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These notes describe the fundamentals of Bayes-adaptive Markov decision processes [1] using measure-theoretic
probability. For a less rigorous introduction, see the reinforcement learning notes by the same author.

1 Canonical Models

Definition 1.1. A set of states S is a non-empty subset of N.
Definition 1.2. A set of actions A is a non-empty subset of N.

Definition 1.3. A model p over a set of states S and a set of actions A is a function p : § x A x § — [0, 1] such
that > p(s,a,s’) =1 for every s € S and a € A. For convenience, let p§ ,, = p(s,a, s’).

Definition 1.4. A Markov decision process (S,.A,p,r,7) is composed of:
e A set of states S;

e A set of actions A;

A model p over the set of states S and the set of actions A;
e A reward function r : § — R such that |r| < ¢ for some ¢ € (0, 00);
e A discount factor v € (0,1).

Definition 1.5. For a set of states S, an initial distribution u is a probability measure on the measurable space
(8, P(S)), where P(S) is the set of all subsets of S. For convenience, let s = pu({s}).

Definition 1.6. For a set of states S and a set of actions A, an adaptive policy 7 is a sequence of functions
(m : STt — A |t € N), where 7; is called a policy for time step .

Proposition 1.1. For every Markov decision process (S,.A,p,r,v), initial distribution u, and adaptive policy
m = (m | t € N), there is a probability triple (Q, F,P) carrying a stochastic process S = (S; : @ — S | ¢t € N) such
that, for every ¢t € N and (so,...,s;) € St

t
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Proof. By Kolmogorov’s extension theorem, there is a probability triple (2, F,P) carrying a countable set of in-
dependent random variables {Sy : Q@ — S} U {Z,, :Q = S| te Nand (s,...,5) € S} such that

74(80,+,5¢t)

P(Sp = so) = ps, for every sop € S and P(Zs,,. . s, = St+1) = Darysrrs for every t € N and (sq,...,5:11) € SIT2.
For every t € N, let S;11 : Q — & be given by Si41 = Zs,,...,s,. By definition, for every ¢ € N and w € (),

3005t

Se11(W) = Zsg@)msi(@) @) = D> Lisymansi=s} (W) Dsg, s, (W)

S0

For every t € N, we know that S;;1 is a random variable because Sy, ..., S; are random variables.
For every t € N and s;41 € S, since {Sty1 = Se41 1 N Q = {St41 = Se41}s

{Se1 = s} = {Zsy.s, = st = IS0 = 50, ..., St = s} N {Zy.o, = St11}-
S0 St

Using induction, we will now show that, for every ¢t € N* and (so,...,s;) € St



Using the previous result, for every (sg,s1) € S2,
{So = So} N {Sl = 81} = {SO = 80} n U{S() = 86} n {ZSE) = 51} = {So = 80} n {ZSO = 81}.

Suppose that the inductive hypothesis is true for some ¢t € NT. For every (so,...,s:11) € St+2,

t+1
() {Sk = sk} = (ﬂ{sk = sk}> U U{So =56, Se = si N {Z...ep = 5141}
k=0 k=0 84 s}

By distributing the intersection over the unions and using the inductive hypothesis,

t+1 t+1
ﬂ {Sk = sk} = (ﬂ {Sk = Sk}> N {Zag..s = 5141} = {So = 50} N [ {Zsor..oorr = sk}

k=0 k=1

For every t € N* and (sg,...,s:) € S'T!, the event ﬂZ:o{Sk = 51} is the intersection of events from the
o-algebras of independent random variables. Therefore, using the previous result,

t
P(So = 50,---. 8¢ = 5¢) = P(So = s0) [ [ P(Zs.... = 81) = fls, Hp;;f 1(50,080-1)

O

Definition 1.7. For a set of states S, the canonical space (2, F) that carries the state process S = (S; |t € N) is a
measurable space such that Q = §*. Furthermore, for every t € N, the function S; : Q@ — S is given by S;(w) = w;
and the o-algebra F on Q is given by F = ¢(Sp, S1, .. .).

Theorem 1.1 (Existence and uniqueness of the canonical triple for a Markov decision process). For every Markov
decision process (S, .A,p,r,7), initial distribution u, and adaptive policy m = (m; | t € N), there is a unique
probability measure P#™ on the canonical space (€, F) that carries the state process S = (S; | t € N) such that,
for every t € N and (sq,...,s;) € ST,

t
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The probability triple (Q, F,P#™) is called the canonical triple for the Markov decision process (S, A, p, r,v) under
the initial distribution p and the adaptive policy .

Proof. Proposition 1.1 ensures that there is a probability triple (Q“’”,J’}“’”,]ﬁ’“’”) carrying the stochastic process
(S°™ Q™ — S | t € N) such that, for every t € N and (so,...,s;) € St

Sk—1,5k

¢
PAT(SET =50, ST = 50) = s, | [ pTE S0,
_ Consider the function Swom s QT 5 Q) given by S47(@) = (SI"™ (@) | t € N). By Proposition 8.1, the function
SHT ig FHT [ F-measurable, so that the function P*7 : F — [0, 1] defined by
PR (F) = B ((S47) 7 (F)) = BRT({@ € 7 | §47(0) € )
is a probability measure on the measurable space (~ F).

Clearly, P47 (Q) = PH7((S-7)~1(Q)) = P#7(Q*7) = 1 and P-7(§) = PH7((S#™)~1(()) = P (@) = 0. For
any sequence of sets (F,, € F | n € N) such that F,, N F,,, = 0 for n # m,

P (UF"> = P < S“Tr <UF )) — Ppwom (U S“” n)) — ZEDHJT <(5‘Mﬂf)*1 (Fn)) _ ZPHJ(F

where we have used the fact that (S®™)~1(F,) N (S*™)~Y(F,,) = (S*™) " (F, N E,,) = 0 for n # m.



For every t € N and (so,...,s;) € St
PH™ (So = Sg,...,5 = 5¢) = PH"({@ € Q7 | SP™(@) € {w € Q| So(w) = so, ..., S (w) = s} ).

Because 2 = 8§ and S;(w) = wy for every t € N,

Sk—1,5k

t
P (S = 80, 8¢ = 81) = PUT({@ € 0T | S4T(@) = s0,..., SIT(@) = 81}) = pay [ pRE1 G0,
k=1

so that a probability measure on (2, F) with the desired properties exists.
Naturally, any two desired probability measures on (2, F) must agree on the m-system Z C F given by

T={0}U{{So=s50,...,S: =s:}|t€Nand (sg,...,s) € STU{Q}.
Since o(Z) = F by Proposition 8.3, P*™ is the unique probability measure with the desired properties. O

Definition 1.8. Let M be a set of models over the set of states S and the set of actions A. For every state s € S,
action a € A, and state s’ € S, the function ¢ ;, : M — [0, 1] is given by ¢¢ ., (p) = p$ /.

)

Definition 1.9. The canonical space (M, G) for the set of models M over the set of states S and the set of actions
A is the measurable space such that G = o (U(S’aﬁs/)a (qg’s,)).

Definition 1.10. A Bayes-adaptive Markov decision process (S, .4, M, 1, r,v) is composed of:
e A set of states S;
e A set of actions A;

e A non-empty set of models M over the set of states S and the set of actions A;

A prior v, which is a probability measure on the canonical space (M, G) for the set of models M;
e A reward function r : § — R such that |r| < ¢ for some ¢ € (0, 00);
e A discount factor v € (0, 1).

Definition 1.11. Let (M, G) be the canonical space for the set of models M over the set of states S and the set
of actions A. Let (€', F') be the canonical space that carries the state process S’ = (S} | t € N) for the set of states
S. The canonical space (€, F) that carries the model variable M and the state process S = (S; | t € N) is given by
(Q,F)=(MxQ,G x F'). The F/G-measurable function M : Q — M is given by M (p,w’) = p. For every t € N,
the F-measurable function S; : 2 — S is given by S;(p,w’) = S}(w').

Theorem 1.2 (Existence and uniqueness of the canonical triple for a Bayes-adaptive Markov decision process).
For every Bayes-adaptive Markov decision process (S,.A, M, 1, r,~), initial distribution u, and adaptive policy ,
there is a unique probability measure P#™ on the canonical space (2, F) = (M x ', G x F’) that carries the model
variable M and the state process S = (S; | t € N) such that for every G € G, t € N and (s, ..., s;) € ST,

t
PH™(M € G, Sy = 80,...,5: = 84) = / o Hp;r::f,(:k‘”'”s’“*l) P (dp).
G k=1

The probability triple (2, F,P*™) is called the canonical triple for the Bayes-adaptive Markov decision process
(S, A, M, 9, r,~) under the initial distribution p and the adaptive policy .

Proof. For every p € M, let (U, F',P*™P) denote the canonical triple for the Markov decision process (S, A, p,r,7)
under the initial distribution y and the adaptive policy 7.

Let K™ : M x F" — [0, 1] be a function given by K*™ (p, F') = P*™P(F’). We will start by showing that K™
is a probability kernel from M to .

For every p € M, note that the function K*™(p,-) : 7' — [0, 1] is a probability measure on (', F’). For every
F’ € F, it remains to show that the function K#7(-, F') : M — [0, 1] is G-measurable.

By Proposition 8.3, a m-system Z' C F' such that o(Z') = F' is given by

7' = {0y U {{S) = s0,.--,5, = s} |t € Nand (sg,...,s;) € STU{Q}.



Since K*™(-,0) and K*™(-, Q) are G-measurable, let I’ = {S} = s¢,...,5; = s} for some ¢ € N and
(50,--.,8¢) € St*L. In that case,

t t
KW (p, I') = PRTP (S = so,..., S0 = 8¢) = fis, Hp?)f:ll’(;fv---ask—l) = Jls, H qg::ll’(;;c()r--ysk—l)(p)7

so that K*™ (-, I') is G-measurable for every I’ € 7. Because Z’ is a m-system on ' such that o(Z’) = F/, recall
that K™ is a probability kernel from M to €'
Consider the unique probability measure P#7 on (£2, F) such that, for every G € G and F’ € F/,

PA(G x ) = /G K0 (p, ' dp) = / PP (dp).

G
We will show that P*7™ is the unique probability measure on (€2, F) with the desired properties.

For every G € G, note that {M € G} = G x . For every t € N and (s,...,s;) € ST, note that {Sy =
LSt =81 = M x {S] = so,...,5; = st}. Therefore,

P*™(M € G, Sy = s0,...,5; = 81) =P (G x {S}, = s0,...,5;, = s}) = / o Hp;r: . Sko’ =sk=1) 4 (dp).

Let 7 ={G xI' | G € Gand I € T'}. Note that any two desired probability measures on (£, F) must agree
on J. Because 7' is set of subsets of 0 such that ' € 7' and o(Z') = F/, recall that o(J) = F. Because J is a
m-system on 2, P*7 is the unique probability measure on (2, F) with the desired properties. O

For the remaining text, let (Q, F,P*™) denote the canonical triple for the Bayes-adaptive Markov decision
process (S, A, M, 1, r,v) under the initial distribution px and the adaptive policy 7. Recall that the measurable
space (€2, F) carries the model variable M : Q@ — M and the state process S = (S : = S|t € N).

2 Conditional Expectations

Definition 2.1. For every t € N and (so,...,s;) € 8", the posterior predictive p»™ = & — [0,1] given the

St

sequence of states (so, ..., s;) under the initlal dlstrlbutlon w1 and the adaptive policy 7 is defined by
P (S, ,Si=s1,5 .
(]P(ZL TrS(OSO 887 Ststt+slt) St+l) lf ]P)H’W(SO =850y, St = St) # 0,
PhT s (8e41) = 9 1, if P#™(Sy = sg,...,5; =s;) =0 and s;41 = min S,
0, if P™(Sy = sg,...,5: = s¢) =0 and s;41 # min S,

where the last two cases help ensure that } . o7 (si41) = 1.
Definition 2.2. For every ¢t € N, the history #H; up to time ¢ is defined by H; = o(So, ..., S).

Proposition 2.1. For every ¢t € N and s;41 € S, almost surely,
P g (St41) = PHT(Spp1 = sep1 | He).

Proof. Recall that P*7(Syy 1 = spq1 | He) = EF™(Iys,,,—s,,0y | He). Clearly, pg™ o (si41) € L1(Q, Hy, PHOT).
By Proposition 8.2, every Hy € H; is given by H; = J,c4{So = s0,....5: = s;} for some A C S'', where
s =(s0,.-.,8¢). Therefore,

pSo ..... (5t+1 I[Ht ZH{SU 50,--+,St= gt}pSo (St+1) = Z]1{502807___7&:&}pl;(;jr_n’st (st+1)‘

.....

s€A sEA

Since the terms in the summation above are non-negative,

> My E — ,
E*T (pso’” S, St+1 HHt) P SO = 80,...,575 = St) pgo?r...,st(sﬂrl)'
s€A



By cancelling terms,

)Tr b _ j— —
£ (péo’,,, (8t41) ]IHt) Z]P’“ (So = 80,---,St = 54,8141 = S¢41)-
sEA

Since the terms in the summation above are non-negative,

T (pI;E)Tu.,St (SHl)HHt) =En (Z I[{SO—SO»--~7St—St}H{St+1—SH-l}> =B (H{St+128t+1}HHt) .

sEA
O
Definition 2.3. For every ¢t € N and (sq, ..., s;) € S'™1, the adaptive policies 7 and 7’ agree on the sequence of
states (so,...,s¢) if mp(so,. .., sk) = T (S0, .., sk) for every k < t.
Proposition 2.2. For every t € N and (so, ..., s:11) € S'T2, if the adaptive policies m and 7’ agree on the sequence
of states (s, ...,st), then P#™(Sy = sg,..., Sy = sp) = PH™ (S = sg,...,Sy = sp) for every #/ <t 4 1.
Proof. Since {M € M} =Q, and m,_1(s0,...,8k-1) = 7)_1(S0,...,8k—1) for every k <t +1,
a ( )
T 1(80yySk—
PP (Sy = 05, Sy = sp) = / pso [ P31 ook p(dp) = / Jhso H PG ) (dp).
Mo =1
O
Proposition 2.3. For every t € N and (30, ..., 8¢) € ST if the adaptive policies m and 7’ agree on the sequence
of states (so,...,st), then plo™ = pkom
Proof. This result is obtained by combining Proposition 2.2 with the definitions of pf;" . and Pl;&?i.,st- O
Definition 2.4. For every t € N, sequence of states (s, ...,s;) € S‘*!, and sequence of actions (ao,...,a;) € A+
the posterior predictive pk»?0 % . S — [0,1] given (s, ...,s¢) and (ao, .. .,a;) under y is defined by
P (se1) = Pl s, (St41),

where 7 is an adaptive policy such that 7 (so,...sk) = ax for every k < ¢, and well-defined by Proposition 2.3.

Proposition 2.4. Consider an adaptive policy 7 and let Ay = 7 (So, ..., Sk) for every k € N. For every t € N and
S¢+1 € S, almost surely,

Ao,- ,A , _
P 005 (Seq1) = P (Seqn = se41 | He)-
Proof. Because pli0o4t (5, ) = plodo- ’A (s¢41)1
Ps, St t+1) = Pg,,.. t+1 )10,
1, Ao, 1, Ao, , 140,
P M (sig) = Y TsgmsoroSims b P05 (se41) = D TisymsorSimsi b P05 (5141),
seSt+1 seSt+1
where s = (sg,...,5¢) and ay = (80, . .., sk) for every k < ¢. From the definition of p4;*0>; % (s411),
1y Ao, Ay
Ps,,....S; (st+1 E : H{So =50,.. St—gt}pSm 8 (st+1 § : H{So—sm St—gt}pSo (StJFl)'
SeS?+1 Sesf+1

By Proposition 2.1, almost surely,

Ag,... Ay
P s (se41) = Z [t So=so,....5s=s: 3} P* " (Sty1 = se41 | He) = P (Sey1 = se41 | He).
seStt1

O

Posterior predictive functions have a central role in many Bayesian reinforcement learning algorithms. These
functions are provided for some Bayes-adaptive Markov decision processes in Section 7.



3 Discounted Return
Definition 3.1. The discounted return Uy, after time step t € N up to the horizon h € N is defined by
h
Ut:h = Z ’Ykitilr(gk)v
k=t+1
so that U, =01if t > h.
Proposition 3.1. If t € N and h € N, then Uy, € £LY(Q, F,P*™) and |Upp| < ¢/(1 — 7).

Proof. The function 7(Sk) is bounded and F-measurable for every k € N, so that r(Sx) € £L}(Q, F,P#™). Since
L1(Q, F,P#™) is a vector space over the field R, Uy, € £1(Q, F,P*»™). For t < h,

h h—t—1 1 ,Yhft .
k—t—1 k __ —
Ul = Y sl se Y- F=e () < 1

k=t+1 k=0
O
Proposition 3.2. For every t,h/,h € N such that ¢t < h’ < h, the discounted return U, is given by
Ui = Uy + 'Yh _tUh/:h-
Proof. For every t,h',h € N such that t <h' < h,
' h h
Upp = Z AR (Sy) + Z YR (Sg) = Upr + Z AR (S)).
k=t+1 k=h'+1 k=h'+1
Because 7"y~ =1 for every ' € N,
h h
Uen = Upe +9" 77" 3 A7 0(Sk) = Un #9770 D A" 1(S).
k=h'+1 k=h'+1
O
Proposition 3.3. If w € Q and ¢ € N, then (Upp(w) | h € N) is a Cauchy sequence.
Proof. For every t,h',h € N such that t < h’ < h,
’_ r_ ’ C
Ush = Ul = U +7" " Unron, = Upe | = 2" 7| Upren| <" tm.
Therefore, for every t,h’ € N such that ¢t </,
N
0 S sup |Ut:h - Ut:h’| S 1 v
h>h -7
By the squeeze theorem, for every ¢t € N,
lim sup |Ut:h — Ut:h/| =0.
h' =00 p>p
Therefore, for every t € N and € > 0 there is an N € N such that h, h’ > N implies |Upp — Upp/| < €. O

Definition 3.2. The discounted return Us.o, after time step ¢t € N is defined by

Upoo = i = k—t—1 )
too = lim Upp > A (SK)
k=t+1

Proposition 3.4. If t € N, then Uy.o, € £1(Q, F,P*™) and EX™ (Uy.oo) = limp 00 B (Uy.p,).



Proof. For every w € €, recall that the Cauchy sequence (Uy.,(w) | b € N) converges to a real number, so that Us.o
is well-defined and F-measurable. By the dominated convergence theorem, Uy.o. € £(Q, F,P*™) and

E#’W(Ut:oo) = hh—{EO E#’W(Ut:h).

Additionally, because the absolute value is continuous,

Uil = i a1 1
O
Proposition 3.5. For every t,h’ € N such that ¢ < I/, the discounted return Uy, is given by
Usoo = Us +7" " Uhtroo-
Proof. For every t,h’ such that ¢t < b/,
Utioo = lim Uy, = Jim Upps +9" = U = U + 9" Ut
O

4 Optimal Adaptive Policies
Definition 4.1. An adaptive policy 7 is optimal up to the horizon h € NU {co} under the initial distribution p if

E*™ (Ug.p) = sup EmT (Uo.p) -

Proposition 4.1. Under an initial distribution p, suppose that the adaptive policy ' is optimal up to the horizon
R/ € N and that the adaptive policy 7 is optimal up to the horizon h € N* U {oo}. If A’ < h, then

, A b
0 <E*™(Uo.p) — E*™ (Uon) < 2c ﬁ )
where v*° is used to denote zero.
Proof. Because EX™(Up.) = E#™ (Up.p), we know that E4™ (Ug.y) — E#™ (Ug.s) = 0. By Propositions 3.2 and 3.5,
0 < B (Uon) — B¥™ (Uoin) = X" (Vo) + 7" EX™ (Upin) — E*™ (Uonr) = 7" B*™ (Unvin) -
Because E4™ (Up,) > EF™ (Ugpr), we know that E4™ (Ug.p ) — E#™ (Ugas) < 0. Therefore,

0 < BX(Uns) ~ B (Uon) <9 (BHT (Unn) — B4 (Use)).

Because 'yh/ > 0, we know that E™ (Up.p,) > EH (Ups.p). From the proofs of Propositions 3.1 and 3.4,
1 —yh=h , | — A=
—c| ——— | KE*™ (Up.p) <E*™ (Uprp) <c| ———
c< —— ) < B (Up) < B h.h>_c< I
where 7 is used to denote zero. By subtracting the leftmost term above from the rightmost term above,
’ ’ 1 — ’yhih/
0 < B (Ug) — B4 () <72 | —L— | .
-
O

Theorem 4.1 (Regret of truncated planning). Suppose that the adaptive policy 7 is optimal up to the horizon oo
under the initial distribution u. For every € > 0 and A’ € N such that k' > log(e(1 —v)/2¢)/log(y), if the adaptive
policy 7’ is optimal up to the horizon A’ under the initial distribution u, then E*™(Up.oo) — E*™ (Up.oo) < €.

Proof. Proposition 4.1 ensures that E4™(Up.so) — B4 (Ugiss) < 2e9" /(1 —7) < €. O



5 Policy Values

Definition 5.1. For every t € N and h € NU{oo}, the value V/;™ : @ — R of time ¢ up to the horizon h under the
initial distribution p and the adaptive policy 7 is defined such that, almost surely,

h
Vieww =BT (Usn | He) = E#T ( D A(S) | Ht) ,

k=t+1
so that ‘/tl:}‘tﬁl = ]E‘u’ﬂ-(Ut;t_i_l | Ht) = E#’ﬂ(T(St+1) | Ht) almost SllI'Cly.
Proposition 5.1. If t € N and h € NU {oo}, then [V/;7] < ¢/(1 — ) almost surely.

Proof. If t € N and h € NU {00}, then |Usp| < ¢/(1 — ). Therefore, almost surely,

(L—79)

|V,u,7r
)

= [EFT(Upn | He)| K ERT(|Upn| | He) <

O

Theorem 5.1 (Bellman equation). For every ¢t € N and h € N* U {oo} such that ¢t + 1 < h, the value V/;™ of time
t up to the horizon h under the initial distribution x4 and the adaptive policy 7 is almost surely given by

VET =BT (r(Sia) | He) BT (VAT | He) -
Proof. By the linearity of conditional expectation, almost surely,
VET = ERT (Uppr +yUssren | He) = BT (r(Se1) | He) +EST (Upgren | He) -
By the tower property, almost surely,

VT =ERT(r(Siq) | He) + BT (B (Upgran | Hegr) | He) -

O
Proposition 5.2. For every t € N, almost surely,
ET(r(Ses1) | He) = Z r(8e41) PP (Seq1 = Seq1 | He) -
St+1
Proof. For every n € N, let X,, : Q@ — R be given by
r(Stp1(w)), if Spr1(w) <m,
X, = Se41)] —s =
(w) St;ﬂ“ t+1) {St41 t+1}(w) {0’ if St+1(w) >n,
so that r(S;y1) = lim,, o, X,,. By the conditional dominated convergence theorem, almost surely,
BT (r(Sea1) | He) = lim ER7(X, | Hy) = lim > r(ser )BT (s, s 0y | He) -
5t+1 <n
O

Definition 5.2. For every t € N and h € N such that ¢ < h, the function v};}" : S*** — R is given by

vy (505 - Z PO (st41) (r(se41) + VU1 (S0, -0 St 5141)) 5
St+4+1
where a, = (s, ..., si) for every k <t. If t > h, let v};;" = 0.

Proposition 5.3. If t € N and h € N, then [v};)7] < ¢/(1 —7).



Proof. If t > h, then |vj;7| < ¢/(1 —~). If t < h, in order to employ backward induction, suppose that |v}],,| <
¢/(1 — 7). In that case, for every (s, ..., si+1) € ST2,

L, TT (L, TT Cc &
Ir(se41) + 7010 (505 Sty See1)| < Ir(seen) |+ Vv (50, -5 stsse41)] < C+7E i~
so that [uli (s0, . 50)| < /(1 =) X, A5 (s041) = ¢/ (1 = 7). =

Proposition 5.4. If t € N and h € N, then v}, (S, ..., S;) = V7™ almost surely.

Proof. If t > h, then v}}"(So, ..., S;) = 0= V/;™ almost surely. If t = h — 1, by Propositions 2.4 and 5.2,

VT (S0, S0 = > o505 M (ser)r(sien) = Y r(sia )PP (Sier = sipn | He) = BRT(r(Sia) | He) = VET
St41 St41
almost surely, where Ay = 7 (So,...,Sk) for every k < t. If t < h — 1, in order to employ backward induction,

suppose that v}, (S0, ..., Si41) = V/{7,, almost surely. For every n € N, let X,, : @ — R be given by

e ) So(w)s - S (W), i Spa(w) <,
st;ﬂ ’Ut+1:h(SO(UJ)7 RN St(w)v St+1)H{St+1:St+1}(w) - {0’ if St+1(w) >,
so that Vt+1 = vf_ﬂ:h(So, ooy Sig1) = lim, 0 X, almost surely. By conditional dominated convergence,

E-T(VETL [ He) = hm Z U (S0, -y Sty 56 1) BT (Ts,yy=s, ) | Hy)

ét+1 <n

almost surely, where we used the fact that v} 11 (S0, ..., 8¢, 8141) is Hy-measurable to take out what is known.
From the definition of v}:;" and Proposition 2.4, almost surely,

Uﬁ}lﬂ(‘gOv SERE) St) = Z P (St+1 = St+1 | Ht) T(St—i-l) + Z prm (St+1 = St+1 ‘ Ht) Uf_;_q:h(SO, ey St, St+1).

St41 St+4+1
Almost surely, by Proposition 5.2 and Theorem 5.1,
Ui (Soy -+ Se) = BT (r(Ser) | He) + BT (VT | He) = VT
O

Theorem 5.2 (Value of an adaptive policy). For every initial distribution u, adaptive policy m, and horizon h € N,

BT (Uo.n) = BT (VEGT) = B (vgir (So)) Zﬂsovo n (50)-

The last result may enable evaluating an adaptive policy up to a finite horizon.

6 Optimal Policy Values
Definition 6.1. For every t € N and h € N such that ¢ < h, the function v}'}" : S x (A x 8)" — R is given by

Uff’h (50, 00,51, ,Q¢—1,5¢) —SUPZPSO, e 3t+1)(T(3t+1)+’Wff1:h(30,a0781,-~-7at75t+1))-

St41
Ift > h, let vl = 0.

Definition 6.2. For every t € N and h € N such that ¢ < h, the function ¢/} : (S x A)**! — R is given by

s* 53050+, Hoy*
¢4 (80, G0, - - -, St, Q) E pEe (St+1) (r(8t+1) + 7vt+1:h(so,a0, 81y .., G, St+1)) .
St41
3k
If t > h, let ¢}/ = 0. Note that v} (so, ag, $1,...,a—1,5:) = sup, gy (S0, ao, - - ., St,a).



Proposition 6.1. For every adaptive policy w, t € N, h € N, and (sg,...,s;) € S,
01 (80,40, 815+ -, Ar—1,5¢) = Uy (S0, - - -, St),
where aj, = 7 (80, ..., si) for every k < t.

Proof. If t > h, then v} h =0 and v};" =0. If ¢ < h, in order to employ backward induction, suppose that

¥ M,
vt.ﬁ,_l;h(s()va()v S1y.+.yAt—1,St, Q¢, st+1) Z Ut_;,_l:h(SOv ooy Sty St+1)
for every (sg,...,8:11) € S™2, where ay = mi(s0,...,sk) for every k <t + 1. In that case,
Hy* — Moy % My *
Vi.h (80,0,0, SlyevyQt—1, St) = Supq;.; (805 agy - - -, St7a) > 9i-n (SOa ag, - - ., St, Clt).
a

By the inductive hypothesis,

Uéff($07ao781, ey Gy_1, 8t) ZP‘L o0 t’ (5t+1) (T(St+1) +Wfﬂ;h(50’ - -a3t75t+1)) = “ﬁhﬁ(so’ oy 8¢)
St41

O

Theorem 6.1 (Value of an optimal adaptive policy). If h € N and v (So) = v)y (So) almost surely, then 7 is
optimal up to the horizon h under the initial distribution .

Proof. For every adaptive policy 7/, using Proposition 6.1 and the fact that P*™ and P*™ agree on H,,
BT (Uon) = B (v (S0)) = B (v (S0)) = B (v (S0)) = B (w7 (S0)) = BT (Uoun).
O

Theorem 6.2 (Existence of an optimal adaptive policy). Under every initial distribution u, for every h € N, if the
set of actions A is finite, then there is an adaptive policy that is optimal up to the horizon h.

Proof. Consider an adaptive policy m = (m; | t € N) such that, for every t € N and (sq,...,s;) € ST,
qéf}l*(807 7TO(SO)7 ey Sty 7Tt(80, ey 5t)> = sup qéf,h*(807 7T0(80), ey Sty a)7
a

which exists because the set of actions A is finite.

For every t € N and (so,...,s:) € S, we will show that v/ (so,...,st) = v}y (0, a0, S1,- .., a1, 5t), where
ar, = 7k (S0, - - sk) for every k < t.

Ift > h, then vpt =0 and v);)" = 0. If ¢ < h, in order to employ backward induction, suppose that

T ek
vt+1;h(807 sy Sty St+1) - vt+1;h(807 ag,S1y ...y A¢—1, St, Qt, 8t+1)
for every (so,...,st+1) € St*2, where ap = 74 (80, . .., s%) for every k < t + 1. By the inductive hypothesis,
§ ag;.-,a o
Vi (S0, pgo’o 5 (5¢11) (r(stH) + vth:h(so, A0y 1y -y Ai—1, St, A, stﬂ)) .
St+1

By the definition of the adaptive policy 7,

p,m e _ ¥ ST
Vi (50,25 8¢) = qpoyy (80,0, - -5 St a¢) = supghy (S0, Go, - - -, St,a) = V43 (S0, A0, S1, - -5 Qp—1, 5¢)-
a
Because v (So) = vh (So), 7 is optimal up to the horizon h under the initial distribution . O

The last result may enable finding an optimal adaptive policy up to a finite horizon given a finite set of actions.
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7 Examples

7.1 Countable Bayes-adaptive Markov decision processes

Definition 7.1. A countable Bayes-adaptive Markov decision process (S, .4, M, 1, r,~y) is composed of:
e A set of states S;
e A set of actions A;

A countable non-empty set of models M over the set of states S and the set of actions A,

A prior v, which is a probability measure on the canonical space (M, G) for the set of models M;

e A reward function r : § — R such that |r| < ¢ for some ¢ € (0, 00);
o A discount factor v € (0,1).
For every model p € M, let ¥({p}) =

Consider a countable Bayes-adaptive Markov decision process (S, .4, M, 1,7, 7).

Proposition 7.1. For every ¢t € N, sequence of states (sg,...,s;) € S'T!, and sequence of actions (ay,...,a;) €
A1 the posterior predictive pts®0: -t : § — [0,1] given (so, ..., s¢) and (ao,...,a;) under p is given by
t+1
300,y prp [Tz 1]918112c Lk
péo, 73-(’ (8t+1) = A —1
Zp ¥Yp Hk:1 Psi—1,s

whenever ps, >- 1y [y péi) s #0.

Proof. Let m = (m | t € N) be an adaptive policy such that 7 = ay, for every k < ¢.
Since {M € M} = Q, for every (sg,...,8;11) €S2 and ¢/ <t +1,

t/
PH’F(SOZS()?"';St’ :St/ :/ Hso Hpgf lls;v p):/JSo Z'l/}pHpg::ll,sk‘
p k=1

Whenever P (So = so,..., St = 8¢) = sy 2, ¥p [Ty Por bk 70,

t+1 arp—1
PE7(So = 80,..., 5 = 8¢, Se41 = 8e41)  2op Up LIl Psi i

14,00;.--,a — T —
'050, St (St"‘l) - pso,.,,,st (St"'l) - T _ — - t ap—1
P, (So —80,...,515 —St) prpnk:1p5k71’sk
. . _ 3A0 -, —
In particular, if 1, = 1 for some p € M, then pls®0 % (sp11) = pgt .., - O

7.2 Dirichlet Bayes-adaptive Markov decision processes

Definition 7.2. The gamma function I : (0,00) — (0, 00) is given by
I'(a) = / b*~ e Leb(db),
(0,00)

where e is Euler’s number. Remarkably, a = I'(a + 1)/T'(a) for every a € (0, c0).
Definition 7.3. For every n — 1 € NT, the simplex C"~ " is given by C*~1 = {# € (0,1)*"1 | 32" "6, < 1}.

Definition 7.4. For every n — 1 € NT, the multivariate Beta function B : (0,00)" — (0,00) is given by

B(a): r =) /C HGO"_lLeb" '(dh),
’L 1+ n—1

i=1

where 6, =1 - 5776,

11



Definition 7.5. For every n — 1 € N*, the joint probability density function Dir(:; ) : R"™1 — [0, 00] is given by
Dir(0; o) = I ( H 62t

where a € (0,00)" is a so-called pseudocount and 6, =1 — Z::ll 0;.

Definition 7.6. For every n—1 € N*, the simplex space (C™"~1,C"1) is given by restricting the measurable space
(R"=1, B(R"1)) to the simplex C"~ !, so that C"~! = {B € B(R""!) | BC C"1}.

Definition 7.7. A Dirichlet law £ : C"~! — [0,1] on the simplex space (C"~1,C"71) is given by £(©) = L*(0),
where £* : B(R"™1) — [0, 1] is a probability measure on (R"~*, B(R"~1)) such that, for some « € (0,00)",
L*(0) = / Dir(6; o) Leb™ ' (d#).
e

Definition 7.8. Let M be a set of models over the set of states S = {1,2,...,n} and the set of actions A. For
every state s € S and action a € A, the function ¢% : M — [0,1]"~! is given by

45 (p) = (@51(P),- -+ a5 n1(P) = (P51s- -, P n—1)-
Definition 7.9. The set of positive models M over S = {1,2,...,n} and A is given by
M= {pe M*|p?, >0 forevery (s,a,s') € S x Ax S} ={pe M| ql(p)cC" " for every (s,a) € S x A},
where M* is the set of all models over the set of states S and the set of actions A.

Proposition 7.2. For some n —1 € NT and m € N*t, let M be the set of positive models over the set of states
S ={1,2,...,n} and the set of actions A = {1,...,m}. For a given choice of pseudocounts (a? € (0,00)" | (s,a) €
S x A), there is a unique probability measure ¥ on the canonical space (M, G) for the set of models M such that

| NHateet | =1] / Dir(%; o) Leb™ '(df%)
(s,a) (s,a)

for every sequence (¢ € C"! | (s,a) € S x A). The probability measure ¢ is called a Dirichlet prior on the
canonical space (M, G) given the pseudocounts (a? | (s,a) € S x A).

Proof. For every s € S and a € A, consider the Dirichlet law £2 on the simplex space (C™~1,C"~1) given by
L(0%) = / Dir(0%; a%) Leb" '(d62).

Furthermore, consider the product measure £ on the measurable space ((C™~1)™" (C"~1)™") given by
L=Llx XL XLIx - XL ... xLLx...xLm
Consider the invertible function ¢ : M — (C™~1)™" given by

a(p) = (a1 (p), - "), (), -, @5 P)s -, an (D), - - i (D)),

and let u : (C"~1)™" — M denote the inverse of ¢q. Clearly, o(q) C G. Furthermore, G C o(q), which relies on the
fact that o(qs /) C o(q) for every s € S, a € A, and s’ € S. In particular, note that ¢¢,, =13, ¢¢ . Since ¢
is invertible and o(q) = G, recall that o(u) = (C"~1)™".

Therefore, the function ¢ : G — [0, 1] given by ¥(G L(u™1(G)) is a probability measure on the canonical

) =
space (M,g). For every sequence (02 € C"~1 | (s,a) € S x A),

o Ntaweort| =TT e = IT 20 H/ Dir(6% a®) Leb™ ! (d6%).

(s,a) (s,a) (s,a) (s,a)

Since £2(0%) = ¢ (¢% € ©%), note that (o(¢%) | (s,a) € § x A) are independent.
Because Z = {(, ,{d5 € O5} | OF € C"~! for every (s,a) € S x A} is a m-system on M such that o(Z) = G,
1) is the unique probability measure on the canonical space (M, G) with the desired properties. O
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Definition 7.10. A Dirichlet Bayes-adaptive Markov decision process (S, .4, M, 1, r,7) is composed of:
e A set of states S = {1,2,...,n}, where n — 1 € NT;
e A set of actions A= {1,...,m}, where m € NT;

e The set of positive models M over the set of states S and the set of actions A4;

A Dirichlet prior 1 on the canonical space (M, G) given the pseudocounts (a? € (0,00)" | (s,a) € S x A);
e A reward function r : § — R such that |r| < ¢ for some ¢ € (0, 00);
e A discount factor v € (0,1).

Consider a Dirichlet Bayes-adaptive Markov decision process (S, A, M, 1,7, 7).

Definition 7.11. For every t € N, N¢,(s0,a0,51,...,a:-1,5¢) denotes the number of times that the triple (s, a, s')
appears in the sequence sg, ag, 51, ---,at_1,5; € S X (A x 8)t and N%(sg,ao, $1,--.,0;_1,5;) € N" is given by
Ng(807a07 S1y00yAg—1, st) = (Ng’l(s(),a(% S1y.0.,At—1, St)7 ceey N;n(807 ag,S1y ..., A¢—1, St))
Proposition 7.3. For every ¢t € N, sequence of states (sg,...,s;) € ST, and sequence of actions (ay,...,a;) €
At the posterior predictive P20t : S — [0, 1] given (so, ..., s¢) and (ao, . .., a¢) under u is given by
a
M7a07 ,at St75t+1 + Nstt5t+1 (807 apg, S1y -+, a¢—1, St)
Pso,... (StJrl) N
agt o+ NJ (80, a0, 81,y a1, 5¢)

whenever pg, # 0.

Proof. Let m = (m; | t € N) be an adaptive policy such that 7 = ay, for every k < t.
Since {M € M} = Q, for every (sq,...,8;+1) € STT2 and ¢/ <t +1,

PM’W(SO =80y, St/ = St/ = Msq / H qg::ll’sk d'(,/} Hsq / H H qs ) °F (50,80,81,:-,@47 —1,5¢1) dflp

(s,a) s’
Because (0(q¢) | (s,a) € S x A) are independent,
(s,0) 7 M

Since Dir(+; %) is a joint probability density function for ¢2,

P (Sp = S0, Sy = sv) —uwH / | Din(0:a) [ (62,0) 00t Leb (g,

s/

where 07, =1—3_,_, 07 . Therefore, by the definition of Dir(-;ag),

- 1 a N ,(80,00,81,.--,a47 1,8y )+ad ,—1 n— a
P (So = s0,..., 50 = s¢1) = ps, H W/C 1 H (I (20,00 A AN L(de®).
(s,a) > 0 0CT

S/
From the definition of the multivariate Beta function,

B(a% + N%(s0,a0,81,---,At—1,8¢))
Lhso H s s )

]P)‘U”Tr(SO = 807 MR St/ = St/) = B(aa)

(s,a)
Whenever pu,, # 0,

P (S0 = 50, -, St41 = St41) H B(ag + N¢(s0,a0,81,--,at,541))

Jiat0s: 0t (g — T s — )
pSo7 ( t+1) pso,...,sf,( t+1) Pu,‘n’(so :50;-~-aSt:5t) B(Oé?+N§(So,ao,817--~7at—178t))

(57(1/)
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Note that N%(sg, ag, S1, ..., a¢, St+1) # N%(s0, a0, 81, ..., at—1,5¢) if and only if s; = s and a; = a. Therefore,

B(agt + Ngt(s0, a0, 51, - - -, Qt, St41))
B(agt + N&t (80,00, 81, - -, Qt—1,5¢))

Pl (seq1) =
From the definition of the multivariate Beta function,

[[. T(eg! o + NS (S0, a0, 81, -ty Se41)) D>y og o+ NG (50,a0,817---7at—1,8t)>

Pt (se41) = ‘:S Il T(a™ . + N (s0.00.5 o))
F( Oésls, +N3ts(So,ao,sl,...,at,stJrl)) s’ S¢,8' 050,21y« -+ tt—1,¢
Since N;t7s,(50, A0y S1y- -y Gty St41) F Ng;s,(so, ag, S$1,---,at-1,5¢) if and only if 8 = 541,
Sf s’ SfS (507a07513"'7at75t+1)) _ay Nat
H IN(e ?f o TN (80, 00,51, .- At—1,5¢)) Csrsipn T St7<w+1(507‘10751’ Cey i1, 8t)-
Slncez StS (807a0781)" at78t+1) - 1+ZS’ StS <807a0;817"'7at7178t)7
F( st s’+Nsts(8070’07817“';0%71750) 1
= - )
(Z Oégt o + Ngt o (So,ao,sl, - ,at,$t+1)) as: s’ + Nst s’ (807a0751a ‘. -aat—last)
O
8 Appendix
Proposition 8.1. Consider a measurable space (Q,F) and a stochastic process (Y, : @ — R | n € N). Let
Y : Q — R be given by Y (@) = (Y, (@ ) | n €N). For every n € N, let Y, :Rw%Rbeglvenby w(w) = w, and

let F = (U0 (Yy)). In that case, Y is F/F-measurable.
Proof. For every n € N, note that Y, = Y, oY, so that Y,"'(B) = Y'Y, 1 (B)) for every B € B(R). Because

n

Y, is F-measurable for every n € N, we know that Y~ (C’) € F for every C € U,o(Y,,). Since (R*,F) is a
measurable space, note that £ = {F € F | Y~I(F) € f} is a o-algebra on R*>. Because U,o(Y,) C F, we know
that 0(U,o(Y;)) = F C &, so that & = F. Therefore, Y is F/F-measurable. O

Proposition 8.2. Consider a measurable space (2, F), a stochastic process (Y, : @ — N | n € N), and let
Fn=0o,...,Y,) for every n € N. Furthermore, for every n € N, let G,, be given by

Go=< JMo=wo,....Ya=ya} [ACN" 3
yeA

where y = (Yo, - --,Yn). In that case, F,, = G,.

Proof. For some n € N, consider a set given by
Uto=voYa=w.t = ¥ =w}
yeA yeA k=0
for some A C N1 where y = (yo,...,yn). For every k € N, recall that
o(Yy) = U Ye=yx} | A CN
yrEAL

The set A is countable, since it is a subset of the countable set N**1 which is a finite Cartesian product between
countable sets. Because {Y; =y} € F, for every k € {0,...,n} and y, € Ay, we know that G,, C F,.
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For some n € N, let A= Ay x --- x A,,, where Ay C N for every k € {0,...,n}. In that case,

UNM=wt=U - U NW=wt=| U 0o=w}|n--n| U ¥u=ua}

yEA k=0 Yo€Ao Yn€An k=0 YoE€Ao YnE€EAn

Since N C N, note that o(Y}) C G, for every k € {0,...,n}. Because F,, = o(Uy_,0(Y%)) and G,, C F,,, showing
that F,, = G, now only requires showing that G,, is a o-algebra on (.

For some n € N, let A = N"*!. Using the previous result, we know that Q € G,,.

For some n € N, consider a sequence (G, € Gy, | m € N) where

Gn,m: U {}/O :yOv“'vYn:yn}
YEAm
for some sequence (A,, C N"*! | m € N). Clearly,
UGn,m:U U {}/0 :y()v"',Yn:yn}: U{YOZyOa"'7Yn :yn}a
m m yEA,, yeA

where 4 = U,,,A;,. Because A C N" T we know that U,, Gy m € Gn.
For some n € N and every A C N**!, note that A° C N**! and AU A° = N*t!, 5o that

Uto=v. . Yo=w}|u|l U M=vw. Yo=w}]|= J M=vw.. .Yo=wm}=2
yeA yEA® yeNn+1
Since the leftmost sets above are disjoint, if G, € G,,, then G¢ € G, so that G, is a o-algebra on . O

Proposition 8.3. Consider a measurable space (€2, F) and a stochastic process (Y, : Q@ - N | n € N). A 7-system
7 on Q) such that 0(Z) = 0(Yp, Y1,...) is given by

IT={0u{{Yo=yo,....Y, =yn}|neNand (yo,...,y,) € NI U{Q}.

Proof. First, we will show that 7 is indeed a w-system on Q. For every I € Z, note that TN = () and INQ = I. For
some n' € Nand (y),...,y,,) € N* T let I} = {Yo = y{,..., Y =y, }. For some n >n’ and (yo,...,y,) € N*T1
let I = {Yy = vo,...,Y, = yn}. In that case,

Il ﬁ12 = {OJ € | YE)(W) :y(l) :yoa"'7Yn’(w) :y';y,’ :yn’aYn'(w) :yn’7~-~>Yn(W) :yn}a
so that

I AL — I, if y; =y for every k € {0,...,n'},
b 0, ify, # yi for some k € {0,...,n}.

Therefore, I1 NI € Z, so that Z is a w-system on ).
By Proposition 8.2, for every n € N, the o-algebra o(Yy,...,Y;,) on Q is given by

(Yo, V) =S JMo=wo,....Ya=yn} [ACN" 3,
yeA

where y = (yo,...,yn) and A is a countable set. For every n € N, because each F,, € o(Yp,...,Y},) is a countable
union of elements of Z, we know that F,, € o(Z). Therefore, U,o(Yp,...,Y,) C o(Z) and o(Yp, Y1,...) Co(Z). O

Acknowledgements

I would like to thank Daniel Valesin for the ideas behind some proofs found in these notes.

License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License @®E.

15



References

[1] Duff, Michael O’Gordon. Optimal Learning: Computational procedures for Bayes-adaptive Markov decision
processes. University of Massachusetts Amherst, 2002.

16



	Canonical Models
	Conditional Expectations
	Discounted Return
	Optimal Adaptive Policies
	Policy Values
	Optimal Policy Values
	Examples
	Countable Bayes-adaptive Markov decision processes
	Dirichlet Bayes-adaptive Markov decision processes

	Appendix

