the image segmentation problem,
where the task is associating a label to every pixel in an image. Given the classification by a supervised learning
technique to a pixel (or image region), local coherence can be enforced by a conditional random field.

An Ising model is a model in statistical physics for systems involving interacting atoms. Each random variable
Xi is binary, with Val(Xi) = {+1,−1}. The energy function between two variables Xi and Xj is defined as
ϵ(xi, xj) = wi,jxixj . There are such energy functions for each pair of atoms that interact directly. There is also
one energy function ϵ(xi) = uixi defined for each variable, which biases individual variables to have one value or
another. These factors define the following probability for an assignment to the variables Xi:

P (x1, . . . , xn) =
e−

∑
i<j wi,jxixj−

∑
i uixi

Z
.

In this model, when wi,j < 0, atoms that interact directly tend to adopt the same state. The opposite happens
when wi,j > 0.

A Boltzmann machine is a similar model in which Val(Xi) = {0, 1}. In this model, given a variable Y and its
neighbors X1, . . . , Xn in the corresponding Markov network, the following property holds:

P (Y = 1|x1, . . . , xn) =
1

1 + e−
∑n

i=1 wixi
.

This is highly related to the activation function commonly used in artificial neural networks.
Another useful class of Markov networks is comprised of metric Markov networks. A metric Markov network is

defined by a graph H = (X , E) over random variables X1, . . . , Xn. The objective is to assign to each Xi a label in
the set V = {v1, . . . , vK}. Each node has a preference over labels, represented by an energy function ϵi(Xi). There
is also an energy function ϵi(Xi, Xj) associated to each edge (Xi, Xj) in the graph, which is usually used to impose
a constraint that neighboring nodes should have similar assignments.

Since the objective in a metric Markov network is to find the most likely assignment, the problem can be
formulated finding the assignment that minimizes the following function:

E(x1, . . . , xn) =

n∑
i=1

ϵi(xi) +
∑

(Xi,Xj)∈E

ϵi,j(xi, xj).

For every neighboring pair (Xi, Xj), the energy function ϵi,j can be defined as a distance metric between labels
d : V × V → [0,+∞), making the parameterization simpler.

7 Variable Elimination
One of the most common queries performed on a probabilistic graphical model for a probability distribution P
over variables X is the computation of a factor P (Y|E = e). Let W = X −Y − E. If y, e, w are (respectively)
assignments to Y,E,W, then

P (y|e) = P (y, e)

P (e)
,

P (y, e) =
∑
w

P (y, e,W = w),

P (e) =
∑
y

P (Y = y, e).

Therefore, by computing P (Y,E = e), it is easy to arrive at P (Y|E = e).
In the general case, inference in probabilistic graphical models is a hard problem. Concretely, given a Bayesian

network B over variables X representing the joint distribution P and a variable X ∈ X , deciding whether P (X =
x) > 0 for a given x ∈ Val(X) is an NP-complete problem. This implies that finding P (X = x) for a given x is
NP-hard.

12

Despite this worst case result, efficient inference can be performed in many models of practical interest.
Variable elimination is an algorithm for exact inference in graphical models. Let X be a set of variables, Φ be

a set of factors involving only variables in X . Let Y ⊆ X and Z = X − Y. For any ordering ≺ over Z, the sum
product variable elimination algorithm (Alg. 1) returns a factor ϕ∗(Y) such that

ϕ∗(Y) =
∑
Z

∏
ϕ∈Φ

ϕ.

The algorithm can be applied to compute the joint distribution P (Y) for a Bayesian network over variables X
by letting Φ be the set of conditional probability distributions whose product represents P (X).

In the case of Markov networks, Φ is the set of clique potentials, and the result of the algorithm needs only to
be divided by the partition function to represent P (Y).

Algorithm 1 Sum-product variable elimination
Input: set of factors Φ over variables X , set of variables to be eliminated Z, ordering ≺ over Z.
Output: factor ϕ∗(Y) =

∑
Z
∏

ϕ∈Φ ϕ, where Y = X − Z
1: Let Z1, . . . , Zk be an ordering of Z respecting ≺
2: for each i in 1, . . . , k do
3: Φ′ ← {ϕ ∈ Φ|Zi ∈ Scope[Φ]}
4: Φ′′ ← Φ− Φ′

5: ψ ←
∏

ϕ∈Φ′ ϕ
6: τ ←

∑
Zi
ψ

7: Φ← Φ′′ ∪ {τ}
8: end for
9: ϕ∗(Y)←

∏
ϕ∈Φ ϕ

The algorithm depends on the following properties of factors. If ϕ1, ϕ2 and ϕ3 are factors, then ϕ1 ·ϕ2 = ϕ2 ·ϕ1
and ϕ1 · (ϕ2 · ϕ3) = (ϕ1 · ϕ2) · ϕ3. Also,

∑
X

∑
Y ϕ1 =

∑
Y

∑
X ϕ1. If X ̸∈ Scope[ϕ1],

∑
X ϕ1 · ϕ2 = ϕ1 ·

∑
X ϕ2.

Consider the naive algorithm for inference in graphical models that explicitly computes the full joint probability
distribution P (X) and then marginalizes Z to arrive at P (Y). Clearly, in the general case, some factor products
are computed several times. The efficiency of variable elimination is related to the fact that intermediary factors
are stored and computed only once. This is possible because not all factors (necessarily) involve a given variable,
and therefore are not involved in the product and marginalization occurring in lines 5 and 6 of Alg. 1.

Computing P (Y|E = e) using sum-product variable elimination is easily accomplished by letting Φ = {ϕ[E =
e]|ϕ ∈ Φ′}, where Φ′ is the set of factors that parameterize the Bayesian or Markov network in question. The factor
ϕ∗(Y) can be used to compute the joint distribution P (Y|E = e) as follows:

P (Y|E = e) =
ϕ∗(Y)∑

y′∈Val(Y) ϕ
∗(Y = y′)

.

The complexity of the variable elimination algorithm is dominated by the number of entries in the factors
generated in line 5, which is potentially exponential on the number of variables for elimination. This complexity
is highly dependent on the order in which the variables are eliminated. Finding the best ordering (which leads
to minimal complexity) is another NP-hard problem. However, even after finding the best ordering, the inference
problem is still intractable.

If the set of factors Φ in a given iteration (before line 7) is represented by a Markov network H, line 7 can be
interpreted as removing vertex Zi from H and directly connecting all neighbors of Zi in the graph. Edges added in
this way are called fill edges. The induced graph for a given elimination order is the union of the Markov networks
created in this way for all iterations. The complexity of the algorithm is directly related to the size of the largest
clique in the induced graph.

If a graph is an I-map for a set of factors and every minimal cycle in the graph is of length three, then there is
an elimination ordering that does not introduce fill edges.

Several greedy heuristics can be employed to find a good elimination ordering. Considering a set of factors Φ
represented by a Markov network H and a set of variables Z that still need to be eliminated, the next variable for
elimination may be:

• The variable with the least amount of neighbors in H (min-neighbors heuristic);

13

• The variable that would introduce the least amount of fill edges (min-fill heuristic);

• The variable that would introduce the least sum of fill edge weights, where the weight of a fill edge (Xi, Xi)
is defined as |Val(Xi)||Val(Xj)| (weighted-min-fill heuristic).

In general, the min-fill and weighted-min-fill heuristics are observed to work well in practice.
It is important to notice that finding the elimination ordering heuristically can be performed before the sum

product variable elimination algorithm even begins. It is possible to combine greedy heuristics with stochastic
choices to produce several different orderings, which can be evaluated by the sum of the number of entries in the
factors produced in line 5 of the variable elimination algorithm.

8 Belief Propagation
This section presents belief propagation, a family of techniques for inference in probabilistic graphical models.

A cluster graph U for a set of factors Φ over variables X is an undirected graph where every node i is associated
with a set Ci ⊆ X called cluster. Each factor ϕ ∈ Φ must be associated to a single node, denoted by α(ϕ), such
that Scope[ϕ] ⊆ Cα(ϕ). This property is called family preservation. Each edge between a pair of clusters (Ci,Cj)
is associated with a sepset Si,j ⊆ Ci ∩Cj .

When all variables are eliminated, the variable elimination algorithm described in the previous section implicitly
defines a cluster graph. Let ψi denote the factor computed on line 5 of algorithm 1 at iteration i. Consider a cluster
graph U , where there is cluster Ci = Scope[ψi] for each iteration i and an edge between i and j if the factor τi (line
6) is directly used to compute ψj (line 5). Also, let Si,j = Ci ∩Cj .

Consider a cluster graph U over factors Φ. If, whenever X ∈ Ci and X ∈ Cj , there is an unique path between i
and j such that X ∈ Se for every edge e in the path, then U has the running intersection property. In other words,
this property implies that the induced subgraph containing all edges whose sepset contains X form a spanning tree
between all clusters that contain X.

A cluster tree with the running intersection property is also called a clique tree, and each of its clusters is called
a clique. This should not to be confused with the common concept of a clique in a graph. It can be shown that the
cluster graph defined by variable elimination is a clique tree. Furthermore, it is always possible to obtain a clique
tree such that Ci ̸⊆ Cj , for any pair of distinct nodes i and j, from a clique tree defined by variable elimination.

Clique tree message passing is an algorithm for exact inference based on clique trees. Consider a clique tree T
over factors Φ. In the clique tree message passing algorithm, the initial potential ψj of cluster Cj is defined as

ψj(Cj) =
∏

ϕ | α(ϕ)=j

ϕ.

From the definition above, and by the construction of the clique tree, it follows that∏
ϕ∈Φ

ϕ =
∏
j

ψj .

Let r be any node in the clique tree. We let pr(i) denote the predecessor of i in the unique path coming from r
in the clique tree. We also denote by Nbi the set of neighbors of i.

We define a message from i to j, denoted δi→j , as the following factor:

δi→j =
∑

Ci−Si,j

(ψi(Ci)
∏

k∈(Nbi −{j})

δk→i).

In words, the message going from i to j is a factor corresponding to the product between the initial potential of
cluster Ci with all messages received by i, except those sent by j, marginalized over the variables that are not in
the sepset between i and j.

Using these definitions, the upward pass of variable elimination by message passing in a clique tree is shown in
algorithm 2. The reason for calling this an upward pass will be explained shortly. In the algorithm, a clique Ci is
said to be ready after the messages from all of its neighbors except for pr(i) are computed. The algorithm can be
shown to compute the belief factor βr:

βr(Cr) =
∑

X−Cr

∏
ϕ∈Φ

ϕ.

It can be easily shown that there is always a clique ready at line 5.

14

Algorithm 2 Upward pass of variable elimination in clique tree
Input: set of factors Φ over variables X , clique tree T containing k cliques, function assigning factors to cliques α,

root r.
Output: factor βr(Cr).
1: for each i in 1, . . . , k do
2: ψi(Ci)←

∏
{ϕ∈Φ|α(ϕ)=i} ϕ

3: end for
4: while Cr is not ready do
5: Ci ← ready clique
6: δi→pr(i) ←

∑
Ci−Si,pr(i)

(ψi(Ci)
∏

k∈(Nbi −{pr(i)}) δk→i)

7: end while
8: βr(Cr)← ψr(Cr)

∏
k∈Nbr

δk→r

In words, this algorithm first computes the initial potentials. Then, starting from a leaf of the rooted tree,
cliques that are ready send a message to their predecessors. The process continues until the root is ready.

The resulting factor βr(Cr) can be used to compute the joint probability distribution over any set of variables
Y ⊆ Cr by marginalization (and division by the partition function, in case of factors from Markov networks).

Consider a clique tree with cliques Ci. We define the Ci-side of the edge (i, j) as the set of cliques that reach j
through i. Let F≺(i→j) denote the set of initial potentials on the Ci-side of the edge (i, j), and V≺(i→j) the set of
variables that are in a clique on the Ci-side but are not in Si,j . It can be shown that

δi→j =
∑

V≺(i→j)

∏
ϕ∈F≺(i→j)

ϕ.

This property to the major advantage of exact inference by message passing. Consider the task of computing the
distribution over every variable X ∈ X in a clique tree. The naive approach would be to compute, using algorithm
2, the joint probability distribution βi for each clique Ci. However, there is a considerably more efficient alternative.

Consider adjacent cliques Ci and Cj in a clique tree. As long as the root clique is on the Cj-side of the tree,
precisely the same message is sent from i to j. The reasoning is analogous for j. Therefore, by computing the
messages δi→j and δj→i for each edge (i, j) in the clique tree, it is possible to compute βk for every Ck. This can be
accomplished by first performing an upward pass (algorithm 2) for any given root, and then performing a downward
pass of messages from the root to every other node. The messages can then be used to compute the beliefs βk for
every Ck.

Two adjacent cliques Ci and Cj are said to be calibrated if∑
Ci−Si,j

βi(Ci) =
∑

Cj−Si,j

βj(Cj).

A clique tree is said to be calibrated when all of its pairs of adjacent cliques are calibrated. In a calibrated clique
tree, the expression on either side is denominated sepset belief µi,j(Si,j).

In a calibrated clique tree T for factors Φ, it can be shown that

∏
ϕ∈Φ

ϕ =

∏
i∈V (T) βi(Ci)∏

(i,j)∈E(T) µi,j(Si,j)
.

Consider the problem of of performing inference several times using the same calibrated clique tree while increas-
ing the number of observed variables. This is called incremental updating. Let Z = z be the additional observation
and Ci any clique that contains Z. Incremental updating can be accomplished by updating the previous belief
using the rule βi(Ci) ← βi(Ci)1(Z = z), where 1 is an indicator function for Z = z, and sending the updated
message to the other cliques that contain Z. Retracting evidence is not possible in this scheme.

It is also possible to perform approximate inference using cluster graphs. One example is the sum-product belief
propagation algorithm for cluster graphs, algorithm 3, that tries to achieve calibration in cluster graphs that have
the running intersection property.

However, algorithm 3 is not guaranteed to converge. In general, a belief βi(Ci) also does not represent the joint
probability distribution over the variables Ci, but only an approximation. The conditions for convergence and the

15

Algorithm 3 Sum-product belief propagation for cluster graphs
Input: set of factors Φ over variables X , cluster graph (with running intersection) U containing k cliques, function

assigning factors to cliques α
Output: calibrated beliefs βi(Ci) for every 1 ≤ i ≤ k.
1: for each i in 1, . . . , k do
2: βi(Ci)← ψi(Ci)←

∏
{ϕ∈Φ|α(ϕ)=i} ϕ

3: end for
4: for each (i, j) in E(U) do
5: δi→j ← δj→i ← 1
6: end for
7: while beliefs are not calibrated do
8: (i, j)← selected (possibly random) edge in E(U)
9: δi→j ←

∑
Ci−Si,j

(ψi(Ci)
∏

k∈(Nbi −{j}) δk→i)

10: βj(Cj)← ψj(Cj)
∏

k∈Nbj
δk→j

11: end while

quality of the approximation are further detailed in [1]. Both are highly dependent on the structure of the cluster
graph.

A Bethe cluster graph for a set of factors Φ over a set of variables X is a simple cluster graph with the running
intersection property. In this cluster graph, each variable X ∈ X is represented by a cluster. Also, each factor
ϕi ∈ Φ is represented by a cluster Ci = Scope[ϕI], which has an edge for every node representing each of its
variables.

Consider the pairwise Markov networks for image denoising or segmentation introduced in section 6. Inference
based on variable elimination or belief propagation in clique trees can be shown to be exponential on the number of
variables. However, a Bethe cluster graph for the set of factors that define the Markov network is a very compact
representation, and approximate inference is often the algorithm of choice.

9 Maximum a Posteriori estimation
Let P (X) be a joint probability distribution. Finding an assignment x∗ such that

x∗ = argmax
x∈Val(X)

P (x)

consists on the maximum a posteriori problem. This problem is extremely important in practical applications.
Given a Bayesian network B over X and a number τ , the task of deciding whether there exists an assignment x

to X such that P (x) > τ is an NP-complete problem. Therefore, finding the maximum a posteriori assignment is
an NP-hard problem.

Consider a Gibbs distribution parameterized by Φ. The assignment that maximizes the product of the factors
in Φ also maximizes its division by the partition function.

Additionally, consider a joint probability distribution P (X). Let Y and E be disjoint subsets of X and e ∈ Val(E).
Finding the maximum probability assignment for P (Y|e) is also equivalent to finding the maximum probability
assignment for P (Y, e).

Let ϕ1 and ϕ2 be positive factors, and X a variable such that X ̸∈ Scope[ϕ1]. Factor maximization has the
following property:

max
X

(ϕ1ϕ2) = ϕ1 max
X

ϕ2.

This leads to algorithm 4, max-product variable elimination, which is very similar to the variable elimination
algorithm introduced in the previous section.

When compared to max-sum variable elimination, the main additions to the algorithm above are the steps for
recovering an assignment after all variables are eliminated. Intuitively, this is accomplished by using the factors
defined at line 5 to progressively discover the assignment to each variable in inverse order of elimination . In the
end, the factor Φ has an empty scope and corresponds to the value of x∗ in the product of the initial factors.

For numerical stability, this algorithm is usually implemented as the maximization of the sum of the logarithm of
the original factors. The complexity analysis presented in the previous section for variable elimination is analogous
for algorithm 4.

16

Algorithm 4 Max-product variable elimination
Input: set of factors Φ over variables X , ordering ≺ over X .
Output: maximum probability assignment x∗ = argmaxx∈Val(X) P (x)
1: Let X1, . . . , Xk be an ordering of X respecting ≺
2: for each i in 1, . . . , k do
3: Φ′ ← {ϕ ∈ Φ|Xi ∈ Scope[Φ]}
4: Φ′′ ← Φ− Φ′

5: ψi ←
∏

ϕ∈Φ′ ϕ
6: τ ← maxZi ψi

7: Φ← Φ′′ ∪ {τ}
8: end for
9: for each i in k, . . . , 1 do

10: ui ← (x∗i+1, . . . , x
∗
k)⟨Scope[ψi]− {Xi}⟩

11: x∗i ← argmaxxi
ψi(xi, ui)

12: end for

In pairwise Markov networks over binary variables, it is possible to find the most likely assignment using a
polynomial time algorithm for finding minimum cuts in graphs.

Let V be a set of vertices and s and t two vertices not in V . Consider the graph G = (V ∪ {s, t}, E) and a cost
function c : E → R≥0. An s-t graph cut is a pair of sets of vertices (Vs, Vt) that partition the vertices in G such
that s ∈ Vs and t ∈ Vt.

The cost c of a cut (Vs, Vt) is defined as

c(Vs, Vt) =
∑

(vs,vt)∈E|vs∈Vs,vt∈Vt

c(vs, vt).

In other words, the cost of a cut is the sum of the costs of the edges that cross the partitions. A minimum cut
is one that has minimum cost among all possible cuts.

Consider a pairwise Markov network H = (X , E) over binary variables X . We let G = (V,E) be a directed graph
containing one vertex vi for each Xi ∈ X . We also let this graph have special vertices s and t.

The next step is associating a cost to each edge in G in such a way that a minimum cut in G corresponds to a
maximum probability assignment. This will be illustrated using a simplified problem.

Consider again the Markov network H = (X , E). Suppose the energy function for this network can be written
as

E(x1, . . . , xn) =
∑
i

ϵi(xi) +
∑

(Xi,Xj)∈E

ϵi,j(xi, xj).

Also, let ϵi,j(xi, xj) = λi,j , if xi = xj and 0 otherwise. Intuitively, λi,j is an energy penalty for disagreeing
neighbors. Additionally, consider that all the energy factors are non-negative and that, for every Xi ∈ X , either
ϵi(0) = 0 or ϵi(1) = 0.

The costs for the edges in G will now be defined. If ϵi(0) = 0, then let (s, vi) ∈ E and let c(s, vi) = ϵi(1).
Otherwise, if ϵi(1) = 0, then let (s, ti) ∈ E and let c(t, vi) = ϵi(0). Intuitively, this will correspond to a penalty for
assigning a variable to its least preferred value.

Additionally, for each pair (Xi, Xj) ∈ E , let exist two edges (vi, vj) and (vj , vi) with cost λi,j . Intuitively, this
will penalize cuts that separate variables in proportion to their affinity.

Given a cut (Vs, Vt) in G, the corresponding assignment xi for each Xi ∈ X is defined as:

xi =

{
0 if vi ∈ Vs,
1 otherwise.

In words, we represent the assignment 0 using Vs and the assignment 1 using Vt.
It is possible to find the minimum cut in G in polynomial time. It is easy to show that this minimum cut

corresponds to the maximum a posteriori assignment.
This reduction can be extended for arbitrary pairwise Markov networks over binary variables, as long as

ϵi,j(1, 1) + ϵi,j(0, 0) ≤ ϵi,j(0, 1) + ϵi,j(1, 0) for every (Xi, Xj) ∈ E . The reduction for the general case is more
elaborate and can be found in [1].

The problem of finding a maximum probability assignment for pairwise Markov networks over n-ary variables
is NP-hard. Approximations can be obtained using other techniques based on minimum cuts [1].

17

Another technique to perform maximum a posteriori estimation in general probabilistic graphical models is dual
decomposition, which will not be presented here. In broad terms, it uses an optimization approach to divide the
problem into tractable subproblems, which are motivated to agree on a maximum probability assignment.

10 Sampling Methods
Consider the task of computing P (Y|E = e). Sampling is the process of generating full assignments to X in a way
that is useful for estimating P (Y|E = e). A sample D = {ξ[1], . . . , ξ[M]} of X is a set composed of M elements in
Val(X).

Generating sample elements from a probability distribution P over a discrete random variable X such that
Val(X) = {x1, . . . , xk} is a simple process. The interval [0, 1] is partitioned into k intervals Il = [

∑l−1
i=1 P (X =

xi),
∑l

i=1 P (X = xi)) for each l ∈ {1, . . . , k}. A (pseudo)random number generator, uniform in the interval [0, 1),
can be used to sample a value s. If s ∈ Il, then xl is sampled.

Forward sampling is a simple technique that can be applied to a Bayesian networks (Alg. 5). A topological
ordering of the vertices X in a Bayesian network B = (X , E) is a sequence X1, . . . , Xk such that there is no edge
(Xj , Xi) ∈ E if j > i. Every directed acyclic graph admits a topological ordering.

Algorithm 5 Forward sampling in Bayesian network
Input: Bayesian network B over variables X .
Output: Sample element x ∈ Val(X).
1: Let X1, . . . , Xk be a topological ordering of X
2: for each i in 1, . . . , k do
3: xi ← sample element from P (Xi|(x1, . . . , xk−1)⟨PaXi⟩).
4: end for

Let D = {ξ[1], . . . , ξ[M]} be a sample of X generated via algorithm 5. The estimate P̂D(y) of P (y) given the
sample D, for y ∈ Val(Y), Y ⊆ X , is defined as

P̂D(y) =
1

M

M∑
m=1

1[ξ[m]⟨Y ⟩ = y].

In other words, the estimate P̂D(y) corresponds to the ratio between the number of sample elements where y
occurs and M . It is important to note that the probability of any assignment to a subset of X can be computed
from the same sample.

Let y ∈ Val(Y) and Y ⊆ X and D a sample of X containing M elements. Each sample element ξ[i] ∈ D has
probability P (y) of being consistent with y, in other words, of ξ[i]⟨Y ⟩ = y. From this, important bounds can be
derived about the probability PD of obtaining a set D whose estimate is incorrect by a established margin defined
by ϵ:

PD(P̂D(y) /∈ [P (y)− ϵ, P (y) + ϵ]) ≤ 2e−2Mϵ2 ,

PD(P̂D(y) /∈ P (y)(1± ϵ)) ≤ 2e−
1
3MP (y)ϵ2 .

From the first equation, to obtain an estimate P̂D(y) within ±ϵ of P (y) with probability at least 1 − δ, the
number of samples M needed is given by

M ≥ ln(2)− ln(δ)

2ϵ2
.

The analogous derivation from the second equation gives

M ≥ 3
ln(2)− ln(δ)

P (y)ϵ2
.

Consider the task of estimating P (Y = y|E = e). A simple way to adapt algorithm 5 is to reject (ignore) sample
elements incompatible with e, and compute the estimate P̂D(Y = y|E = e) based only on the accepted elements.
This idea is called rejection sampling, and is equivalent to estimating P (Y = y,E = e) and P (E = e) to derive
the desired estimate. The probability of obtaining elements compatible with the evidence e is precisely P (E = e),
which may be low, leading to the rejection of a large number of sample elements.

18

Consider a Gibbs distribution P over factors Φ′ and variables X . Let Y and E be a partition of X . Under
some assumptions about P , Gibbs sampling (Alg. 6) is a process that generates a sequence of sample elements
that can be used to estimate P (Y = y|E = e). Let Φ = {ϕ[E = e]|ϕ ∈ Φ′}, and y(0) be an assignment to Y.
In the case of a Bayesian network, y(0) may be obtained by forward sampling after reducing each factor by the
evidence, which in general is not the same as sampling from P (Y = y|E = e). We let Y−j denote Y − {Yj}, and
ΦY = {ϕ ∈ Φ|Y ∈ Scope[ϕ]}.

Algorithm 6 Gibbs sampling
Input: Set of variables to be sampled Y, set of (reduced) factors Φ, initial sample element y(0), number of time

steps T .
Output: Sequence of sample elements y(1), . . . , y(T).
1: Let Y1, . . . , Yn be an ordering of Y
2: for each t in 1, . . . , T do
3: y(t) ← y(t−1)

4: for each i in 1, . . . , n do

5: y
(t)
i ← sample from P (Yi|y(t)−i) =

∏
ϕ∈ΦYi

ϕ[y−j]∑
Yi

∏
ϕ∈ΦYi

ϕ[y−i]

6: end for
7: end for

In line 5, sampling is performed from the product of all the factors involving Yi, reduced by the current assignment
to all other variables in their scopes, divided by the marginalization of this product over Yi. This division guarantees
that P (Yi|y−i) is a probability distribution, and is, in general, called renormalization.

A Markov chain is a model that defines a next-state distribution for every state in Val(X). This model can be
seen as a directed graph of states with edges labeled by the probability of transitioning from one state to the other.
Precisely, the transition model T of a Markov chain specifies the probability T (x → x′) of going from state x to
state x′, which applies whenever the chain is in state x.

Given an initial probability distribution P (0) over the states in Val(X) and a transition model T , the sampling
process that generates the sample element sequence x(0), x(1), x(2), . . . based on T (x(t) → x(t+1)) is called Markov
chain Monte Carlo. It is possible to define a probability distribution P (t+1) over the state of this process at step
t+ 1 as

P (t+1)(X t+1 = x′) =
∑

x∈Val(X)

P (t)(X t = x)T (x→ x′).

A probability distribution π(X) is stationary for the transition model T if

π(X = x′) =
∑

x∈Val(X)

π(X = x)T (x→ x′).

Consider the matrix A where Ai,j = T (xj → xi). A stationary distribution can be represented by a vector
(π(x1), . . . , π(xn)), which is an eigenvector of A with eigenvalue 1.

In general, the Markov chain Monte Carlo process is not guaranteed to converge to a stationary distribution.
More precisely, P (t) may never be equal to π(X) for any t. There is also no guarantee that a stationary distribution
is unique. The distribution obtained on convergence is also dependent on the initial distribution P (0).

A Markov chain is regular if there exists a number k, such that, for every x, x′ ∈ Val(X), the probability
of getting from x to x′ in exactly k steps is non-zero. A regular Markov chain over a finite set of states has a
unique stationary distribution. Two conditions are sufficient, although not necessary, to ensure regularity: there is
a positive probability path between every two states and a non-zero probability of self-transitions for every state.

Consider a set of transition models Ti, called kernels, for each variable Xi ∈ X and let X−i = X − {Xi}.
Each model Ti in this set takes a state (xi, x−i) into a state (x′i, x−i). In other words, each transition model may
change the state of a single variable in X . Given an initial state, these transition models may be applied in turn,
following any criteria. After every transition model Ti is applied, the aggregate step can be interpreted as a step
in a transition model T between every pair of states. If each kernel has a unique stationary distribution, then the
aggregate transition model has a unique stationary distribution.

Gibbs sampling can be seen as a particular case of a multiple kernel transition model, where each transition
model Ti is defined as

T ((xi, x−i)→ (x′i, x−i)) = P (x′i|x−i).

19

It is possible to show that P is always a stationary distribution of this (multiple kernel) transition model. The
converse is not generally true.

Beyond having one transition model for every variable, it is also possible to define kernels for disjoint sets that
partition X . This variant is called block Gibbs sampling. When the variables in a block are independent given all
others, this makes the sampling process more efficient.

If all the factors in a Gibbs distribution P are positive, the Markov chain defined by Gibbs sampling is regular,
and thus its unique stationary distribution is P . Importantly, it may take a very large number of steps to achieve
this convergence, which is also called mixing.

In practice, several decisions must be made when using Markov chain Monte Carlo methods. One of them is the
burn-in time T , the number of steps taken before we collect a sample from a chain. This time is highly dependent
on the probabilities of transitioning between states.

Although it is possible to burn-in a Markov chain to generate every sample element, it is also possible to consider
a sample of M elements obtained after burn-in. Although estimates made from this sample tend, on the limit, to be
correct, the sample elements are not independent, which may lead to high variance. The idea of skipping sufficient
sample elements to reduce this dependence may occur naturally, although it is provably worst than using all the
sample elements obtained after burn-in.

It is very hard to establish whether a Markov chain has mixed. One common practice is running several Markov
chains at the same time, and comparing their estimates.

One of the main advantages of Markov chain Monte Carlo methods is being independent of the probability
of the evidence, since the factors are reduced before sampling. Given sufficient sample sizes, these methods can
get arbitrarily close to the posterior. However, it is often challenging to create a Markov chain with good mixing
properties.

Variable elimination, belief propagation and Markov chain Monte Carlo can be used to perform inference in
unrolled template models. However, tractable inference often requires a careful examination of the structure of a
model. For example, independencies can simplify queries immensely by removing the conditioning evidence. In
practice, different methods are often combined to achieve tractable inference.

11 Decision Making
Decision theory is the study of decision making under uncertainty. An agent is a subject that makes decisions. Each
possible outcome in a decision scenario is associated to a numerical value called utility, which encodes the agent’s
preferences.

A decision situation D is composed of the following elements: a set of outcomes O, a set of possible actions A, a
probability distribution πa for each a ∈ A, which represents the probability of each outcome o ∈ O given the action
a, and a utility function U : O → R, which maps a utility to each outcome.

The expected utility EU[D[a]] of an action a in a decision situation D is defined as

EU[D[a]] =
∑
o∈O

πa(o)U(o).

Decision theory builds on the assumption that the agent should choose an action which maximizes expected
utility. This assumption requires that the magnitude of the utilities be representative of the agent’s preferences,
taking into consideration the multiple aspects of an outcome. An agent is rational when it always chooses the
action with maximum expected utility. Judging the correctness of the actions taken by an agent generally requires
knowing its utility function. However, some choices are contradictory for any utility function.

Suppose an observation o ∈ O can also be represented by an assignment Val(V) to a set of variables V. In this
case, U : Val(V)→ R. It is often useful to write a utility function as the sum of subutility functions:

U(V) =

k∑
i=1

Ui(Zi),

where Zi ⊆ V for every 0 ≤ i ≤ k. This simplifies the enumeration of utilities for every possible assignment to
V.

An influence diagram I is a directed acyclic graph whose nodes correspond to elements of a set Z = X ∪D∪U ,
where the elements in U have no descendants in I. The three sets on the right side of the equation contain,
respectively, chance variables, decision variables and utility variables. A chance variable V is a random variable

20

associated with a conditional probability distribution P (V |PaV). A chance variable in an influence diagram can be
interpreted in the same way as a variable in a Bayesian network. A decision variable D may be associated with a
conditional probability distribution δD(D,PaD) = P (D|PaD), also called the decision rule for D, which represents
the probability of a given decision (action) by the agent given the parents of the variable. A utility variable V ∈ U
is associated with a factor UV (PaV) that gives a utility to each assignment to the parents of the variable. When an
influence diagram is represented pictorially, each chance variable is inscribed inside an oval, each decision variable
in a rectangle and each utility variable in a rhombus.

An influence diagram I is independent of the choice of the decision rules for its decision variables, which
collectively compose a strategy σ = {δD(D,PaD)|D ∈ D} of the agent. An influence diagram with strategy σ is
denoted by I[σ]. The acyclicity of the graph imposes a partial order over the decisions. However, the dependence
between decisions must be explicitly stated in the diagram.

The expected utility of an influence diagram I[σ] with strategy σ is defined as

EU[I[σ]] =
∑
X∪D

[(
∏
X∈X

P (X|PaX))(
∏
D∈D

δD(D,PaD))(
∑
V ∈U

UV (PaV))].

This corresponds to computing the sum of the probability of each joint assignment to the variables in X ∪ D
multiplied by its utility. The utility of an assignment is defined as the sum of the utility of that assignment for
each utility factor. Notice that the summation over utility factors is not a marginalization over the variables in U ,
which are not in the scope of any factor, but factor addition.

There are two simple ways to compute the expected utility of I[σ]. One is to collapse every utility factor into a
larger utility factor U(Y) =

∑
V ∈U UV (PaV), where Y ⊆ X ∪ D. The necessary computation becomes

EU[I[σ]] =
∑
X∪D

[(
∏
X∈X

P (X|PaX))(
∏
D∈D

δD(D,PaD))U(Y)].

This is a simple marginalization over a product of factors, which can be solved by sum-product variable elimi-
nation, presented in section 7. Since the scope of U may be very large, this is not always the best alternative.

Another equally simple solution is to use the linearity of the expected utility of I[σ], which gives

EU[I[σ]] =
∑
V ∈U

∑
X∪D

[(
∏
X∈X

P (X|PaX))(
∏
D∈D

δD(D,PaD))UV (PaV)].

This corresponds to computing the expected utility independently for each utility variable, which can be easily
accomplished with sum-product variable elimination, and summing these expected utilities. Notice that the out-
ermost summation is not a marginalization over variables in U , but a sum of real numbers. This approach avoids
defining a large global utility factor, however, it also causes work replication.

The maximum expected utility considering all possible strategies for I is denoted by MEU[I]. A strategy σ∗ is
optimal if EU[I[σ∗]] = MEU[I].

Consider an influence diagram I with a single decision variable D . For any strategy σ = {δD}, the expected
utility can also be written as

EU[I[σ]] =
∑

{D}∪PaD

δD(D,PaD)
∑

X−PaD

[(
∏
X∈X

P (X|PaX))(
∑
V ∈U

UV (PaV))]

=
∑

{D}∪PaD

δD(D,PaD)µ−D(D,PaD).

In this case, defining a decision rule δ∗D that maximizes expected utility is very simple:

δ∗D(d, paD) =

{
1 if d = argmaxd′∈Val(D) µ−D(d′,paD),

0 otherwise.

This assumes that ties are broken consistently, such that a single decision is given maximum probability for each
assignment to PaD. Intuitively, this corresponds to a deterministic decision rule that always chooses the decision
with maximum expected utility for each situation. The same reasoning can be extended to more than one decision
variable. However, there are more efficient ways of performing this maximization task, which are detailed in [1].

Let I be an influence diagram, X a chance variable and D a decision variable, such that there is no path from
D to X. Let I ′ be an influence diagram which is equal to I plus an edge from X to D and from X to every decision
that follows D in any topological ordering of the decision variables. The value of information X at D is defined as

21

VPII(D|X) = MEU[I ′]−MEU[I]. Intuitively, the value of perfect information indicates how much expected utility
would be gained, under optimum decision-making, if the value of X were known when the decision D is made.
The value of perfect information is always non-negative, and is zero if knowing the value of X does not change the
actions selected by the agent.

An alternative to evaluate the desirability of observing a chance variable is encoding the cost of such observation
in decision and utility factors. In this case, the optimum strategy already defines which chance variables should be
observed.

12 Parameter Estimation
In the context of graphical models, learning is the process of building models based on data. Although models
may be created by experts, there are three main reasons to employ learning. The correct model for the underlying
process may be too large to be described exhaustively, there may be no explicit knowledge of how to model the
process or the model may need to adapt to changes in the underlying process.

More concretely, consider the problem of defining a graphical model for a probability distribution P ∗(X), having
access only to a sample D = {ξ[1], . . . , ξ[M]} of sample elements in Val(X). Consider each assignment ξ[i] ∈ D as
an assignment to a set of random variables X [i], that together follow a joint distribution P .

The sample elements in D are independent if, for every i, X [i] ⊥⊥ X [−i], where X [−i] represents all variables not
in X [i]. They are identically distributed according to P ∗ if, for every i, j ∈ {1, . . . ,M} and assignment ξ ∈ Val(X),

P (X [i] = ξ) = P (X [j] = ξ) = P ∗(X = ξ).

All data sets considered in this chapter are composed of independent, identically distributed (IID) elements.
The probabilistic models presented so far can be described by factors. Parameter learning corresponds to learning

the value given by each factor to each assignment in its domain. Structure learning corresponds to decomposing
the joint probability distribution P ∗ as a product of factors. This section focuses on parameter learning.

12.1 Maximum Likelihood Estimation
Intuitively, maximum likelihood estimation corresponds to finding the parameters that would produce the observed
sample with maximum probability.

Consider a binary random variable X and a sample D = {x[1], . . . , x[M]} of independent, identically distributed
sample elements in Val(X). Let P (X : θ) denote a probability distribution over X parameterized by θ, in such a
way that P (X = 0 : θ) = θ and P (X = 1 : θ) = 1 − θ. Clearly, the possible values for θ are in Θ = [0, 1]. The set
of parameters under consideration Θ is usually called parameter space.

Based on our assumptions,

P (x[1], . . . , x[M] : θ) =

M∏
i=1

P (X[i] = x[i] : θ) = θM [X=0](1− θ)M [X=1],

where M [X = x] =
∑M

i=1 1{x[i] = x} denotes the number of sample elements in D equal to x. The likelihood
of the data D under the parameter θ is defined as L(θ : D) = P (x[1], . . . , x[M] : θ).

Consider the task of finding a θ̂ such that L(θ̂ : D) = maxθ∈Θ L(θ : D). This is equivalent to finding a θ̂ that
maximizes the log-likelihood ℓ(θ : D) = logL(θ : D). Notably,

ℓ(θ : D) = log[θM [X=0](1− θ)M [X=1]] =M [X = 0] log θ +M [X = 1] log(1− θ).

If θ̂ is a global maximum of ℓ(θ : D), then ℓ′(θ : D) = 0. Using calculus,

ℓ′(θ : D) = M [X = 0]

θ
+
M [X = 1]

1− θ
.

Therefore, if a global maximum θ̂ exists, θ̂ = M [X=0]
M [X=0]+M [X=1] . Since ℓ′′(θ : D) < 0 for any θ ∈ (0, 1), θ̂ is

guaranteed to be a global maximum. As could be expected, θ̂ corresponds precisely to the relative frequency of
occurrences of X = 0 in the sample D. The parameter θ̂ is the maximum likelihood estimate.

As another example of parameterized model, consider a discrete random variable X with Val(X) = {1, . . . , k}.
In this case, the most natural parameter space consists on Θ = {θ ∈ [0, 1]k|

∑k
i=1 θi = 1} and P (X = x : θ) = θx.

This is also called a multinomial distribution model.

22

As yet another example, consider a continuous random variable X that can take any real value. Assuming that
X follows a Gaussian distribution, Θ = R×R+ and for a given θ ∈ Θ, such that θ = (µ, σ), the probability density
function P can be written as

P (x : θ) =
e−

(x−µ)2

2σ2

√
2πσ

.

Given a set of random variables X , a function τ : Val(X) → Rl, for an l ∈ N, is a sufficient statistic if, for any
two data sets D and D′ and any θ ∈ Θ,

M∑
i=1

τ(ξ[i]) =

M ′∑
i=1

τ(ξ′[i]) =⇒ L(θ : D) = L(θ : D′).

In words, when the sum of the sufficient statistic of all assignments in two distinct datasets is the same, the
likelihood of the two datasets under any parameter θ is the same. This sum is often called the sufficient statistics
(plural) of the data.

In the case of a multinomial distribution model for a random variable X with Val(X) = {1, . . . , k}, τ(x) is a
k-dimensional vector which is zero in every element except for the x-th, which is one. The sufficient statistics in
this case is the vector (M [1], . . . ,M [k]), which is all that is needed to compute the likelihood for a given θ.

In the case of a Gaussian model, the sufficient statistic is τ(x) = (1, x, x2), and the sufficient statistics is the
vector (M,

∑M
i x[i],

∑M
i x[i]2). It is also the case that this vector is sufficient to compute the likelihood of any θ.

The task of maximum likelihood estimation can easily be generalized to involve a set of random variables X , given
a data set D = {ξ[1], . . . , ξ[M]} of IID sample elements in Val(X). A parameter space Θ contains all parameters
under consideration, and, for any θ ∈ Θ, ∑

ξ∈Val(X)

P (ξ : θ) = 1.

A similar condition should hold for distributions over continuous random variables. The likelihood function in
the general case is defined as

L(θ : D) =
M∏

m=1

P (ξ[m] : θ).

Maximum likelihood estimation is the problem of finding a θ̂ ∈ Θ such that L(θ̂ : D) = maxθ∈Θ L(θ : D)
In the case of a multinomial model for a random variable X with Val(X) = {1, . . . , k}, θ̂ = (M [1]

M , . . . , M [k]
M), as

could be intuitively expected.
In the case of a Gaussian model, θ̂ = (µ̂, σ̂), where µ̂ is the empirical mean (mean value in the data) and σ̂ is

the empirical standard deviation.
Consider a set X = {Xi, . . . , Xn} of discrete random variables. Let P ∗(X) be a joint probability distribution

represented by a Bayesian network, and D = {ξ[1], . . . , ξ[M]} a sample of independent assignments to X distributed
according to P ∗. A parameter θ for this distribution may be defined as the set of θX=x| paX = P (X = x|PaX =
paX : θ) for every X ∈ X , x ∈ Val(X) and paX ∈ PaX . Naturally,

∑
x θX=x| paX must be equal to 1 for every

X ∈ X and paX ∈ Val(PaX). The parameter space Θ consists on the set of all θ that satisfy this constraint.
Under these definitions, the likelihood L(θ : D) can be written as

L(θ : D) =
M∏

m=1

P (ξ[m] : θ) =

M∏
m=1

n∏
i=1

P (xi[m]|paXi
[m] : θ),

where xi[m] = ξ[m]⟨Xi⟩, and paXi
[m] = ξ[m]⟨PaXi

⟩.
Consider the set of parameters θX| paX = {θX=1| paX , . . . , θX=k| paX} of probabilities attributed to each assign-

ment to x ∈ Val(X) given a particular assignment paX to the parents of X, and let θX|PaX = ∪paXθX| paX . It
follows that the likelihood can be decomposed into the product of local likelihood functions:

L(θ : D) =
n∏

i=1

[
M∏

m=1

P (xi[m]|paXi
[m] : θXi| paXi

[m])

]
=

n∏
i=1

Li(θXi|PaXi
: D).

In words, the outermost product is between terms that depend on completely disjoint sets of parameters.
Therefore, each innermost product (which involves only parameters in θXi|PaXi

) corresponds to an individual
conditional probability distribution in the network. It follows that maximum likelihood estimation can be performed

23

independently. This result is independent of how the conditional probability distributions are represented, as long
as parameters are not shared between them.

As an example, consider the parameterization of a conditional probability distribution P (X|PaX) for a variable
X in a Bayesian network. For each assignment x ∈ Val(X) and u ∈ Val(PaX), there will be a parameter θx|u =
P (x|u : θ). The local likelihood LX(θX|U : D) can be written as

LX(θX|U : D) =
M∏

m=1

θx[m]|u[m] =
∏

u∈Val(PaX)

∏
x∈Val(X)

θ
M [x,u]
x|u .

Consider the task of finding the parameters in θ̂X|U that maximize the local likelihood LX(θX|U : D) of the
data, under the obvious constraint that, for all u ∈ Val(PaX),

∑
x θx|u = 1. It is possible to show that

θ̂x|u =
M [x, u]

M [u]
.

It is very important to notice how a large number of samples may be required to perform estimation when
|Val(PaX)| is large.. This phenomenon is called data fragmentation, and is one of the biggest problems with
learning Bayesian networks from data. This also highlights the importance of an appropriate network structure.

Naive Bayes, already presented in this text, can be seen as a particular instance of a Bayesian classifier that
assumes a structure for a Bayesian network and performs maximum likelihood estimation of parameters.

12.2 Bayesian Parameter Estimation
A different approach to parameter learning is Bayesian estimation, which allows for the integration of previous
knowledge about the parameters encoded as a probability distribution.

As an initial example, consider again a binary random variableX and IID sample elements inD = {x[1], . . . , x[M]}.
Consider also a continuous random variable θ such that Val(θ) = [0, 1]. Consider a joint probability distribution
over the variables X[1], . . . , X[m] and θ, and let θ denote an assignment to θ.

Let P (x[i] = 0|θ) = θ for every x[i] ∈ D. This parameterization is equivalent to the one we denoted by
P (x[i] = 0 : θ) in the first example of the previous subsection. Based on our assumptions about P ,

P (x[1], . . . , x[m], θ) = P (θ)

M∏
i=1

P (x[i]|θ).

Clearly, a prior probability distribution P (θ) over the parameters is required to compute the joint distribution
using the equation above.

Notice that the joint distribution P (X[1], . . . , X[M],θ) can be interpreted as a Bayesian network where θ has
an outgoing edge to each X[i]. Therefore, X[i] is independent of X[j] for every i ̸= j only when given θ.

In the Bayesian approach, the likelihood function is defined as L(θ : D) =
∏M

i=1 P (x[i]|θ). However, this
approach is not restricted to finding the maximum likelihood parameter θ̂.

Different queries can be made about the joint probability distribution P (X[1], . . . , X[M],θ). For example, it
may be interesting to compute the posterior distribution given by

P (θ|x[1], . . . , x[M]) =
P (x[1], . . . , x[M],θ)

P (x[1], . . . , x[M])
.

Based on this conditional distribution, it is possible to find the maximum a posteriori θ̂.
Prediction can be performed by introducing an additional variable X[M +1] into the joint probability distribu-

tion:

P (x[m+ 1]|x[1], . . . , x[m]) =

∫ 1

0

P (x[m+ 1], θ|x[1], . . . , x[m]) dθ

=

∫ 1

0

P (x[m+ 1]|θ)P (θ|x[1], . . . , x[m]) dθ.

Based on the equation above, the probability of observing x[m+1] can be interpreted as the average probability
of observing x[m+ 1] under each parameter θ, weighted by the probability of that parameter given the previously
seen data.

24

Therefore, in the Bayesian approach, parameter learning can be seen as a particular case of inference.
As a more general example, consider the task of performing Bayesian estimation for a multinomial distribution

model. Let X be a discrete random variable and Val(X) = {1, . . . , k}. Also let D = {x[1], . . . , x[M} contain
IID sample elements of the underlying distribution P ∗(X). This estimation task corresponds to modeling a joint
distribution P (x[1], . . . , x[M],θ), where θ = {θ1, . . . ,θk} is a set of continuous random variables that parameterize a
distribution over X. For every θi ∈ θ, Val(θi) = [0, 1]. Analogously to the previous example, P (X = x|θ) = θx. We
denote by Θ ⊆ Val(θ) the set of valid joint assignments to the variables in θ. In this case, Θ = {θ ∈ Val(θ)|

∑
i θi =

1}. Naturally,
P (x[1], . . . , x[m], θ) = P (D, θ) = P (D|θ)P (θ) = L(θ : D)P (θ).

Considering our assumptions,

L(θ : D) =
k∏

i=1

θ
M [i]
i .

Thus, the definition of P (θ) completes the model. We will consider a Dirichlet distribution Dirichlet(α1, . . . , αk)
over θ. Using the notation introduced previously, a Dirichlet distribution can be seen as a distribution over a
set of continuous random variables, each taking values in the interval [0, 1]. Each positive real number αi is a
hyperparameter (a parameter about a parameter of the model) of the distribution. If θ ∼ Dirichlet(α1, . . . , αk),
then

P (θ) ∝
k∏

i=1

θαi−1
i ,

Notice how the prior distribution has some similarity to the likelihood function. The reason for using a Dirichlet
prior derives from the following important property regarding the posterior over θ.

If P (θ) is Dirichlet(α1, . . . , αk), then P (θ|D) is Dirichlet(α1 +M [1], . . . , αk +M [k]). Therefore, by defining the
Dirichlet hyperparameters, the posterior can be concisely expressed given the sufficient statistics of a multinomial
distribution model. This provides a simple way of representing the beliefs over the parameters after observing the
data, and can be used to perform queries about the parameters, as already shown.

More generally, a family of priors of the form P (θ : α) is conjugate to a particular model P (ξ|θ) if, for any data
D of IID sample elements from P (ξ|θ) and any valid choice of hyperparameters α, there are valid hyperparameters
α′ such that:

P (θ : α′) ∝ P (D|θ)P (θ : α).

Consider the task of predicting a new observation x[M + 1]. As before, this can be modeled as

P (x[M + 1] = x|D) =
∫
Θ

P (x[M + 1] = x, θ|D) dθ

=

∫
Θ

P (x[M + 1] = x|θ)P (θ|D) dθ

=

∫
Θ

θxP (θ|D) dθ

= EP (θ|D)[θx].

Consider θ ∼ Dirichlet(α1, . . . , αk). It can be shown that EP (θ)[θx] =
αx

α , where α =
∑

i αi. Because P (θ|D) is
Dirichlet(α1 +M [1], . . . , αk +M [k]), it follows that

P (x[M + 1] = x|D) = αx +M [x]

α+M
.

Intuitively, α can be interpreted as the number of virtual observations that represent previous knowledge, and
αx

α as the ratio of virtual occurrences of x. The identity above can be rewritten as

P (x[M + 1] = x|D) = α

(α+M)

αx

α
+

M

(α+M)

M [k]

M
.

Therefore, the probability of x given the data can be interpreted as an average between the virtual frequency
of x and the observed frequency of x, weighted (respectively) by the ratio between the number of virtual (real)
observations and total number of observations. When M →∞, this is equivalent to prediction based on maximum

25

likelihood estimation. The hyperparameter α represents the strength of the previous knowledge. It is important to
notice that the prior distribution is implicit in prediction based on maximum likelihood estimation.

We now consider the case of Bayesian parameter estimation for Bayesian networks. Consider the set D =
{ξ[1], . . . , ξ[M]} of IID sample elements from the distribution P ∗ over the set of variables X = {X1, . . . , Xn}.
Using an analogous notation to that presented in the previous subsection, this tasks consists on defining a joint
probability distribution P (ξ[1], . . . , ξ[M],θ), where θ is the union of all θX|PaX

. Each θX|PaX
is a set of continuous

random variables, and an assignment in Val(θX|PaX
) defines P (x|paX , θX|PaX

) for every possible assignment in
Val(X,PaX). An assignment to the variables in θ, denoted by θ, defines P (ξ|θ) for every ξ ∈ Val(X).

The likelihood can be written as

P (D|θ) = P (ξ[1], . . . , ξ[M]|θ)

=

M∏
m=1

n∏
i=1

P (xi[m]|paXi
, θXi|PaXi

)

=

n∏
i=1

LXi
(θXi|PaXi

: D),

where xi[m] = ξ[m]⟨Xi⟩, and paXi
[m] = ξ[m]⟨PaXi⟩. This is analogous to the decomposition based on local

likelihoods presented previously.
Assuming once again that the parameters for different conditional probability distributions are independent,

P (θ) =

n∏
i=1

P (θXi|PaXi
).

The combination of these results gives, for every θ ∈ Val(θ),

P (θ|D) =
n∏

i=1

LXi(θXi|PaXi
: D)P (θXi|PaXi

)

P (D)
=

n∏
i=1

P (θXi|PaXi
|D).

Therefore, the global posterior is the product of local posteriors.
In the prediction task, the probability of a new assignment also relates to the product of local probabilities of

that assignment:

P (X1[M + 1], . . . , Xn[M + 1]|D) =
∫
Θ

P (X1[M + 1], . . . , Xn[M + 1], θ|D) dθ

=

∫
Θ

P (X1[M + 1], . . . , Xn[M + 1]|θ)P (θ|D) dθ

=

∫
Θ

n∏
i=1

P (Xi[M + 1]|PaXi[M + 1], θ)P (θ|D) dθ

=

n∏
i=1

∫
ΘXi|PaXi

P (Xi[M + 1]|PaXi[M + 1], θXi|PaXi
)P (θXi|PaXi

|D) dθXi|PaXi
.

In conclusion, computing posteriors over θ and performing prediction depends on computing local posteriors
P (θXi|PaXi

|D).
We now define the local prior distributions P (θXi|PaXi

) over the parameters, which lead naturally to the local
posteriors P (θXi|PaXi

|D).
For each random variable X ∈ X and each each paX ∈ PaX , with Val(X) = {1, . . . , k}, we define a Dirichlet

distribution Dirichlet(αX=1| paX , . . . , αX=k| paX) as P (θX| paX). In other words, we define a distinct multinomial
model for each assignment to the parents of X.

From the fact that the parameterizations given distinct assignment to the parents are independent,

P (θX|PaX |D) =
∏
pax

P (θX| paX |D).

Therefore, the local posterior is the product of Dirichlet posteriors. All of these assumptions lead to natural
local (and, by consequence, global) prediction:

P (x[M + 1]|paX [M + 1],D) =
αX=x[m+1]| paX [M+1] +M [X = x[m+ 1],paX [M + 1]]∑

i αX=i| paX [M+1] +M [X = i,paX [M + 1]]
.

26

Defining priors over a Bayesian network is a very important task. Given a parameter α, a uniform BDe prior
for a Bayesian network is such that

αX=x|PaX=paX
=

α

|Val(X,PaX)|
,

for every X ∈ X and (x, paX) ∈ Val(X,PaX). This is a principled way of representing ignorance about the
parameters.

12.3 Parameter estimation in Markov networks
The previous sections have focused on parameter estimation for Bayesian networks. This section introduces param-
eter estimation for Markov networks.

Consider a Markov network defined by a set of positive factors Φ = {ϕ1(D1), . . . , ϕK(DK)} over a set of variables
X . By definition,

P (X) =
∏K

i=1 ϕi(Di)

Z
,

where

Z =
∑
X

K∏
j=1

ϕj(Dj).

Another way of representing the same network is by

P (X) =
∏K

i=1 e
log ϕi(Di)

Z
=
e
∑K

i=1 log ϕi(Di)

Z
.

However, in the context of parameter learning, it is convenient to represent the parameters of this network more
explicitly. Consider a set of parameters θ = {θi,u ∈ R|i ∈ {1, . . . ,K} and u ∈ Scope[ϕi]}. By the equation above,

P (X = ξ) =
1

Z
exp

 ∑
θi,u∈θ

θi,ufi,u(ξ⟨Di⟩)

 ,

where fi,u(u′) = 1 if u′ = u and 0 otherwise, and θi,u = log ϕi(u).
Using an appropriate numbering of the parameters, the equation above can be rewritten as the following pa-

rameterized joint distribution:

P (X : θ) =
1

Z(θ)
exp

{
k∑

i=1

θifi(Fi)

}
.

This apparently redundant reformulation will be very useful to derive the likelihood of the training data.
Consider a data set D = {ξ[1], . . . , ξ[M]} of IID sample elements from a probability distribution P ∗. Consider a

Markov network parameterized by a set of parameters θ, as defined above. It is easy to show that the log-likelihood
of the data can be written as

ℓ(θ : D) =
k∑

i=1

θi

 M∑
j=1

fi(ξ[j]⟨Fi⟩)

−M lnZ(θ),

ℓ(θ : D)
M

=

k∑
i=1

θiED[fi(Fi)]− lnZ(θ),

where ED represents the empirical expectation (empirical average). Because the log-likelihood is bounded by 1,
the term lnZ(θ) clearly must balance the first term. It can be shown that the log-likelihood is concave with respect
to θ (every local maxima is a global maxima).

It can also be shown that θ is the maximum likelihood parameter if and only if ED[fi(Fi)] = EP (X :θ)[fi(Fi)] for
every i. In other words, if the average value of fi in the data set matches the expected value of fi in a distribution
parameterized by θ. Unfortunately, there is no closed analytical formula for maximum likelihood estimation in
Markov networks.

For iterative optimization (e.g. gradient ascent), the theorem mentioned in the previous paragraph is pro-
hibitively expensive, because it requires the computation of the probability of every possible assignment at each
optimization step.

27

13 Structure Learning
The previous section focused on parameter learning in probabilistic graphical models: learning the value given by
each factor to each assignment in its domain. This section focuses on structure learning for Bayesian networks:
decomposing a joint probability distribution P ∗ into a product of conditional probability distributions.

Once again, we will assume that we have a sample D = {ξ[1], . . . , ξ[M]} of independent, identically distributed
(according to P ∗) sample elements. We will also assume that P ∗(X) is induced by some Bayesian network G∗ over
X = {X1, . . . , Xn}, even though there might not be a Bayesian network that is a perfect map for P ∗.

Given the data D, we say P̂ (X) is the empirical (joint) distribution according to D if

P̂ (X = ξ) =
1

M

M∑
m=1

1(ξ = ξ[m]) =
M [ξ]

M
,

for every ξ ∈ Val(X). A very important observation is that, even if two variables X,Y ∈ X are perfectly
independent with respect to P ∗, it is generally unlikely that P̂ (X,Y) = P̂ (X)P̂ (Y) for a given D.

There are several reasons for learning structure from data. One is knowledge discovery: finding relationships
between the variables that represent a problem of interest. However, it is important to note that many structures
may represent the correct set of independencies (the I-equivalence class of G∗), and there might be no objective
way of distinguishing between these structures.

Another goal might be density estimation: learning the underlying distribution P ∗ from the data. Given
enough data, P̂ converges to P ∗. However, decomposing a joint probability distribution as a product of conditional
probability distributions reduces the issue of data fragmentation, which allows better parameter estimation and,
by consequence, generalization. For the same reason, unnecessary edges are undesirable in structure learning.
Somewhat surprisingly, models that make incorrect independence assumptions (sparser models) might be better for
generalization given insufficient data.

Structure learning can be decomposed into two steps: evaluating structures according to some criterion and
finding optimal structures with respect to that criterion. Firstly, we will describe three ways of evaluating structures:
likelihood score, Bayesian score and Bayesian information criterion.

The likelihood scoring function scoreL is defined as

scoreL(G : D) = ℓ(θ̂G : D),

where θ̂G = argmaxθG ℓ(θG : D). In words, the likelihood score for a graph is the log-likelihood of the data given
the parameterization that maximizes its probability of occurring.

It can be shown that the likelihood score can be rewritten as

scoreL(G : D) =M

n∑
i=1

IP̂ (Xi; Pa
G
Xi

)−M
n∑

i=1

HP̂ (Xi),

where IP̂ (Xi; Pa
G
Xi

) is the empirical mutual information between Xi and its parents, and HP̂ (Xi) is the empirical
entropy of Xi. These quantities are defined as

IP (X;U) =
∑

(x,u)⟩∈Val(X,U)

P (x, u) log
P (x, u)

P (x)P (u)
,

and
HP (X) = −

∑
x∈Val(X)

P (x) logP (x).

Mutual information can be seen as a measure of dependence between random variables. It can be shown to be
non-negative and, for any sets of variables X, Y, Z and distribution P , IP (X;Y) ≤ IP (X;Y ∪ Z).

Entropy can be seen as a measure of uncertainty about a random variable under a distribution P . It is highest
when the distribution P is uniform.

From the equation for the likelihood and the properties of mutual information, it is possible to see that any
subgraph of G has a lower or equal score to G. Furthermore, a maximum score structure would only exhibit a
conditional independence if it existed in the empirical distribution, which is often unlikely. For this reason, the
maximum score structure is said to overfit the data: it represents the empirical distribution very well, but is not
expected to make good predictions due to data fragmentation.

28

In a Bayesian formulation of the structure learning task, we define a joint probability distribution over graphs,
parameters and data. The probability of a graph G given the data D is denoted by

P (G|D) = P (D|G)P (G)
P (D)

.

Therefore, a graph with maximum a posterior probability is one that maximizes the Bayesian scoring function
scoreB , which is defined as

scoreB(G : D) = logP (D|G) + logP (G).

In practice, the term P (G) is often considered unimportant, because it remains constant when M →∞. Usually,
P (G) ∝ c|E[G]|, where c ∈ (0, 1] is a constant.

By marginalization,

P (D|G) =
∫
ΘG

P (D|θG ,G)P (θG |G) dθG .

For this reason, the term P (D|G) is also called the marginal likelihood of the data given the structure. It can be
interpreted as the average probability of the data given each possible parameterization, weighted by the probability
of that parameterization. This is significantly different from the maximum likelihood score for a structure, which
is the log-probability of the data under the best parameterization.

The Bayesian score naturally tries to find models with good generalization properties. Intuition can be gained
by rewriting the marginal likelihood using the chain rule:

P (D|G) = P (ξ[1], . . . , ξ[M]|G) =
M∏

m=1

P (ξ[m]|ξ[1], . . . , ξ[m− 1],G).

From this equation, it is possible to see that the marginal likelihood takes into account the quality of the
prediction given by the structure G in the available data, when the data are considered incrementally. Notice that
this observation still holds in any reordering of the sample elements.

An analogous equation can be written for a graph G with maximum likelihood parameters θ̂G :

P (D : θ̂G ,G) =
M∏

m=1

P (ξ[m]|ξ[1], . . . , ξ[m− 1] : θ̂G ,G).

However, notice that finding θ̂G requires observing all the data first, and using this information in retrospective
to compute the likelihood. This is a subtle, yet crucial distinction.

Consider a joint distribution over a binary random variableX and its parameters θ, such that P (θ) is Dirichlet(α0, α1)
and α = α0 + α1. Because the Dirichlet is a conjugate prior to this model,

P (x[m+ 1] = 0|x[1], . . . , x[m]) =
Mm[0] + α0

m+ α
,

where Mm[x] denotes the number of occurrences of x up to (and including) the m-th sample element. By the
chain rule,

P (x[1], . . . , x[M]) =
[α0 · . . . · (α0 +M [1]− 2) · (α0 +M [1]− 1)][α1 · . . . · (α1 +M [1]− 2) · (α1 +M [1]− 1)]

α · . . . · (α+M − 2) · (α+M − 1)
.

The Gamma function Γ respects the equality Γ(x+ 1) = xΓ(x). The equation above can be rewritten in terms
of the Gamma function as

P (x[1], . . . , x[M]) =
Γ(α)

Γ(α+M)

Γ(α0 +M [0])

Γ(α0)

Γ(α1 +M [1])

Γ(α1)
.

In the case of a multinomial distribution for X such that Val(X) = {1, . . . , k},

P (x[1], . . . , x[M]) =
Γ(α)

Γ(α+M)

k∏
i=1

Γ(αi +M [i])

Γ(αi)
.

29

The equation above is fundamental to define the marginal likelihood for a given Bayesian network graph. Let
G be such a graph and P (θ|G) be a parameter prior satisfying global and local parameter independence. It follows
that

P (D|G) =
∫
ΘG

P (D, θG |G) dθG

=

∫
ΘG

P (D|θG ,G)P (θG |G) dθG

=

n∏
i=1

∏
ui∈Val(PaGXi

)

∫
ΘXi|ui

M∏
m=1|ξ[m]⟨PaXi

⟩=ui

P (Xi[m]|ui, θXi|u,G)P (θXi|ui
|G) dθXi|ui

.

By using a Dirichlet prior,

P (D|G) =
n∏

i=1

∏
ui∈Val(PaGXi

)

Γ(αG
Xi|ui

)

Γ(αG
Xi|ui

+M [ui])

[∏
j∈Val(Xi)

Γ(αG
Xi=j|ui

+M [Xi = j, ui])

Γ(αG
Xi=j|ui

)

]
.

The formula above should be substituted by its logarithm in numerical implementations of the Bayesian score.
Given a Bayesian network where all parameter priors are Dirichlet, when M →∞,

logP (D|G) = ℓ(θ̂G : D)− logM

2
Dim[G] + c,

where Dim[G] is the number of independent parameters in G, and c is a constant with respect to G. Thus, the
Bayesian score trades off fitting the data (maximizing the likelihood) for model simplicity (having fewer edges).

The Bayesian information criterion is defined in a similar way to the asymptotic approximation to the Bayesian
score:

scoreBIC(G : D) = ℓ(θ̂G : D)− logM

2
Dim[G].

It can be shown that the maximum log-likelihood term decreases faster than the second term. Thus, when
enough data are considered, a good fit to the data is preferred to model simplicity. The negative BIC score is highly
related to minimum description length, an important concept in information theory.

The Bayesian score and the BIC score have an extremely important property: consistency. Let P ∗ be a dis-
tribution from which we sample the M IID sample elements, and G∗ a perfect map for P ∗. A scoring function is
consistent if, when M →∞, G∗ maximizes the score and every structure that is not I-equivalent to G∗ has a strictly
lower score. Of course, this property is asymptotic, and does not guarantee appropriate scoring for small M .

A scoring function satisfies score equivalence if all I-equivalent structures have the same score, for all possible
data sets. The likelihood score and the BIC score satisfy score equivalence. When using a uniform BDe prior over
parameterizations for every structure, score equivalence also holds for the Bayesian score. The property also holds
for a larger class of BDe priors, which were not introduced in this text.

Having defined the scoring functions that evaluate every possible structure given the data, we now describe how
to find high-scoring structures.

Using a non-trivial construction, the task of learning an optimal Bayesian network structure whose maximum
in-degree is 1 can be reduced to the problem of finding a maximum spanning tree in a complete graph over X . This
makes the problem solvable in polynomial time in the number of variables.

The scoring functions presented so far have a property called family decomposition. A scoring function score
satisfies family decomposition when it can be written as

score(G : D) =
n∑

i=1

FamScore(Xi|PaGXi
: D),

where, intuitively, FamScore(Xi|PaGXi
: D) represents how well PaGXi

fit as parents of Xi given the data D.
Let Gd = {G | d ≥ |PaXi

|,∀Xi ∈ V [G]} be the set of graphs over X with maximum in-degree d. Given an IID
data set D and a family-decomposable scoring function score, the task of finding G∗ = argmaxG∈Gd

score(G : D) is
NP-hard for any d ≥ 2. Thus, no polynomial time algorithm is known for this task.

In practice, this problem is usually solved using a local search procedure, which does not guarantee finding an
optimal structure. The procedure starts with a data set D, an initial candidate structure G0, a scoring function

30

score, parameter priors (if necessary), and a fixed number of iterations t. The initial candidate structure might
be, for instance, the graph over X with no edges, or the optimum structure whose maximum in-degree is 1. The
procedure works as follows. Given the current candidate structure G′, all possible acyclic graphs that can be created
from G′ by the addition, removal or reversal of an edge are scored and, with high probability, the best is chosen to
be the next candidate. This procedure continues for the given number of iterations t, or until the score does not
change significantly according to some criterion.

Local search procedures are often combined with other heuristics to avoid non-global maxima, such as restart-
ing, choosing a sequence of random candidates, and prohibiting changes to recently changed edges. The efficient
implementation of local search procedures requires careful caching of sufficient statistics and family scores.

14 Learning with incomplete data
A data set contains incomplete data when at least one assignment to a variable in a sample element is unknown.
Many important learning tasks can be formulated as learning from incomplete data.

Firstly, this section presents the conditions that must be met to allow principled learning from incomplete data.
An observability model is a combination of two other models: the distribution of the complete data (underlying

model) and the distribution for the mechanism that hides the data (observation model).
Let X = {X1, . . . , Xn} be a set of random variables and OX = {OX1 , . . . , OXn} be their observability variables.

The observability model is a joint distribution Pmiss(X , OX) = P (X)Pmiss(OX |X). Also, let Y = {Y1, . . . , Yn} be
a set of random variables such that Val(Yi) = Val(Xi) ∪ {?}, where ? is a number that represents an unobserved
value. Every assignment to Yi is a deterministic function of the assignment to Xi and OXi

. Concretely, yi = xi if
oXi

= 1 and yi =? if oXi
= 0. In other words, OXi

decides whether Xi is observable through Yi. In this formulation,
an incomplete data set D is a complete assignment to the set of variables Y. From the incomplete data set, the
assignment to OX is always known, and the assignment to Xi is known whenever oXi = 1.

This text is only concerned with two models for learning with incomplete data: missing completely at random
and missing at random.

An observability model is missing completely at random when X ⊥⊥ OX . In this case, Pmiss(X , OX) =
P (X)Pmiss(OX), where P is the underlying distribution of X . In other words, the probability of observing an
assignment does not depend on its values. Intuitively, no information is gained by knowing which values were
missing.

Consider an observability model and an assignment y ∈ Val(Y). Let xobs denote the assignment to the observed
variables. An observability model is missing at random when, for all y with Pmiss(y) > 0, oX ⊥⊥ xhid | xobs holds for
all possible assignment to the unobserved variables xhid. In other words, the probability of observing an assignment
may depend only on the values of the variables that are observed. Intuitively, no information is gained by knowing
which variables were not observed after knowing the observed values.

By definition of an observability model,

Pmiss(y) =
∑
xhid

P (xobs, xhid)Pmiss(oX | xobs, xhid).

Therefore, given a missing at random model,

Pmiss(y) =
∑
xhid

P (xobs, xhid)Pmiss(oX | xobs) = P (xobs)Pmiss(oX | xobs).

The missing at random assumption must be considered very carefully. Very often, the absence of a variable is
informative about the values of other unobserved variables until an expanded set of observed variables is adopted.

Consider a Bayesian network structure over a set of variables X and a corresponding incomplete data set D.
Consider the M sample elements in D as independent, identically distributed sample elements from an underlying
distribution P after being subject to an observability model Pmiss. Let parameters for P (X) be represented by θ,
as in the previous sections. Let O[m] ⊆ X [m] denote the observed random variables in the m-th sample element
and H[m] = X [m]−O[m] the unobserved variables in the same sample element. The likelihood of the incomplete
data set is defined as

L(θ : D) =
M∏

m=1

P (o[m]|θ) =
M∏

m=1

∑
H[m]

P (o[m],H[m]|θ).

31

If Pmiss is a missing at random model, then L(θ, ψ : D) = L(θ : D)L(ψ : D), where L(ψ : D) is the likelihood of
the the observation model under the parameters ψ. This property implies that the maximum likelihood parameters
for the underlying model can be estimated independently of the maximum likelihood parameters of the observation
model.

It is possible to show that the likelihood of an incomplete data set D is the sum of the likelihood of all complete
data sets consistent with the incomplete data set. More formally,

L(θ : D) =
∑

H∈Val(
⋃M

m=1 H[m])

L(θ : ⟨D,H⟩),

where L(θ : ⟨D,H⟩) is the likelihood of the incomplete data set D when completed by the assignment H.
The likelihood of an incomplete data set does not necessarily have a single global maximum with respect to θ.
However, the incomplete data likelihood is the sum of the likelihood of complete data sets, each having a single
global maximum with respect to θ. The fact that a maximum likelihood model is not necessarily unique is known
as nonidentifiability. Therefore, even if we could find maximum likelihood parameters for incomplete data, the
resulting model should be interpreted carefully.

Unfortunately, key properties of complete data do not generalize to incomplete data. In the case of Bayesian
networks, the parameters for a variable given distinct assignments to its parents are not necessarily independent,
and the likelihood function is not necessarily the product of likelihoods corresponding to each conditional probability
distribution. This makes the parameter learning task considerably more challenging.

The expectation maximization algorithm performs maximum likelihood estimation for incomplete data. Intu-
itively, this algorithm divides this task into two steps: (virtually) estimating the maximum likelihood parameters
given complete data and (virtually) hypothesizing values for unobserved variables given a complete model. Each
of these tasks is easy given the correct solution to the other. Expectation maximization bootstraps this proce-
dure by starting at an arbitrary point in the parameter (or assignment to hidden variables) space, and iteratively
recomputing the solution to one of the two tasks given the other.

Consider the task of learning the parameters for a Bayesian network over the set of variables X given incomplete
data under a missing at random observability model. The expectation maximization algorithm works as follows. Let
θ(0) be an initial (possibly random) assignment to the parameters of the network. Compute the expected sufficient
statistics M̄θ(t) [x, paX] for every X ∈ X , (x,paX) ∈ Val(X,PaX), defined as

M̄θ(t) [X = x,PaX = paX] =

M∑
m=1

P (X = x[m],PaX = paX [m] | o[m], θ(t)).

WhenX[m] and PaX [m] are observed, notice that P (X = x[m],PaX = paX [m] | o[m], θ(t)) = 1 if (x[m],paX [m])
is consistent with o[m] and 0 otherwise. Intuitively, the expected sufficient statistics replace hard statistics with
soft estimates based on conditional probabilities given the observed variables and the current parameters of the
model.

This completes the expectation step. The next step is maximization, where the expected sufficient statistics are
applied to update the parameters, as if they were sufficient statistics in maximum likelihood estimation for complete
data:

θ
(t+1)
X=x|PaX=paX

=
M̄θ(t) [X = x,PaX = paX]

M̄θ(t) [PaX = paX]
.

This completes the maximization step. These two steps are repeated until a desired criterion is met (usually
convergence, maximum number of iterations or decrease in likelihood of validation data). Algorithm 7 illustrates a
particular (naive) implementation of expectation maximization for Bayesian networks. Several simplifications are
made for presentation purposes.

In Algorithm 7, the initial parameters are sampled from a Dirichlet distribution with a (global) equivalent sample
size controlled by α for each variable given its parents. In general, the initial conditional probabilities of a variable
given its parents should not be uniformly distributed. Whenever possible, prior knowledge should be incorporated
into the initial parameters.

Notice that the expectation step requires inference. The ideal candidate in this case is usually belief propagation,
because a single clique tree calibration (conditioned on the observed variables) allows computing all the conditional
probabilities related to a single sample element.

In expectation maximization, the log-likelihood of the incomplete data is non-decreasing with respect to t.
Furthermore, if θ(t) = θ(t+1), then θ(t) is a stationary (minimum, maximum or saddle) point of the log-likelihood
with respect to the parameters. In general, the algorithm does not guarantee convergence to a global maximum.

32

Algorithm 7 Expectation maximization for Bayesian network parameter learning given incomplete data (missing
at random).
Input: network structure G over variables X , set of observations {o[1], . . . ,o[M]}, number of iterations T , equiva-

lent sample size α
Output: parameter estimate θ
1: for each X ∈ X do
2: for each paX ∈ Val(PaX) do
3: Sample θX|PaX=paX

from Dirichlet
(

α
|Val(X,PaX)| , . . . ,

α
|Val(X,PaX)|

)
4: end for
5: end for
6: for each t in 1, . . . , T do
7: for each X ∈ X do
8: for each (x,paX) ∈ Val(X,PaX) do
9: M̄ [X = x,PaX = paX]← 0

10: end for
11: end for
12: for each m in 1, . . . ,M do
13: Calibrate a clique tree for a structure G parameterized by θ, using o[m] as evidence.
14: for each X ∈ X do
15: for each (x, paX) ∈ Val(X,PaX) do
16: M̄ [X = x,PaX = paX]← M̄ [X = x,PaX = paX] + P (X = x,PaX = paX | o[m])
17: end for
18: end for
19: end for
20: for each X ∈ X do
21: for each (x,paX) ∈ Val(X,PaX) do
22: θX=x|PaX=paX

← M̄ [X=x,PaX=paX]

M̄ [PaX=paX]

23: end for
24: end for
25: end for

33

One possible application of expectation maximization is Bayesian clustering. Consider a set of variables
{X1, . . . , Xn} that correspond to features of some object of interest, and let C be a variable that corresponds
to the group containing a given object. Consider a Bayesian network structure identical to a naive Bayes classifier,
such that any two features are independent given C. The task in Bayesian clustering is to learn a model that
predicts the class of each observation given a data set where C is always hidden, and all other features are always
observed. In this problem, expectation maximization would try to define a natural clustering through maximizing
the likelihood of the training data. Hopefully, this would lead to modeling distinct distributions for distinct groups.

Consider an incomplete data set D and let H ∈ Val(
⋃M

m=1 H[m]) once again denote an assignment to the
hidden variables in D (across all sample elements). Let ⟨D,H⟩ denote the corresponding complete data set. The
log-likelihood of this data set can be written as

ℓ(θ : ⟨D,H⟩) =
∑
X∈X

∑
(x,u)∈Val(X,PaX)

M⟨D,H⟩[X = x,PaX = u] log θX=x|PaX=u.

Let Q be a joint probability distribution over all possible H, representing the probability of each completion to
the data set. The expected log-likelihood under Q of an incomplete data set parameterized by θ is defined as

EQ[ℓ(θ : D)] =
∑
H
Q(H)ℓ(θ : ⟨D,H⟩).

It can be shown that the maximization step of expectation maximization finds the set of parameters θ(t+1) that
maximize the expected log-likelihood of an incomplete data set given Q(H) = P (H | D, θ(t)).

In practice, since there are no guarantees about the quality of the stationary point obtained, Algorithm 7 is
repeated several times and the parameters with highest likelihood (or likelihood on a validation set) are kept.

Usually, the largest likelihood improvement occurs in the first iterations. It is possible to combine expectation
maximization with gradient ascent in later iterations, because the latter is usually faster in later iterations.

A second issue is overfitting: a learned model may achieve high likelihood in the training set but perform poorly
for generalization. In this case, it is often necessary to stop expectation maximization when the likelihood of a
validation set decreases.

Structure learning can be combined naturally with parameter estimation given incomplete data, although the
computational cost might be prohibitive.

License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License bnc.

References
[1] Koller, D. and Friedman, N. Probabilistic Graphical Models: Principles and Techniques, 2009.

[2] Wasserman, L. All of Statistics: A Concise Course in Statistical Inference. Springer, 2010.

[3] Diestel, R. Graph Theory Springer, 2000.

34

	Probability Theory
	Graph theory
	Bayesian Networks
	Template Models
	Dynamic Bayesian Networks
	Plate Models

	Structured Conditional Probability Distributions
	Markov Networks
	Variable Elimination
	Belief Propagation
	Maximum a Posteriori estimation
	Sampling Methods
	Decision Making
	Parameter Estimation
	Maximum Likelihood Estimation
	Bayesian Parameter Estimation
	Parameter estimation in Markov networks

	Structure Learning
	Learning with incomplete data

