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These notes describe the fundamentals of Bayes-adaptive Markov decision processes [1] using measure-theoretic
probability. For a less rigorous introduction, see the reinforcement learning notes by the same author.

1 Canonical Models
Definition 1.1. A set of states S is a non-empty subset of N.

Definition 1.2. A set of actions A is a non-empty subset of N.

Definition 1.3. A model p over a set of states S and a set of actions A is a function p : S × A × S → [0, 1] such
that

∑
s′ p(s, a, s

′) = 1 for every s ∈ S and a ∈ A. For convenience, let pas,s′ = p(s, a, s′).

Definition 1.4. A Markov decision process (S,A, p, r, γ) is composed of:

• A set of states S;

• A set of actions A;

• A model p over the set of states S and the set of actions A;

• A reward function r : S → R such that |r| ≤ c for some c ∈ (0,∞);

• A discount factor γ ∈ (0, 1).

Definition 1.5. For a set of states S, an initial distribution µ is a probability measure on the measurable space
(S,P(S)), where P(S) is the set of all subsets of S. For convenience, let µs = µ({s}).

Definition 1.6. For a set of states S and a set of actions A, an adaptive policy π is a sequence of functions
(πt : St+1 → A | t ∈ N), where πt is called a policy for time step t.

Proposition 1.1. For every Markov decision process (S,A, p, r, γ), initial distribution µ, and adaptive policy
π = (πt | t ∈ N), there is a probability triple (Ω,F ,P) carrying a stochastic process S = (St : Ω → S | t ∈ N) such
that, for every t ∈ N and (s0, . . . , st) ∈ St+1,

P(S0 = s0, . . . , St = st) = µs0

t∏
k=1

pπk−1(s0,...,sk−1)
sk−1,sk

.

Proof. By Kolmogorov’s extension theorem, there is a probability triple (Ω,F ,P) carrying a countable set of in-
dependent random variables {S0 : Ω → S} ∪ {Zs0,...,st : Ω → S | t ∈ N and (s0, . . . , st) ∈ St+1} such that
P(S0 = s0) = µs0 for every s0 ∈ S and P(Zs0,...,st = st+1) = p

πt(s0,...,st)
st,st+1 for every t ∈ N and (s0, . . . , st+1) ∈ St+2.

For every t ∈ N, let St+1 : Ω → S be given by St+1 = ZS0,...,St
. By definition, for every t ∈ N and ω ∈ Ω,

St+1(ω) = ZS0(ω),...,St(ω)(ω) =
∑
s0

· · ·
∑
st

I{S0=s0,...,St=st}(ω)Zs0,...,st(ω).

For every t ∈ N, we know that St+1 is a random variable because S0, . . . , St are random variables.
For every t ∈ N and st+1 ∈ S, since {St+1 = st+1} ∩ Ω = {St+1 = st+1},

{St+1 = st+1} = {ZS0,...,St = st+1} =
⋃
s0

· · ·
⋃
st

{S0 = s0, . . . , St = st} ∩ {Zs0,...,st = st+1}.

Using induction, we will now show that, for every t ∈ N+ and (s0, . . . , st) ∈ St+1,

t⋂
k=0

{Sk = sk} = {S0 = s0} ∩
t⋂

k=1

{Zs0,...,sk−1
= sk}.
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Using the previous result, for every (s0, s1) ∈ S2,

{S0 = s0} ∩ {S1 = s1} = {S0 = s0} ∩
⋃
s′0

{S0 = s′0} ∩ {Zs′0
= s1} = {S0 = s0} ∩ {Zs0 = s1}.

Suppose that the inductive hypothesis is true for some t ∈ N+. For every (s0, . . . , st+1) ∈ St+2,

t+1⋂
k=0

{Sk = sk} =

(
t⋂

k=0

{Sk = sk}

)
∩

⋃
s′0

· · ·
⋃
s′t

{S0 = s′0, . . . , St = s′t} ∩ {Zs′0,...,s
′
t
= st+1}

 .

By distributing the intersection over the unions and using the inductive hypothesis,

t+1⋂
k=0

{Sk = sk} =

(
t⋂

k=0

{Sk = sk}

)
∩ {Zs0,...,st = st+1} = {S0 = s0} ∩

t+1⋂
k=1

{Zs0,...,sk−1
= sk}.

For every t ∈ N+ and (s0, . . . , st) ∈ St+1, the event
⋂t

k=0{Sk = sk} is the intersection of events from the
σ-algebras of independent random variables. Therefore, using the previous result,

P(S0 = s0, . . . , St = st) = P(S0 = s0)

t∏
k=1

P(Zs0,...,sk−1
= sk) = µs0

t∏
k=1

pπk−1(s0,...,sk−1)
sk−1,sk

.

Definition 1.7. For a set of states S, the canonical space (Ω,F) that carries the state process S = (St | t ∈ N) is a
measurable space such that Ω = S∞. Furthermore, for every t ∈ N, the function St : Ω → S is given by St(ω) = ωt

and the σ-algebra F on Ω is given by F = σ(S0, S1, . . .).

Theorem 1.1 (Existence and uniqueness of the canonical triple for a Markov decision process). For every Markov
decision process (S,A, p, r, γ), initial distribution µ, and adaptive policy π = (πt | t ∈ N), there is a unique
probability measure Pµ,π on the canonical space (Ω,F) that carries the state process S = (St | t ∈ N) such that,
for every t ∈ N and (s0, . . . , st) ∈ St+1,

Pµ,π(S0 = s0, . . . , St = st) = µs0

t∏
k=1

pπk−1(s0,...,sk−1)
sk−1,sk

.

The probability triple (Ω,F ,Pµ,π) is called the canonical triple for the Markov decision process (S,A, p, r, γ) under
the initial distribution µ and the adaptive policy π.

Proof. Proposition 1.1 ensures that there is a probability triple (Ω̃µ,π, F̃µ,π, P̃µ,π) carrying the stochastic process
(S̃µ,π

t : Ω̃µ,π → S | t ∈ N) such that, for every t ∈ N and (s0, . . . , st) ∈ St+1,

P̃µ,π(S̃µ,π
0 = s0, . . . , S̃

µ,π
t = st) = µs0

t∏
k=1

pπk−1(s0,...,sk−1)
sk−1,sk

.

Consider the function S̃µ,π : Ω̃µ,π → Ω given by S̃µ,π(ω̃) = (S̃µ,π
t (ω̃) | t ∈ N). By Proposition 8.1, the function

S̃µ,π is F̃µ,π/F-measurable, so that the function Pµ,π : F → [0, 1] defined by

Pµ,π(F ) = P̃µ,π((S̃µ,π)−1(F )) = P̃µ,π({ω̃ ∈ Ω̃µ,π | S̃µ,π(ω̃) ∈ F})

is a probability measure on the measurable space (Ω,F).
Clearly, Pµ,π(Ω) = P̃µ,π((S̃µ,π)−1(Ω)) = P̃µ,π(Ω̃µ,π) = 1 and Pµ,π(∅) = P̃µ,π((S̃µ,π)−1(∅)) = P̃µ,π(∅) = 0. For

any sequence of sets (Fn ∈ F | n ∈ N) such that Fn ∩ Fm = ∅ for n ̸= m,

Pµ,π

(⋃
n

Fn

)
= P̃µ,π

(
(S̃µ,π)−1

(⋃
n

Fn

))
= P̃µ,π

(⋃
n

(S̃µ,π)−1 (Fn)

)
=
∑
n

P̃µ,π
(
(S̃µ,π)−1 (Fn)

)
=
∑
n

Pµ,π(Fn),

where we have used the fact that (S̃µ,π)−1(Fn) ∩ (S̃µ,π)−1(Fm) = (S̃µ,π)−1(Fn ∩ Fm) = ∅ for n ̸= m.
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For every t ∈ N and (s0, . . . , st) ∈ St+1,

Pµ,π (S0 = s0, . . . , St = st) = P̃µ,π({ω̃ ∈ Ω̃µ,π | S̃µ,π(ω̃) ∈ {ω ∈ Ω | S0(ω) = s0, . . . , St(ω) = st}}).

Because Ω = S∞ and St(ω) = ωt for every t ∈ N,

Pµ,π (S0 = s0, . . . , St = st) = P̃µ,π({ω̃ ∈ Ω̃µ,π | S̃µ,π
0 (ω̃) = s0, . . . , S̃

µ,π
t (ω̃) = st}) = µs0

t∏
k=1

pπk−1(s0,...,sk−1)
sk−1,sk

,

so that a probability measure on (Ω,F) with the desired properties exists.
Naturally, any two desired probability measures on (Ω,F) must agree on the π-system I ⊆ F given by

I = {∅} ∪ {{S0 = s0, . . . , St = st} | t ∈ N and (s0, . . . , st) ∈ St+1} ∪ {Ω}.

Since σ(I) = F by Proposition 8.3, Pµ,π is the unique probability measure with the desired properties.

Definition 1.8. Let M be a set of models over the set of states S and the set of actions A. For every state s ∈ S,
action a ∈ A, and state s′ ∈ S, the function qas,s′ : M → [0, 1] is given by qas,s′(p) = pas,s′ .

Definition 1.9. The canonical space (M,G) for the set of models M over the set of states S and the set of actions
A is the measurable space such that G = σ

(
∪(s,a,s′)σ

(
qas,s′

))
.

Definition 1.10. A Bayes-adaptive Markov decision process (S,A,M, ψ, r, γ) is composed of:

• A set of states S;

• A set of actions A;

• A non-empty set of models M over the set of states S and the set of actions A;

• A prior ψ, which is a probability measure on the canonical space (M,G) for the set of models M;

• A reward function r : S → R such that |r| ≤ c for some c ∈ (0,∞);

• A discount factor γ ∈ (0, 1).

Definition 1.11. Let (M,G) be the canonical space for the set of models M over the set of states S and the set
of actions A. Let (Ω′,F ′) be the canonical space that carries the state process S′ = (S′

t | t ∈ N) for the set of states
S. The canonical space (Ω,F) that carries the model variable M and the state process S = (St | t ∈ N) is given by
(Ω,F) = (M× Ω′,G × F ′). The F/G-measurable function M : Ω → M is given by M(p, ω′) = p. For every t ∈ N,
the F-measurable function St : Ω → S is given by St(p, ω

′) = S′
t(ω

′).

Theorem 1.2 (Existence and uniqueness of the canonical triple for a Bayes-adaptive Markov decision process).
For every Bayes-adaptive Markov decision process (S,A,M, ψ, r, γ), initial distribution µ, and adaptive policy π,
there is a unique probability measure Pµ,π on the canonical space (Ω,F) = (M×Ω′,G ×F ′) that carries the model
variable M and the state process S = (St | t ∈ N) such that for every G ∈ G, t ∈ N and (s0, . . . , st) ∈ St+1,

Pµ,π(M ∈ G,S0 = s0, . . . , St = st) =

∫
G

µs0

t∏
k=1

pπk−1(s0,...,sk−1)
sk−1,sk

ψ(dp).

The probability triple (Ω,F ,Pµ,π) is called the canonical triple for the Bayes-adaptive Markov decision process
(S,A,M, ψ, r, γ) under the initial distribution µ and the adaptive policy π.

Proof. For every p ∈ M, let (Ω′,F ′,Pµ,π,p) denote the canonical triple for the Markov decision process (S,A, p, r, γ)
under the initial distribution µ and the adaptive policy π.

Let Kµ,π : M×F ′ → [0, 1] be a function given by Kµ,π(p, F ′) = Pµ,π,p(F ′). We will start by showing that Kµ,π

is a probability kernel from M to Ω′.
For every p ∈ M, note that the function Kµ,π(p, ·) : F ′ → [0, 1] is a probability measure on (Ω′,F ′). For every

F ′ ∈ F ′, it remains to show that the function Kµ,π(·, F ′) : M → [0, 1] is G-measurable.
By Proposition 8.3, a π-system I ′ ⊆ F ′ such that σ(I ′) = F ′ is given by

I ′ = {∅} ∪ {{S′
0 = s0, . . . , S

′
t = st} | t ∈ N and (s0, . . . , st) ∈ St+1} ∪ {Ω′}.
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Since Kµ,π(·, ∅) and Kµ,π(·,Ω′) are G-measurable, let I ′ = {S′
0 = s0, . . . , S

′
t = st} for some t ∈ N and

(s0, . . . , st) ∈ St+1. In that case,

Kµ,π(p, I ′) = Pµ,π,p(S′
0 = s0, . . . , S

′
t = st) = µs0

t∏
k=1

pπk−1(s0,...,sk−1)
sk−1,sk

= µs0

t∏
k=1

qπk−1(s0,...,sk−1)
sk−1,sk

(p),

so that Kµ,π(·, I ′) is G-measurable for every I ′ ∈ I ′. Because I ′ is a π-system on Ω′ such that σ(I ′) = F ′, recall
that Kµ,π is a probability kernel from M to Ω′.

Consider the unique probability measure Pµ,π on (Ω,F) such that, for every G ∈ G and F ′ ∈ F ′,

Pµ,π(G× F ′) =

∫
G

Kµ,π(p, F ′)ψ(dp) =

∫
G

Pµ,π,p(F ′)ψ(dp).

We will show that Pµ,π is the unique probability measure on (Ω,F) with the desired properties.
For every G ∈ G, note that {M ∈ G} = G × Ω′. For every t ∈ N and (s0, . . . , st) ∈ St+1, note that {S0 =

s0, . . . , St = st} = M×{S′
0 = s0, . . . , S

′
t = st}. Therefore,

Pµ,π(M ∈ G,S0 = s0, . . . , St = st) = Pµ,π(G× {S′
0 = s0, . . . , S

′
t = st}) =

∫
G

µs0

t∏
k=1

pπk−1(s0,...,sk−1)
sk−1,sk

ψ(dp).

Let J = {G × I ′ | G ∈ G and I ′ ∈ I ′}. Note that any two desired probability measures on (Ω,F) must agree
on J . Because I ′ is set of subsets of Ω′ such that Ω′ ∈ I ′ and σ(I ′) = F ′, recall that σ(J ) = F . Because J is a
π-system on Ω, Pµ,π is the unique probability measure on (Ω,F) with the desired properties.

For the remaining text, let (Ω,F ,Pµ,π) denote the canonical triple for the Bayes-adaptive Markov decision
process (S,A,M, ψ, r, γ) under the initial distribution µ and the adaptive policy π. Recall that the measurable
space (Ω,F) carries the model variable M : Ω → M and the state process S = (St : Ω → S | t ∈ N).

2 Conditional Expectations
Definition 2.1. For every t ∈ N and (s0, . . . , st) ∈ St+1, the posterior predictive ρµ,πs0,...,st : S → [0, 1] given the
sequence of states (s0, . . . , st) under the initial distribution µ and the adaptive policy π is defined by

ρµ,πs0,...,st(st+1) =


Pµ,π(S0=s0,...,St=st,St+1=st+1)

Pµ,π(S0=s0,...,St=st)
, if Pµ,π(S0 = s0, . . . , St = st) ̸= 0,

1, if Pµ,π(S0 = s0, . . . , St = st) = 0 and st+1 = minS,
0, if Pµ,π(S0 = s0, . . . , St = st) = 0 and st+1 ̸= minS,

where the last two cases help ensure that
∑

st+1
ρµ,πs0,...,st(st+1) = 1.

Definition 2.2. For every t ∈ N, the history Ht up to time t is defined by Ht = σ(S0, . . . , St).

Proposition 2.1. For every t ∈ N and st+1 ∈ S, almost surely,

ρµ,πS0,...,St
(st+1) = Pµ,π(St+1 = st+1 | Ht).

Proof. Recall that Pµ,π(St+1 = st+1 | Ht) = Eµ,π(I{St+1=st+1} | Ht). Clearly, ρµ,πS0,...,St
(st+1) ∈ L1(Ω,Ht,Pµ,π).

By Proposition 8.2, every Ht ∈ Ht is given by Ht =
⋃

s∈A{S0 = s0, . . . , St = st} for some A ⊆ St+1, where
s = (s0, . . . , st). Therefore,

ρµ,πS0,...,St
(st+1)IHt =

∑
s∈A

I{S0=s0,...,St=st}ρ
µ,π
S0,...,St

(st+1) =
∑
s∈A

I{S0=s0,...,St=st}ρ
µ,π
s0,...,st(st+1).

Since the terms in the summation above are non-negative,

Eµ,π
(
ρµ,πS0,...,St

(st+1)IHt

)
=
∑
s∈A

Pµ,π (S0 = s0, . . . , St = st) ρ
µ,π
s0,...,st(st+1).
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By cancelling terms,

Eµ,π
(
ρµ,πS0,...,St

(st+1)IHt

)
=
∑
s∈A

Pµ,π(S0 = s0, . . . , St = st, St+1 = st+1).

Since the terms in the summation above are non-negative,

Eµ,π
(
ρµ,πS0,...,St

(st+1)IHt

)
= Eµ,π

(∑
s∈A

I{S0=s0,...,St=st}I{St+1=st+1}

)
= Eµ,π

(
I{St+1=st+1}IHt

)
.

Definition 2.3. For every t ∈ N and (s0, . . . , st) ∈ St+1, the adaptive policies π and π′ agree on the sequence of
states (s0, . . . , st) if πk(s0, . . . , sk) = π′

k(s0, . . . , sk) for every k ≤ t.

Proposition 2.2. For every t ∈ N and (s0, . . . , st+1) ∈ St+2, if the adaptive policies π and π′ agree on the sequence
of states (s0, . . . , st), then Pµ,π(S0 = s0, . . . , St′ = st′) = Pµ,π′

(S0 = s0, . . . , St′ = st′) for every t′ ≤ t+ 1.

Proof. Since {M ∈ M} = Ω, and πk−1(s0, . . . , sk−1) = π′
k−1(s0, . . . , sk−1) for every k ≤ t+ 1,

Pµ,π(S0 = s0, . . . , St′ = st′) =

∫
M
µs0

t′∏
k=1

pπk−1(s0,...,sk−1)
sk−1,sk

ψ(dp) =

∫
M
µs0

t′∏
k=1

p
π′
k−1(s0,...,sk−1)

sk−1,sk ψ(dp).

Proposition 2.3. For every t ∈ N and (s0, . . . , st) ∈ St+1, if the adaptive policies π and π′ agree on the sequence
of states (s0, . . . , st), then ρµ,πs0,...,st = ρµ,π

′

s0,...,st .

Proof. This result is obtained by combining Proposition 2.2 with the definitions of ρµ,πs0,...,st and ρµ,π
′

s0,...,st .

Definition 2.4. For every t ∈ N, sequence of states (s0, . . . , st) ∈ St+1, and sequence of actions (a0, . . . , at) ∈ At+1,
the posterior predictive ρµ,a0,...,at

s0,...,st : S → [0, 1] given (s0, . . . , st) and (a0, . . . , at) under µ is defined by

ρµ,a0,...,at
s0,...,st (st+1) = ρµ,πs0,...,st(st+1),

where π is an adaptive policy such that πk(s0, . . . sk) = ak for every k ≤ t, and well-defined by Proposition 2.3.

Proposition 2.4. Consider an adaptive policy π and let Ak = πk(S0, . . . , Sk) for every k ∈ N. For every t ∈ N and
st+1 ∈ S, almost surely,

ρµ,A0,...,At

S0,...,St
(st+1) = Pµ,π(St+1 = st+1 | Ht).

Proof. Because ρµ,A0,...,At

S0,...,St
(st+1) = ρµ,A0,...,At

S0,...,St
(st+1)IΩ,

ρµ,A0,...,At

S0,...,St
(st+1) =

∑
s∈St+1

I{S0=s0,...,St=st}ρ
µ,A0,...,At

S0,...,St
(st+1) =

∑
s∈St+1

I{S0=s0,...,St=st}ρ
µ,a0,...,at
s0,...,st (st+1),

where s = (s0, . . . , st) and ak = πk(s0, . . . , sk) for every k ≤ t. From the definition of ρµ,a0,...,at
s0,...,st (st+1),

ρµ,A0,...,At

S0,...,St
(st+1) =

∑
s∈St+1

I{S0=s0,...,St=st}ρ
µ,π
s0,...,st(st+1) =

∑
s∈St+1

I{S0=s0,...,St=st}ρ
µ,π
S0,...,St

(st+1).

By Proposition 2.1, almost surely,

ρµ,A0,...,At

S0,...,St
(st+1) =

∑
s∈St+1

I{S0=s0,...,St=st}P
µ,π(St+1 = st+1 | Ht) = Pµ,π(St+1 = st+1 | Ht).

Posterior predictive functions have a central role in many Bayesian reinforcement learning algorithms. These
functions are provided for some Bayes-adaptive Markov decision processes in Section 7.
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3 Discounted Return
Definition 3.1. The discounted return Ut:h after time step t ∈ N up to the horizon h ∈ N is defined by

Ut:h =

h∑
k=t+1

γk−t−1r(Sk),

so that Ut:h = 0 if t ≥ h.

Proposition 3.1. If t ∈ N and h ∈ N, then Ut:h ∈ L1(Ω,F ,Pµ,π) and |Ut:h| ≤ c/(1− γ).

Proof. The function r(Sk) is bounded and F-measurable for every k ∈ N, so that r(Sk) ∈ L1(Ω,F ,Pµ,π). Since
L1(Ω,F ,Pµ,π) is a vector space over the field R, Ut:h ∈ L1(Ω,F ,Pµ,π). For t < h,

|Ut:h| ≤
h∑

k=t+1

γk−t−1 |r(Sk)| ≤ c

h−t−1∑
k=0

γk = c

(
1− γh−t

1− γ

)
≤ c

1− γ
.

Proposition 3.2. For every t, h′, h ∈ N such that t ≤ h′ < h, the discounted return Ut:h is given by

Ut:h = Ut:h′ + γh
′−tUh′:h.

Proof. For every t, h′, h ∈ N such that t ≤ h′ < h,

Ut:h =

h′∑
k=t+1

γk−t−1r(Sk) +

h∑
k=h′+1

γk−t−1r(Sk) = Ut:h′ +

h∑
k=h′+1

γk−t−1r(Sk).

Because γh
′
γ−h′

= 1 for every h′ ∈ N,

Ut:h = Ut:h′ + γh
′
γ−h′

h∑
k=h′+1

γk−1γ−tr(Sk) = Ut:h′ + γh
′−t

h∑
k=h′+1

γk−h′−1r(Sk).

Proposition 3.3. If ω ∈ Ω and t ∈ N, then (Ut:h(ω) | h ∈ N) is a Cauchy sequence.

Proof. For every t, h′, h ∈ N such that t ≤ h′ < h,

|Ut:h − Ut:h′ | =
∣∣∣Ut:h′ + γh

′−tUh′:h − Ut:h′

∣∣∣ = γh
′−t|Uh′:h| ≤ γh

′−t c

1− γ
.

Therefore, for every t, h′ ∈ N such that t ≤ h′,

0 ≤ sup
h>h′

|Ut:h − Ut:h′ | ≤
(
cγ−t

1− γ

)
γh

′
.

By the squeeze theorem, for every t ∈ N,

lim
h′→∞

sup
h>h′

|Ut:h − Ut:h′ | = 0.

Therefore, for every t ∈ N and ϵ > 0 there is an N ∈ N such that h, h′ > N implies |Ut:h − Ut:h′ | < ϵ.

Definition 3.2. The discounted return Ut:∞ after time step t ∈ N is defined by

Ut:∞ = lim
h→∞

Ut:h =

∞∑
k=t+1

γk−t−1r(Sk).

Proposition 3.4. If t ∈ N, then Ut:∞ ∈ L1(Ω,F ,Pµ,π) and Eµ,π(Ut:∞) = limh→∞ Eµ,π(Ut:h).
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Proof. For every ω ∈ Ω, recall that the Cauchy sequence (Ut:h(ω) | h ∈ N) converges to a real number, so that Ut:∞
is well-defined and F-measurable. By the dominated convergence theorem, Ut:∞ ∈ L1(Ω,F ,Pµ,π) and

Eµ,π(Ut:∞) = lim
h→∞

Eµ,π(Ut:h).

Additionally, because the absolute value is continuous,

|Ut:∞| = lim
h→∞

|Ut:h| ≤
c

1− γ
.

Proposition 3.5. For every t, h′ ∈ N such that t ≤ h′, the discounted return Ut:∞ is given by

Ut:∞ = Ut:h′ + γh
′−tUh′:∞.

Proof. For every t, h′ such that t ≤ h′,

Ut:∞ = lim
h→∞

Ut:h = lim
h→∞

Ut:h′ + γh
′−tUh′:h = Ut:h′ + γh

′−tUh′:∞.

4 Optimal Adaptive Policies
Definition 4.1. An adaptive policy π is optimal up to the horizon h ∈ N ∪ {∞} under the initial distribution µ if

Eµ,π (U0:h) = sup
π′

Eµ,π′
(U0:h) .

Proposition 4.1. Under an initial distribution µ, suppose that the adaptive policy π′ is optimal up to the horizon
h′ ∈ N and that the adaptive policy π is optimal up to the horizon h ∈ N+ ∪ {∞}. If h′ < h, then

0 ≤ Eµ,π(U0:h)− Eµ,π′
(U0:h) ≤ 2c

(
γh

′ − γh

1− γ

)
,

where γ∞ is used to denote zero.

Proof. Because Eµ,π(U0:h) ≥ Eµ,π′
(U0:h), we know that Eµ,π(U0:h)− Eµ,π′

(U0:h) ≥ 0. By Propositions 3.2 and 3.5,

0 ≤ Eµ,π(U0:h)− Eµ,π′
(U0:h) = Eµ,π (U0:h′) + γh

′
Eµ,π (Uh′:h)− Eµ,π′

(U0:h′)− γh
′
Eµ,π′

(Uh′:h) .

Because Eµ,π′
(U0:h′) ≥ Eµ,π (U0:h′), we know that Eµ,π (U0:h′)− Eµ,π′

(U0:h′) ≤ 0. Therefore,

0 ≤ Eµ,π(U0:h)− Eµ,π′
(U0:h) ≤ γh

′
(
Eµ,π (Uh′:h)− Eµ,π′

(Uh′:h)
)
.

Because γh
′
> 0, we know that Eµ,π (Uh′:h) ≥ Eµ,π′

(Uh′:h). From the proofs of Propositions 3.1 and 3.4,

−c

(
1− γh−h′

1− γ

)
≤ Eµ,π′

(Uh′:h) ≤ Eµ,π (Uh′:h) ≤ c

(
1− γh−h′

1− γ

)
,

where γ∞ is used to denote zero. By subtracting the leftmost term above from the rightmost term above,

0 ≤ Eµ,π(U0:h)− Eµ,π′
(U0:h) ≤ γh

′
2c

(
1− γh−h′

1− γ

)
.

Theorem 4.1 (Regret of truncated planning). Suppose that the adaptive policy π is optimal up to the horizon ∞
under the initial distribution µ. For every ϵ > 0 and h′ ∈ N such that h′ > log(ϵ(1− γ)/2c)/ log(γ), if the adaptive
policy π′ is optimal up to the horizon h′ under the initial distribution µ, then Eµ,π(U0:∞)− Eµ,π′

(U0:∞) < ϵ.

Proof. Proposition 4.1 ensures that Eµ,π(U0:∞)− Eµ,π′
(U0:∞) ≤ 2cγh

′
/(1− γ) < ϵ.
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5 Policy Values
Definition 5.1. For every t ∈ N and h ∈ N∪{∞}, the value V µ,π

t:h : Ω → R of time t up to the horizon h under the
initial distribution µ and the adaptive policy π is defined such that, almost surely,

V µ,π
t:h = Eµ,π (Ut:h | Ht) = Eµ,π

(
h∑

k=t+1

γk−t−1r(Sk) | Ht

)
,

so that V µ,π
t:t+1 = Eµ,π(Ut:t+1 | Ht) = Eµ,π(r(St+1) | Ht) almost surely.

Proposition 5.1. If t ∈ N and h ∈ N ∪ {∞}, then |V µ,π
t,h | ≤ c/(1− γ) almost surely.

Proof. If t ∈ N and h ∈ N ∪ {∞}, then |Ut:h| ≤ c/(1− γ). Therefore, almost surely,

|V µ,π
t,h | = |Eµ,π(Ut:h | Ht)| ≤ Eµ,π(|Ut:h| | Ht) ≤

c

(1− γ)
.

Theorem 5.1 (Bellman equation). For every t ∈ N and h ∈ N+ ∪ {∞} such that t+1 < h, the value V µ,π
t:h of time

t up to the horizon h under the initial distribution µ and the adaptive policy π is almost surely given by

V µ,π
t:h = Eµ,π(r(St+1) | Ht) + γEµ,π

(
V µ,π
t+1:h | Ht

)
.

Proof. By the linearity of conditional expectation, almost surely,

V µ,π
t:h = Eµ,π (Ut:t+1 + γUt+1:h | Ht) = Eµ,π(r(St+1) | Ht) + γEµ,π (Ut+1:h | Ht) .

By the tower property, almost surely,

V µ,π
t:h = Eµ,π(r(St+1) | Ht) + γEµ,π (Eµ,π(Ut+1:h | Ht+1) | Ht) .

Proposition 5.2. For every t ∈ N, almost surely,

Eµ,π(r(St+1) | Ht) =
∑
st+1

r(st+1)Pµ,π (St+1 = st+1 | Ht) .

Proof. For every n ∈ N, let Xn : Ω → R be given by

Xn(ω) =
∑

st+1<n

r(st+1)I{St+1=st+1}(ω) =

{
r(St+1(ω)), if St+1(ω) < n,

0, if St+1(ω) ≥ n,

so that r(St+1) = limn→∞Xn. By the conditional dominated convergence theorem, almost surely,

Eµ,π(r(St+1) | Ht) = lim
n→∞

Eµ,π(Xn | Ht) = lim
n→∞

∑
st+1<n

r(st+1)Eµ,π
(
I{St+1=st+1} | Ht

)
.

Definition 5.2. For every t ∈ N and h ∈ N such that t < h, the function vµ,πt:h : St+1 → R is given by

vµ,πt:h (s0, . . . , st) =
∑
st+1

ρµ,a0,...,at
s0,...,st (st+1)

(
r(st+1) + γvµ,πt+1:h(s0, . . . , st, st+1)

)
,

where ak = πk(s0, . . . , sk) for every k ≤ t. If t ≥ h, let vµ,πt:h = 0.

Proposition 5.3. If t ∈ N and h ∈ N, then |vµ,πt:h | ≤ c/(1− γ).
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Proof. If t ≥ h, then |vµ,πt:h | ≤ c/(1 − γ). If t < h, in order to employ backward induction, suppose that |vµ,πt+1:h| ≤
c/(1− γ). In that case, for every (s0, . . . , st+1) ∈ St+2,

|r(st+1) + γvµ,πt+1:h(s0, . . . , st, st+1)| ≤ |r(st+1)|+ γ|vµ,πt+1:h(s0, . . . , st, st+1)| ≤ c+ γ
c

1− γ
=

c

1− γ
,

so that |vµ,πt:h (s0, . . . , st)| ≤ c/(1− γ)
∑

st+1
ρµ,a0,...,at
s0,...,st (st+1) = c/(1− γ).

Proposition 5.4. If t ∈ N and h ∈ N, then vµ,πt:h (S0, . . . , St) = V µ,π
t:h almost surely.

Proof. If t ≥ h, then vµ,πt:h (S0, . . . , St) = 0 = V µ,π
t:h almost surely. If t = h− 1, by Propositions 2.4 and 5.2,

vµ,πt:h (S0, . . . , St) =
∑
st+1

ρµ,A0,...,At

S0,...,St
(st+1)r(st+1) =

∑
st+1

r(st+1)Pµ,π (St+1 = st+1 | Ht) = Eµ,π(r(St+1) | Ht) = V µ,π
t:h

almost surely, where Ak = πk(S0, . . . , Sk) for every k ≤ t. If t < h − 1, in order to employ backward induction,
suppose that vµ,πt+1:h(S0, . . . , St+1) = V µ,π

t+1:h almost surely. For every n ∈ N, let Xn : Ω → R be given by

Xn(ω) =
∑

st+1<n

vµ,πt+1:h(S0(ω), . . . , St(ω), st+1)I{St+1=st+1}(ω) =

{
vµ,πt+1:h(S0(ω), . . . , St+1(ω)), if St+1(ω) < n,

0, if St+1(ω) ≥ n,

so that V µ,π
t+1:h = vµ,πt+1:h(S0, . . . , St+1) = limn→∞Xn almost surely. By conditional dominated convergence,

Eµ,π(V µ,π
t+1:h | Ht) = lim

n→∞

∑
st+1<n

vµ,πt+1:h(S0, . . . , St, st+1)Eµ,π
(
I{St+1=st+1} | Ht

)
almost surely, where we used the fact that vµ,πt+1:h(S0, . . . , St, st+1) is Ht-measurable to take out what is known.

From the definition of vµ,πt:h and Proposition 2.4, almost surely,

vµ,πt:h (S0, . . . , St) =
∑
st+1

Pµ,π (St+1 = st+1 | Ht) r(st+1) + γ
∑
st+1

Pµ,π (St+1 = st+1 | Ht) v
µ,π
t+1:h(S0, . . . , St, st+1).

Almost surely, by Proposition 5.2 and Theorem 5.1,

vµ,πt:h (S0, . . . , St) = Eµ,π(r(St+1) | Ht) + γEµ,π
(
V µ,π
t+1:h | Ht

)
= V µ,π

t:h .

Theorem 5.2 (Value of an adaptive policy). For every initial distribution µ, adaptive policy π, and horizon h ∈ N,

Eµ,π(U0:h) = Eµ,π(V µ,π
0:h ) = Eµ,π(vµ,π0:h (S0)) =

∑
s0

µs0v
µ,π
0:h (s0).

The last result may enable evaluating an adaptive policy up to a finite horizon.

6 Optimal Policy Values
Definition 6.1. For every t ∈ N and h ∈ N such that t < h, the function vµ,∗t:h : S × (A× S)t → R is given by

vµ,∗t:h (s0, a0, s1, . . . , at−1, st) = sup
at

∑
st+1

ρµ,a0,...,at
s0,...,st (st+1)

(
r(st+1) + γvµ,∗t+1:h(s0, a0, s1, . . . , at, st+1)

)
.

If t ≥ h, let vµ,∗t:h = 0.

Definition 6.2. For every t ∈ N and h ∈ N such that t < h, the function qµ,∗t:h : (S ×A)t+1 → R is given by

qµ,∗t:h (s0, a0, . . . , st, at) =
∑
st+1

ρµ,a0,...,at
s0,...,st (st+1)

(
r(st+1) + γvµ,∗t+1:h(s0, a0, s1, . . . , at, st+1)

)
.

If t ≥ h, let qµ,∗t:h = 0. Note that vµ,∗t:h (s0, a0, s1, . . . , at−1, st) = supa q
µ,∗
t:h (s0, a0, . . . , st, a).
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Proposition 6.1. For every adaptive policy π, t ∈ N, h ∈ N, and (s0, . . . , st) ∈ St+1,

vµ,∗t:h (s0, a0, s1, . . . , at−1, st) ≥ vµ,πt:h (s0, . . . , st),

where ak = πk(s0, . . . , sk) for every k < t.

Proof. If t ≥ h, then vµ,∗t:h = 0 and vµ,πt:h = 0. If t < h, in order to employ backward induction, suppose that

vµ,∗t+1:h(s0, a0, s1, . . . , at−1, st, at, st+1) ≥ vµ,πt+1:h(s0, . . . , st, st+1)

for every (s0, . . . , st+1) ∈ St+2, where ak = πk(s0, . . . , sk) for every k < t+ 1. In that case,

vµ,∗t:h (s0, a0, s1, . . . , at−1, st) = sup
a
qµ,∗t:h (s0, a0, . . . , st, a) ≥ qµ,∗t:h (s0, a0, . . . , st, at).

By the inductive hypothesis,

vµ,∗t:h (s0, a0, s1, . . . , at−1, st) ≥
∑
st+1

ρµ,a0,...,at
s0,...,st (st+1)

(
r(st+1) + γvµ,πt+1:h(s0, . . . , st, st+1)

)
= vµ,πt:h (s0, . . . , st).

Theorem 6.1 (Value of an optimal adaptive policy). If h ∈ N and vµ,π0:h (S0) = vµ,∗0:h (S0) almost surely, then π is
optimal up to the horizon h under the initial distribution µ.

Proof. For every adaptive policy π′, using Proposition 6.1 and the fact that Pµ,π and Pµ,π′
agree on H0,

Eµ,π(U0:h) = Eµ,π(vµ,π0:h (S0)) = Eµ,π(vµ,∗0:h (S0)) = Eµ,π′
(vµ,∗0:h (S0)) ≥ Eµ,π′

(vµ,π
′

0:h (S0)) = Eµ,π′
(U0:h).

Theorem 6.2 (Existence of an optimal adaptive policy). Under every initial distribution µ, for every h ∈ N, if the
set of actions A is finite, then there is an adaptive policy that is optimal up to the horizon h.

Proof. Consider an adaptive policy π = (πt | t ∈ N) such that, for every t ∈ N and (s0, . . . , st) ∈ St+1,

qµ,∗t:h (s0, π0(s0), . . . , st, πt(s0, . . . , st)) = sup
a
qµ,∗t:h (s0, π0(s0), . . . , st, a),

which exists because the set of actions A is finite.
For every t ∈ N and (s0, . . . , st) ∈ St+1, we will show that vµ,πt:h (s0, . . . , st) = vµ,∗t:h (s0, a0, s1, . . . , at−1, st), where

ak = πk(s0, . . . , sk) for every k < t.
If t ≥ h, then vµ,πt:h = 0 and vµ,∗t:h = 0. If t < h, in order to employ backward induction, suppose that

vµ,πt+1:h(s0, . . . , st, st+1) = vµ,∗t+1:h(s0, a0, s1, . . . , at−1, st, at, st+1)

for every (s0, . . . , st+1) ∈ St+2, where ak = πk(s0, . . . , sk) for every k < t+ 1. By the inductive hypothesis,

vµ,πt:h (s0, . . . , st) =
∑
st+1

ρµ,a0,...,at
s0,...,st (st+1)

(
r(st+1) + γvµ,∗t+1:h(s0, a0, s1, . . . , at−1, st, at, st+1)

)
.

By the definition of the adaptive policy π,

vµ,πt:h (s0, . . . , st) = qµ,∗t:h (s0, a0, . . . , st, at) = sup
a
qµ,∗t:h (s0, a0, . . . , st, a) = vµ,∗t:h (s0, a0, s1, . . . , at−1, st).

Because vµ,π0:h (S0) = vµ,∗0:h (S0), π is optimal up to the horizon h under the initial distribution µ.

The last result may enable finding an optimal adaptive policy up to a finite horizon given a finite set of actions.
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7 Examples

7.1 Countable Bayes-adaptive Markov decision processes
Definition 7.1. A countable Bayes-adaptive Markov decision process (S,A,M, ψ, r, γ) is composed of:

• A set of states S;

• A set of actions A;

• A countable non-empty set of models M over the set of states S and the set of actions A;

• A prior ψ, which is a probability measure on the canonical space (M,G) for the set of models M;

• A reward function r : S → R such that |r| ≤ c for some c ∈ (0,∞);

• A discount factor γ ∈ (0, 1).

For every model p ∈ M, let ψ({p}) = ψp.

Consider a countable Bayes-adaptive Markov decision process (S,A,M, ψ, r, γ).

Proposition 7.1. For every t ∈ N, sequence of states (s0, . . . , st) ∈ St+1, and sequence of actions (a0, . . . , at) ∈
At+1, the posterior predictive ρµ,a0,...,at

s0,...,st : S → [0, 1] given (s0, . . . , st) and (a0, . . . , at) under µ is given by

ρµ,a0,...,at
s0,...,st (st+1) =

∑
p ψp

∏t+1
k=1 p

ak−1
sk−1,sk∑

p ψp

∏t
k=1 p

ak−1
sk−1,sk

whenever µs0

∑
p ψp

∏t
k=1 p

ak−1
sk−1,sk ̸= 0.

Proof. Let π = (πt | t ∈ N) be an adaptive policy such that πk = ak for every k ≤ t.
Since {M ∈ M} = Ω, for every (s0, . . . , st+1) ∈ St+2 and t′ ≤ t+ 1,

Pµ,π(S0 = s0, . . . , St′ = st′) =

∫
M
µs0

t′∏
k=1

pak−1
sk−1,sk

ψ(dp) = µs0

∑
p

ψp

t′∏
k=1

pak−1
sk−1,sk

.

Whenever Pµ,π(S0 = s0, . . . , St = st) = µs0

∑
p ψp

∏t
k=1 p

ak−1
sk−1,sk ̸= 0,

ρµ,a0,...,at
s0,...,st (st+1) = ρµ,πs0,...,st(st+1) =

Pµ,π(S0 = s0, . . . , St = st, St+1 = st+1)

Pµ,π(S0 = s0, . . . , St = st)
=

∑
p ψp

∏t+1
k=1 p

ak−1
sk−1,sk∑

p ψp

∏t
k=1 p

ak−1
sk−1,sk

.

In particular, if ψp = 1 for some p ∈ M, then ρµ,a0,...,at
s0,...,st (st+1) = pat

st,st+1
.

7.2 Dirichlet Bayes-adaptive Markov decision processes
Definition 7.2. The gamma function Γ : (0,∞) → (0,∞) is given by

Γ(a) =

∫
(0,∞)

ba−1e−b Leb(db),

where e is Euler’s number. Remarkably, a = Γ(a+ 1)/Γ(a) for every a ∈ (0,∞).

Definition 7.3. For every n− 1 ∈ N+, the simplex Cn−1 is given by Cn−1 = {θ ∈ (0, 1)n−1 |
∑n−1

i=1 θi < 1}.

Definition 7.4. For every n− 1 ∈ N+, the multivariate Beta function B : (0,∞)n → (0,∞) is given by

B(α) =

∏n
i=1 Γ(αi)

Γ (
∑n

i=1 αi)
=

∫
Cn−1

n∏
i=1

θαi−1
i Lebn−1(dθ),

where θn = 1−
∑n−1

i=1 θi.
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Definition 7.5. For every n− 1 ∈ N+, the joint probability density function Dir(·;α) : Rn−1 → [0,∞] is given by

Dir(θ;α) = ICn−1(θ)
1

B(α)

n∏
i=1

θαi−1
i ,

where α ∈ (0,∞)n is a so-called pseudocount and θn = 1−
∑n−1

i=1 θi.

Definition 7.6. For every n−1 ∈ N+, the simplex space (Cn−1, Cn−1) is given by restricting the measurable space
(Rn−1,B(Rn−1)) to the simplex Cn−1, so that Cn−1 = {B ∈ B(Rn−1) | B ⊆ Cn−1}.

Definition 7.7. A Dirichlet law L : Cn−1 → [0, 1] on the simplex space (Cn−1, Cn−1) is given by L(Θ) = L∗(Θ),
where L∗ : B(Rn−1) → [0, 1] is a probability measure on (Rn−1,B(Rn−1)) such that, for some α ∈ (0,∞)n,

L∗(Θ) =

∫
Θ

Dir(θ;α) Lebn−1(dθ).

Definition 7.8. Let M be a set of models over the set of states S = {1, 2, . . . , n} and the set of actions A. For
every state s ∈ S and action a ∈ A, the function qas : M → [0, 1]n−1 is given by

qas (p) = (qas,1(p), . . . , q
a
s,n−1(p)) = (pas,1, . . . , p

a
s,n−1).

Definition 7.9. The set of positive models M over S = {1, 2, . . . , n} and A is given by

M = {p ∈ M∗ | pas,s′ > 0 for every (s, a, s′) ∈ S ×A× S} = {p ∈ M∗ | qas (p) ∈ Cn−1 for every (s, a) ∈ S ×A},

where M∗ is the set of all models over the set of states S and the set of actions A.

Proposition 7.2. For some n − 1 ∈ N+ and m ∈ N+, let M be the set of positive models over the set of states
S = {1, 2, . . . , n} and the set of actions A = {1, . . . ,m}. For a given choice of pseudocounts (αa

s ∈ (0,∞)n | (s, a) ∈
S ×A), there is a unique probability measure ψ on the canonical space (M,G) for the set of models M such that

ψ

⋂
(s,a)

{qas ∈ Θa
s}

 =
∏
(s,a)

∫
Θa

s

Dir(θas ;α
a
s) Lebn−1(dθas )

for every sequence (Θa
s ∈ Cn−1 | (s, a) ∈ S × A). The probability measure ψ is called a Dirichlet prior on the

canonical space (M,G) given the pseudocounts (αa
s | (s, a) ∈ S ×A).

Proof. For every s ∈ S and a ∈ A, consider the Dirichlet law La
s on the simplex space (Cn−1, Cn−1) given by

La
s(Θ

a
s) =

∫
Θa

s

Dir(θas ;α
a
s) Lebn−1(dθas ).

Furthermore, consider the product measure L on the measurable space ((Cn−1)mn, (Cn−1)mn) given by

L = L1
1 × · · · × Lm

1 × L1
2 × · · · × Lm

2 × . . .× L1
n × . . .× Lm

n .

Consider the invertible function q : M → (Cn−1)mn given by

q(p) = (q11(p), . . . , q
m
1 (p), q12(p), . . . , q

m
2 (p), . . . , q1n(p), . . . , q

m
n (p)),

and let u : (Cn−1)mn → M denote the inverse of q. Clearly, σ(q) ⊆ G. Furthermore, G ⊆ σ(q), which relies on the
fact that σ(qas,s′) ⊆ σ(q) for every s ∈ S, a ∈ A, and s′ ∈ S. In particular, note that qas,n = 1−

∑
s′<n q

a
s,s′ . Since q

is invertible and σ(q) = G, recall that σ(u) = (Cn−1)mn.
Therefore, the function ψ : G → [0, 1] given by ψ(G) = L(u−1(G)) is a probability measure on the canonical

space (M,G). For every sequence (Θa
s ∈ Cn−1 | (s, a) ∈ S ×A),

ψ

⋂
(s,a)

{qas ∈ Θa
s}

 = L

∏
(s,a)

Θa
s

 =
∏
(s,a)

La
s(Θ

a
s) =

∏
(s,a)

∫
Θa

s

Dir(θas ;α
a
s) Lebn−1(dθas ).

Since La
s(Θ

a
s) = ψ (qas ∈ Θa

s), note that (σ(qas ) | (s, a) ∈ S ×A) are independent.
Because I = {

⋂
(s,a){qas ∈ Θa

s} | Θa
s ∈ Cn−1 for every (s, a) ∈ S × A} is a π-system on M such that σ(I) = G,

ψ is the unique probability measure on the canonical space (M,G) with the desired properties.
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Definition 7.10. A Dirichlet Bayes-adaptive Markov decision process (S,A,M, ψ, r, γ) is composed of:

• A set of states S = {1, 2, . . . , n}, where n− 1 ∈ N+;

• A set of actions A = {1, . . . ,m}, where m ∈ N+;

• The set of positive models M over the set of states S and the set of actions A;

• A Dirichlet prior ψ on the canonical space (M,G) given the pseudocounts (αa
s ∈ (0,∞)n | (s, a) ∈ S ×A);

• A reward function r : S → R such that |r| ≤ c for some c ∈ (0,∞);

• A discount factor γ ∈ (0, 1).

Consider a Dirichlet Bayes-adaptive Markov decision process (S,A,M, ψ, r, γ).

Definition 7.11. For every t ∈ N, Na
s,s′(s0, a0, s1, . . . , at−1, st) denotes the number of times that the triple (s, a, s′)

appears in the sequence s0, a0, s1, . . . , at−1, st ∈ S × (A× S)t and Na
s (s0, a0, s1, . . . , at−1, st) ∈ Nn is given by

Na
s (s0, a0, s1, . . . , at−1, st) = (Na

s,1(s0, a0, s1, . . . , at−1, st), . . . , N
a
s,n(s0, a0, s1, . . . , at−1, st)).

Proposition 7.3. For every t ∈ N, sequence of states (s0, . . . , st) ∈ St+1, and sequence of actions (a0, . . . , at) ∈
At+1, the posterior predictive ρµ,a0,...,at

s0,...,st : S → [0, 1] given (s0, . . . , st) and (a0, . . . , at) under µ is given by

ρµ,a0,...,at
s0,...,st (st+1) =

αat
st,st+1

+Nat
st,st+1

(s0, a0, s1, . . . , at−1, st)∑
s′ α

at

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at−1, st)

whenever µs0 ̸= 0.

Proof. Let π = (πt | t ∈ N) be an adaptive policy such that πk = ak for every k ≤ t.
Since {M ∈ M} = Ω, for every (s0, . . . , st+1) ∈ St+2 and t′ ≤ t+ 1,

Pµ,π(S0 = s0, . . . , St′ = st′) = µs0

∫
M

t′∏
k=1

qak−1
sk−1,sk

dψ = µs0

∫
M

∏
(s,a)

∏
s′

(
qas,s′

)Na
s,s′ (s0,a0,s1,...,at′−1,st′ ) dψ.

Because (σ(qas ) | (s, a) ∈ S ×A) are independent,

Pµ,π(S0 = s0, . . . , St′ = st′) = µs0

∏
(s,a)

∫
M

∏
s′

(
qas,s′

)Na
s,s′ (s0,a0,s1,...,at′−1,st′ ) dψ.

Since Dir(·;αa
s) is a joint probability density function for qas ,

Pµ,π(S0 = s0, . . . , St′ = st′) = µs0

∏
(s,a)

∫
Rn−1

Dir(θas ;α
a
s)
∏
s′

(
θas,s′

)Na
s,s′ (s0,a0,s1,...,at′−1,st′ ) Lebn−1(dθas ),

where θas,n = 1−
∑

s′<n θ
a
s,s′ . Therefore, by the definition of Dir(·;αa

s),

Pµ,π(S0 = s0, . . . , St′ = st′) = µs0

∏
(s,a)

1

B(αa
s)

∫
Cn−1

∏
s′

(
θas,s′

)Na
s,s′ (s0,a0,s1,...,at′−1,st′ )+αa

s,s′−1
Lebn−1(dθas ).

From the definition of the multivariate Beta function,

Pµ,π(S0 = s0, . . . , St′ = st′) = µs0

∏
(s,a)

B(αa
s +Na

s (s0, a0, s1, . . . , at′−1, st′))

B(αa
s)

.

Whenever µs0 ̸= 0,

ρµ,a0,...,at
s0,...,st (st+1) = ρµ,πs0,...,st(st+1) =

Pµ,π(S0 = s0, . . . , St+1 = st+1)

Pµ,π(S0 = s0, . . . , St = st)
=
∏
(s,a)

B(αa
s +Na

s (s0, a0, s1, . . . , at, st+1))

B(αa
s +Na

s (s0, a0, s1, . . . , at−1, st))
.
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Note that Na
s (s0, a0, s1, . . . , at, st+1) ̸= Na

s (s0, a0, s1, . . . , at−1, st) if and only if st = s and at = a. Therefore,

ρµ,a0,...,at
s0,...,st (st+1) =

B(αat
st +Nat

st (s0, a0, s1, . . . , at, st+1))

B(αat
st +Nat

st (s0, a0, s1, . . . , at−1, st))
.

From the definition of the multivariate Beta function,

ρµ,a0,...,at
s0,...,st (st+1) =

∏
s′ Γ(α

at

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at, st+1))

Γ
(∑

s′ α
at

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at, st+1)

) Γ
(∑

s′ α
at

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at−1, st)

)
∏

s′ Γ(α
at

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at−1, st))

.

Since Nat

st,s′
(s0, a0, s1, . . . , at, st+1) ̸= Nat

st,s′
(s0, a0, s1, . . . , at−1, st) if and only if s′ = st+1,

∏
s′

Γ(αat

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at, st+1))

Γ(αat

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at−1, st))

= αat
st,st+1

+Nat
st,st+1

(s0, a0, s1, . . . , at−1, st).

Since
∑

s′ N
at

st,s′
(s0, a0, s1, . . . , at, st+1) = 1 +

∑
s′ N

at

st,s′
(s0, a0, s1, . . . , at−1, st),

Γ
(∑

s′ α
at

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at−1, st)

)
Γ
(∑

s′ α
at

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at, st+1)

) =
1∑

s′ α
at

st,s′
+Nat

st,s′
(s0, a0, s1, . . . , at−1, st)

.

8 Appendix

Proposition 8.1. Consider a measurable space (Ω̃, F̃) and a stochastic process (Ỹn : Ω̃ → R | n ∈ N). Let
Ỹ : Ω̃ → R∞ be given by Ỹ (ω̃) = (Ỹn(ω̃) | n ∈ N). For every n ∈ N, let Yn : R∞ → R be given by Yn(ω) = ωn and
let F = σ(∪nσ(Yn)). In that case, Ỹ is F̃/F-measurable.

Proof. For every n ∈ N, note that Ỹn = Yn ◦ Ỹ , so that Ỹ −1
n (B) = Ỹ −1(Y −1

n (B)) for every B ∈ B(R). Because
Ỹn is F̃-measurable for every n ∈ N, we know that Ỹ −1(C) ∈ F̃ for every C ∈ ∪nσ(Yn). Since (R∞,F) is a
measurable space, note that E = {F ∈ F | Ỹ −1(F ) ∈ F̃} is a σ-algebra on R∞. Because ∪nσ(Yn) ⊆ F , we know
that σ(∪nσ(Yn)) = F ⊆ E , so that E = F . Therefore, Ỹ is F̃/F-measurable.

Proposition 8.2. Consider a measurable space (Ω,F), a stochastic process (Yn : Ω → N | n ∈ N), and let
Fn = σ(Y0, . . . , Yn) for every n ∈ N. Furthermore, for every n ∈ N, let Gn be given by

Gn =

⋃
y∈A

{Y0 = y0, . . . , Yn = yn} | A ⊆ Nn+1

 ,

where y = (y0, . . . , yn). In that case, Fn = Gn.

Proof. For some n ∈ N, consider a set given by

⋃
y∈A

{Y0 = y0, . . . , Yn = yn} =
⋃
y∈A

n⋂
k=0

{Yk = yk}

for some A ⊆ Nn+1, where y = (y0, . . . , yn). For every k ∈ N, recall that

σ(Yk) =

 ⋃
yk∈Ak

{Yk = yk} | Ak ⊆ N

 .

The set A is countable, since it is a subset of the countable set Nn+1, which is a finite Cartesian product between
countable sets. Because {Yk = yk} ∈ Fn for every k ∈ {0, . . . , n} and yk ∈ Ak, we know that Gn ⊆ Fn.
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For some n ∈ N, let A = A0 × · · · ×An, where Ak ⊆ N for every k ∈ {0, . . . , n}. In that case,

⋃
y∈A

n⋂
k=0

{Yk = yk} =
⋃

y0∈A0

· · ·
⋃

yn∈An

n⋂
k=0

{Yk = yk} =

 ⋃
y0∈A0

{Y0 = y0}

 ∩ · · · ∩

 ⋃
yn∈An

{Yn = yn}

 .

Since N ⊆ N, note that σ(Yk) ⊆ Gn for every k ∈ {0, . . . , n}. Because Fn = σ(∪n
k=0σ(Yk)) and Gn ⊆ Fn, showing

that Fn = Gn now only requires showing that Gn is a σ-algebra on Ω.
For some n ∈ N, let A = Nn+1. Using the previous result, we know that Ω ∈ Gn.
For some n ∈ N, consider a sequence (Gn,m ∈ Gn | m ∈ N) where

Gn,m =
⋃

y∈Am

{Y0 = y0, . . . , Yn = yn}

for some sequence (Am ⊆ Nn+1 | m ∈ N). Clearly,⋃
m

Gn,m =
⋃
m

⋃
y∈Am

{Y0 = y0, . . . , Yn = yn} =
⋃
y∈A

{Y0 = y0, . . . , Yn = yn},

where A = ∪mAm. Because A ⊆ Nn+1, we know that ∪mGn,m ∈ Gn.
For some n ∈ N and every A ⊆ Nn+1, note that Ac ⊆ Nn+1 and A ∪Ac = Nn+1, so that⋃

y∈A

{Y0 = y0, . . . , Yn = yn}

 ∪

 ⋃
y∈Ac

{Y0 = y0, . . . , Yn = yn}

 =
⋃

y∈Nn+1

{Y0 = y0, . . . , Yn = yn} = Ω.

Since the leftmost sets above are disjoint, if Gn ∈ Gn, then Gc
n ∈ Gn, so that Gn is a σ-algebra on Ω.

Proposition 8.3. Consider a measurable space (Ω,F) and a stochastic process (Yn : Ω → N | n ∈ N). A π-system
I on Ω such that σ(I) = σ(Y0, Y1, . . .) is given by

I = {∅} ∪ {{Y0 = y0, . . . , Yn = yn} | n ∈ N and (y0, . . . , yn) ∈ Nn+1} ∪ {Ω}.

Proof. First, we will show that I is indeed a π-system on Ω. For every I ∈ I, note that I ∩∅ = ∅ and I ∩Ω = I. For
some n′ ∈ N and (y′0, . . . , y

′
n′) ∈ Nn′+1, let I1 = {Y0 = y′0, . . . , Yn′ = y′n′}. For some n ≥ n′ and (y0, . . . , yn) ∈ Nn+1,

let I2 = {Y0 = y0, . . . , Yn = yn}. In that case,

I1 ∩ I2 = {ω ∈ Ω | Y0(ω) = y′0 = y0, . . . , Yn′(ω) = y′n′ = yn′ , Yn′(ω) = yn′ , . . . , Yn(ω) = yn},

so that

I1 ∩ I2 =

{
I2, if y′k = yk for every k ∈ {0, . . . , n′},
∅, if y′k ̸= yk for some k ∈ {0, . . . , n′}.

Therefore, I1 ∩ I2 ∈ I, so that I is a π-system on Ω.
By Proposition 8.2, for every n ∈ N, the σ-algebra σ(Y0, . . . , Yn) on Ω is given by

σ(Y0, . . . , Yn) =

⋃
y∈A

{Y0 = y0, . . . , Yn = yn} | A ⊆ Nn+1

 ,

where y = (y0, . . . , yn) and A is a countable set. For every n ∈ N, because each Fn ∈ σ(Y0, . . . , Yn) is a countable
union of elements of I, we know that Fn ∈ σ(I). Therefore, ∪nσ(Y0, . . . , Yn) ⊆ σ(I) and σ(Y0, Y1, . . .) ⊆ σ(I).
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