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1 Introduction
Machine learning is typically divided into three subareas: supervised learning, unsupervised learning, and reinforce-
ment learning.

In broad terms, the goal of supervised learning is to learn a mapping from inputs to outputs based on examples.
Consider a dataset D = (x1, y1), . . . , (xN , yN ), where xi ∈ RD, yi ∈ R, and each high-dimensional vector xi

(observation) is associated to a scalar yi (target), for every i ∈ {1, . . . , N}. Each element of an observation
corresponds to a feature. The task of finding a function (classifier) f̂ : RD → R that generalizes from such a
training set D is typical in supervised learning. Generalization is usually evaluated in a separate dataset (test set).
If the set of valid targets is finite and associated to categories, the task is called classification. If the set of valid
targets is a real-valued interval, the task is called regression.

The goal of unsupervised learning is to find interesting structure in a sequence of observations D = x1, . . . ,xN ,
where xi ∈ RD. The concept of interesting is intentionally vague. Applications of unsupervised learning include
finding clusters (groups of related observations), finding relationships between features, and modeling joint proba-
bilities.

Reinforcement learning is concerned with agents that act in an environment with the goal of maximizing cumu-
lative reward signals. These agents are not told which actions to take, but typically discover which actions yield
most cumulative rewards by interacting with the environment. In this setting, each action may affect all subsequent
rewards. Although reinforcement learning will not be covered in this text, it typically employs supervised learning
for generalization.

The remainder of this section introduces important concepts in the context of supervised learning.
Probability theory is very useful to model uncertainty in machine learning, and will be reviewed in the next

section. In classification, for example, instead of directly finding a function f̂ that generalizes from a training set D,
it is also possible to model the probability P (Y = y | X = x) of target y given observation x. The corresponding
classifier f̂ could be defined as f̂(x) = argmaxy P (Y = y | X = x).

One of the simplest classification techniques is K-nearest neighbors. In this technique, the conditional probability
of a target y given an observation x is defined as

P (Y = y | X = x) =
1

K

∑
(xi,yi)∈N(x,D,K)

I(yi = y),

where I(e) = 1 if the logical expression e is true, and 0 otherwise; and N(x,D,K) is a subset of D whose observations
are the K closest to x (ties broken arbitrarily), according to a distance function on RD (e.g., Euclidean distance).
In other words, this technique defines P (Y = y | X = x) as the fraction of the K nearest neighbors of x that belong
to class y.

Although K-nearest neighbors can generalize well given an appropriate distance function and sufficient data,
it can also suffer from the curse of dimensionality, a difficulty that may arise in high-dimensional spaces. As an
example of this curse, consider a hypercube with unit volume. A hypercube with side l ≤ 1 inside such unit
hypercube occupies a fraction F (l) = lD of the unit volume. Thus, to occupy a fraction r of the volume of the
unit hypercube, a hypercube must have side L(r) = D

√
r. In the case of D = 100, to occupy r = 1% of the volume

of the unit hypercube, the smaller hypercube must have sides larger than 0.95. This example aids the intuition
that a technique like K-nearest neighbors may base its decisions on neighbors that are considerably distant in the
high dimensional space (depending on the dataset). Other techniques may achieve better generalization by making
particular assumptions about the dataset. For the same reason, there is no single best learning algorithm for every
practical situation.

The misclassification rate e(f̂ ,D) of classifier f̂ on dataset D is defined as

e(f̂ ,D) =
1

N

∑
(xi,yi)∈D

I(f̂(xi) ̸= yi).

Clearly, a 1-nearest neighbor classifier achieves zero misclassification rate on the training set (assuming there
are contradictory observation-target pairs). This does not imply that the classifier generalizes well. Generalization
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can be evaluated by the misclassification rate on a separate dataset (test set). A classifier is said to underfit when
it performs poorly on both training and test sets, and to overfit when it performs poorly on the test set relative
to the training set. Overfitting may be caused by a overly complicated model, which fails to capture the important
trends behind the possibly noisy training set.

Notice that K-nearest neighbors requires fixing K before the classifier f̂ can be fitted to the training set, which
makes K a hyperparameter. The general task of choosing hyperparameters that generalize well is called model
selection. As already mentioned, generalization cannot be evaluated on the training set. Hyperparameters should
not be chosen based on performance on the test set either, because doing so would introduce an optimistic bias.
In short, it would not be clear how hyperparameters chosen for a particular test set would generalize for other test
sets.

A typical solution is to partition the training set into a validation set and an effective training set. For each choice
of hyperparameters, the classifier is fitted to the effective training set, and evaluated in the validation set. This
procedure is called cross-validation. In K-fold cross-validation, the training set is partitioned into K subsets (folds).
Each fold is used as a validation set while the others are used as effective training sets, and the hyperparameters
that achieve best (average) results over each validation fold are selected. The selected hyperparameters are used to
fit a classifier to the whole training set, which can be finally evaluated on the test set.

2 Preliminaries

2.1 Probability theory
Probability theory is a well developed mathematical framework for reasoning under uncertainty. This section
presents the fundamentals of the theory. For more advanced topics, see the measure-theoretic probability notes by
the same author.

A sample space Ω is the set of possible outcomes of an experiment. Elements of Ω are also called sample
outcomes. Events are subsets of Ω. An event is said to occur if the outcome of the experiment belongs to the event.

A set of events {A1, ...} is said to be disjoint if Ai ∩Aj = ∅ for every i ̸= j. A partition of Ω is a disjoint set of
events such that

⋃
i Ai = Ω.

If P is a function from the set of all subsets of Ω to R and has the properties:

P (A) ≥ 0 for every event A,

P (Ω) = 1,

If {A1, ...} is a disjoint set of events, P

(⋃
i

Ai

)
=
∑
i

P (Ai),

then P is a probability distribution over Ω1.
For any events A and B, the following properties of a probability distribution P over Ω can be derived from the

three properties above:

P (∅) = 0,

A ⊆ B =⇒ P (A) ≤ P (B),

0 ≤ P (A) ≤ 1,

P (Ac) = 1− P (A),

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Intuitively, P (A) represents the degree of belief that event A will contain the sample outcome of an experiment.
For instance, if the sample space is finite and there is no reason to believe that P ({u}) > P ({w}) for any u,w ∈ Ω,
then, for any event A, P (A) = |A|

|Ω| , and P is said to be a uniform distribution.
An example may be useful to illustrate the application of these definitions. Suppose we are interested in

computing the probability of obtaining tails exactly once after tossing two unbiased coins. The sample space can
be represented as Ω = {(H,H), (H,T ), (T,H), (T, T )}. We can let P ({w}) = 1

4 for every w ∈ Ω, since there is no
reason to believe that a sample outcome is more likely than any other. The event of obtaining tails exactly once

1The function P may also be defined over a set of events that contains Ω and is closed under countable unions and complementation,
but the distinction is not crucial in this text.
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can be represented as A = {(T,H), (H,T )}. Therefore, P (A) = P ({(T,H)}) + P ({(H,T )}) = 1
2 , since these two

events are disjoint.
Let P (B) > 0 for an event B. The conditional probability of an event A given B is defined as:

P (A|B) =
P (A ∩B)

P (B)
.

Intuitively, P (A|B) can be interpreted as the degree of belief that A will occur given that B is already known
to have occurred. The formula for conditional probability also gives the equality P (A ∩B) = P (B)P (A|B).

Let A and B be events on Ω, with P (B) > 0, and Q(A) = P (A|B). Then Q is a probability distribution over
Ω, as it follows the three properties mentioned in the beginning of this section. Therefore,

P (A|B) ≥ 0 for any event A,

P (Ω|B) = 1,

If {A1, ...} is a disjoint set of events, P

(⋃
i

Ai|B

)
=
∑
i

P (Ai|B),

P (∅|B) = 0,

A ⊆ C =⇒ P (A|B) ≤ P (C|B),

0 ≤ P (A|B) ≤ 1,

P (Ac|B) = 1− P (A|B),

P (A ∪ C|B) = P (A|B) + P (C|B)− P (A ∩ C|B),

P (A ∩ C|B) = P (C|B)P (A|B ∩ C).

Let A = {A1, ...} be a partition of Ω. In that case,

P

((⋃
i

Ai

)
∩B

)
= P (Ω ∩B) = P (B).

Let {A1, ...} be a partition of Ω. Then, if P (B) ̸= 0, the definition of conditional probability can be restated as

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

.

The equation above is called Bayes’ Theorem.
In the special case when P (A ∩B) = P (A)P (B), A and B are said to be independent events.
Introduced the fundamentals, we now present random variables, which are essential to model complicated events.

It is often possible to omit the sample space entirely when modeling problems using random variables.
A random variable X is a function X : Ω → R. Let P be a probability distribution over Ω. Then, by definition,

P (X = x) = P ({w ∈ Ω | X(w) = x}),
P (a < X < b) = P ({w ∈ Ω | a < X(w) < b}).

In words, P (X = x) represents the probability of an event that contains all sample outcomes that are mapped
by X to x, while P (a < X < b) represents the probability of an event that contains all sample outcomes that are
mapped by X to a real number in the open interval (a, b). If the outcome of the experiment is w and X(w) = x,
random variable X is said to be in state x or assigned to x.

Consider the experiment mentioned earlier of tossing two unbiased coins. We can let X(w) be the number of
tails in a sample outcome w ∈ Ω. Therefore, P (X = 0) = 1

4 , P (X = 1) = 1
2 and P (X = 2) = 1

4 .
When working with random variables X and Y , we write P (X = x∩Y = y) as P (X = x, Y = y) for convenience.
We denote the image of a random variable X by Val(X), i.e., the set of values assigned to some sample outcome.

If Val(X) is countable, then X is said to be a discrete random variable. If Y is also a random variable, Val(X,Y )
denotes the set of valid assignments to X and Y . This notation also extends to vectors of random variables.

Some properties of a probability distribution P are restated in terms of random variables below.
For a discrete random variable X distributed according to a probability distribution P ,∑

x∈Val(X)

P (X = x) = 1.
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Also, the probability of the union of events can be restated as

P ((X = x) ∪ (Y = y)) = P (X = x) + P (Y = y)− P (X = x, Y = x),

and Bayes’ theorem can be restated as

P (X = x|Y = y) =
P (Y = y|X = x)P (X = x)∑

x′∈Val(X) P (Y = y|X = x′)P (X = x′)

if P (Y = y) > 0.
Let P be any joint probability distribution over discrete random variables X1, . . . , Xn. The chain rule of

probability, which can be derived from the definition of conditional probability, gives

P (X1 = x1, . . . , Xn = xn) = P (Xn = xn)

n−1∏
i=1

P (Xi = xi|Xi+1 = xi+1, . . . Xn = xn),

for every (x1, . . . , xn) ∈ Val(X1, . . . , Xn), assuming P (Xi+1 = xi+1, . . . Xn = xn) > 0 for every i.
If P is a probability distribution over Ω and X is a discrete random variable over Ω, we define the probability

mass function (pmf) f of X as f(x) = P (X = x), for every x.
If X is a continuous random variable and f is a function such that f(x) ≥ 0 for all x,

∫∞
−∞ f(x) dx = 1,

P (a < X < b) =
∫ b

a
f(x) dx for every a < b, then f is called a probability density function (pdf) of X. It is

important to note that f(x) does not represent P (X = x) in the continuous case. The remainder of this section
presupposes continuous pdfs.

We let X ∼ f denote that variable X is distributed according to the probability mass/density function f .
In the discrete case, a function fX,Y such that fX,Y (x, y) = P (X = x, Y = y) for every x and y is called a joint

probability mass function of X and Y . A function fX|Y such that fX|Y (x, y) = P (X = x|Y = y) = P (X = x, Y =
y)/P (Y = y) for every x and y is called a conditional mass function of X given Y . It is also common to denote
fX|Y (x, y) as fX|Y (x | y).

In the continuous case, if fX,Y is a joint probability density function of X and Y , then

P (X ∈ [a, b], Y ∈ [c, d]) =

∫ b

a

∫ d

c

fX,Y (x, y)dy dx,

for every choice of a, b, c, d ∈ R.
The conditional density function of X given Y is defined as fX|Y (x|y) = fX,Y (x, y)/fY (y) for every x and y

such that fY (y) > 0, where fY is the pdf for Y . In this case, P (X ∈ [a, b] | Y = y) is defined as

P (X ∈ [a, b] | Y = y) =

∫ b

a

fX|Y (x|y) dx.

If fX,Y is a joint pmf for X and Y and fX is the pmf for X, fX(x) =
∑

y fX,Y (x, y), for every x. Analogously,
if fX,Y is a joint pdf for X and Y and fX is the pdf for X, fX(x) =

∫∞
−∞ fX,Y (x, y) dy, for every x. In both cases,

obtaining fX from fX,Y is called marginalizing over Y .
It is common to omit the name of a random variable when denoting probabilities. For instance, P (X = x, Y =

y) = P (X = x|Y = y)P (Y = y) can be written as P (x, y) = P (x|y)P (y). We will often let the context determine
whether a function p is a probability density or mass function. Also, when there is no risk of ambiguity, probability
functions will omit the subscripts (e.g., pX,Y |Z(x, y|z) will be written as p(x, y|z)).

Consider a random vector X = (X1, . . . , XD), where each Xi is a random variable. The notation X ∼ p indicates
that p is a joint probability function for X. We denote the corresponding probability mass/density of x ∈ Val(X)
by p(x).

Let X, Y and Z be random variables, and p a probability (mass/density) function. Variable X is independent of
Y given Z, written as X ⊥⊥ Y | Z, if and only if p(x, y|z) = pX|Z(x|z)pY |Z(y|z) for all x, y and z such that pZ(z) > 0.
Intuitively, this means that knowing the state of Y does not give additional information about the state of X when
the state of Z is already known. The definition of unconditional independence (e.g., X ⊥⊥ Y ) is analogous. It is
easy to show that X ⊥⊥ Y | Z if and only if there exist functions g and h such that pX,Y |Z(x, y|z) = g(x, z)h(y, z)
for every x, y and z such that pZ(z) > 0.

Consider a random variable X distributed according to P . An α-quantile is defined as an x such that P (X ≤
x) = α. A 0.5-quantile is called a median.
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The expected value (mean) E[X] of a discrete random variable X ∼ p is defined as E[X] =
∑

x xp(x). In the
case of a continuous random variable X ∼ p, E[X] =

∫∞
−∞ xp(x) dx (assuming the integral exists).

Consider a continuous random variable X, and a function f : R → R. The function f ◦ X : Ω → R, defined
as (f ◦ X)(w) = f(X(w)) is also a random variable. In this case, it may be possible to compute the expectation
E[f ◦X] =

∫∞
−∞ f(x)p(x) dx, which is usually denoted by E[f(X)]. The discrete case is analogous.

In the case of a continuous random vector X = (X1, . . . , XD) and a function f : RD → R, the expectation is
defined using the joint distribution: E[f(X)] =

∫
Val(X)

f(x)p(x)dx. The discrete case is analogous.
Expectations over random vectors or random matrices should be considered element-wise. For instance, if

X = (X1, . . . , XD), E[X] = (E[X1], . . . ,E[XD]).
The variance of a random variable X is defined as var[X] = E[(X − E[X])2] = E[X2] − E[X]2. The standard

deviation of a random variable X is defined as std[X] =
√
var[X]. A high variance indicates that a random variable

is likely to assume values that deviate highly from the expected value.
The covariance between random variables X and Y is defined as cov[X,Y ] = E[(X − E[X])(Y − E[Y ])]. It is

easy to show that cov[X,Y ] = E[XY ]− E[X]E[Y ]. The (Pearson) correlation coefficient between random variables
X and Y is defined as corr[X,Y ] = cov[X,Y ]/(std[X] std[Y ]) when std[X] std[Y ] > 0, and is always between −1
and 1. A high correlation coefficient (in absolute value) indicates a highly linear relationship between X and Y , and
the sign indicates whether the variables are proportional or inversely proportional. In particular, | corr[X,Y ]| = 1
implies Y = aX + b for some a, b ∈ R, where a ̸= 0. If X ⊥⊥ Y , then corr[X,Y ] = 0. However, the converse is
not generally true, and the correlation coefficient is not an appropriate measure of dependence between random
variables.

The covariance matrix of a random vector X = (X1, . . . , XD) is defined as cov[X] = E[(X−E[X])(X−E[X])T ],
where ZT denotes the random row matrix corresponding to a random vector Z. In other words, cov[X]i,j =
cov[Xi, Xj ]. The correlation matrix is analogous.

In this text, we write the dot product between vectors u and v as uv, since that is usually unambiguous.
Operations between matrices and vectors consider the vector as a column matrix, unless stated otherwise.

If X is a random variable and Y = aX + b for a, b ∈ R, it is easy to show that E[Y ] = aE[X] + b. More
generally, if X is a random vector, and Y = AX + b for a matrix A and vector b, it is possible to show that
E[Y] = AE[X] + b, and that cov[Y] = A cov[X]AT

Consider a dataset D = x1, . . . ,xN where each xi is obtained by sampling Xi ∼ p, for every i. Also, let
X−i = ∪j ̸=i {Xj} and suppose Xi ⊥⊥ X−i, for every i. In this case, D is said to be independent, identically
distributed (iid) according to p. As a consequence of these assumptions,

p(D) = p(x1, . . . ,xN ) =

N∏
i=1

p(xi),

and p(D) is the so-called likelihood of the dataset D. The definition is the same whether p is a probability mass
or density function. It should be noted that p denotes two distinct probability functions on the equation above,
which are unambiguous given their arguments. As already mentioned, such abuse of notation will be common.

Consider an iid dataset D = x1, . . . , xN distributed according to p. If X ∼ p and E[X] exists and is finite,
the law of large numbers guarantees that N−1

∑N
i=1 xi → E[X] as N → ∞. In other words, the mean of a (very

large) dataset may be a good approximation to the expected value of X. This is a particular case of Monte Carlo
approximation, which can be used to approximate the expected value of any function of random variables.

For instance, if µ is a Monte Carlo approximation of E[X] considering the dataset D, the variance var[X] of
X can be approximated by N−1

∑N
i=1(xi − µ)2. It can be shown that this approximation underestimates var[X]

(particularly when N is small), precisely because it also requires an estimate of E[X].
Consider a discrete random variable X ∼ pX and let Y = f(X). Naturally, pY (y) =

∑
x|f(x)=y pX(x).

Now consider a continuous random variable X ∼ pX . If Y = f(X) for an invertible function f : R → R, g = f−1,
and g is differentiable, then pY (y) = pX(g(y))|g′(y)|.

For the general case, consider a continuous random vector X ∼ pX , and let Y = f(X) for an invertible function
f : RD → RD, and suppose g = f−1 is differentiable. Let Jy 7→x(y) denote a matrix such that [Jy 7→x(y)]i,j =

∂xi

∂yj
at

point y. We say Jy 7→x(y) the Jacobian matrix of g at y. Under these assumptions, it can be shown that

pY (y) = pX(g(y))|det Jy 7→x(y)|.
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2.2 Notable probability distributions
This section introduces probability distributions that will be useful in the remainder of this text. We will define
each probability function p on a subset of its domain whose complement has every element mapped to zero. Notice
that the properties presented in the previous section implicitly required continuous pdfs, while some pdfs presented
here are continuous only in a particular subset of their domains, requiring additional care.

The binomial (conditional) pmf Bin(· | n, θ) is defined on {0, . . . , n} as

Bin(x | n, θ) =
(
n

x

)
θx(1− θ)n−x,

where θ ∈ [0, 1], and n ∈ N. If X ∼ Bin(· | n, θ), P (X = x) can be intuitively interpreted as the probability of
obtaining exactly x successes in n independent trials of an experiment that has probability θ of success in each trial
(and probability 1− θ of failure).

The Bernoulli pmf Ber(· | θ) is defined on {0, 1} as

Ber(x | θ) = θx(1− θ)1−x,

where θ ∈ [0, 1]. Clearly, Ber(x | θ) = Bin(x | 1, θ).
The multinomial (joint) pmf Mu(· | n,θ) is defined on {x ∈ ND |

∑
i xi = n} as

Mu(x | n,θ) = n!

x1! · · ·xD!

D∏
i=1

θxi
i ,

where θ ∈ [0, 1]D,
∑

i θi = 1, and n ∈ N. Intuitively, if X ∼ Mu(· | n,θ), P (X = x) is the probability
of obtaining, jointly for every i, exactly xi results of type i in n independent trials of an experiment that has
probability θi of being of type i in each trial.

The categorical pmf Cat(· | θ) is defined on {1, . . . , D} as

Cat(x | θ) = Mu(ex | 1,θ) = θx,

where θ ∈ [0, 1]D,
∑

i θi = 1, and ex is a vector that is zero in every element except the x-th, which is 1.
The Poisson pmf Poi(· | λ) is defined on N as Poi(x | λ) = λx

x! e
−λ, where λ > 0. If X ∼ Poi(· | λ), Poi(x | λ) is

intuitively the probability that x events will occur in a fixed interval of time, if λ events are expected to occur in
this interval, and the occurrence of an event is independent of the time since the previous occurrence.

The empirical pmf pemp(· | D) is defined on the set of elements in the (sequence) dataset D as

pemp(x | D) =
1

N

∑
xi∈D

I[x = xi] =
Nx

N
,

where N is the number of elements in D, and Nx is the number of occurrences of x in D.
The uniform pdf Unif(· | a, b) is defined on [a, b] as

Unif(x | a, b) = 1

b− a
,

where a, b ∈ R, and a < b. Intuitively, if X ∼ Unif(· | a, b), the probability of X being in any two same-length
subintervals of [a, b] is the same.

The Gaussian pdf N (· | µ, σ2) is defined on R as

N (x | µ, σ2) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ is called mean, and σ2 > 0 is called variance. Indeed, if X ∼ N (· | µ, σ2), E[X] = µ and var[X] = σ2.
The Gaussian pdf is symmetric about its mean, where it also achieves its single maximum. The inverse of the
variance λ = σ−2 is also called precision. Intuitively, higher precision indicates higher probability of the variable
being close to the mean. The Standard Gaussian pmf is defined as N (· | 0, 1).

The Gaussian distribution is very important in probability, partly due to the central limit theorem. Consider
a sequence of iid random variables X1, . . . , XN (sample), with finite expected value µ = E[Xi], and finite non-zero
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variance σ2 = var[Xi]. Also, let X̄ = 1
N

∑
i Xi be the so-called sample mean, which is also a random variable. It

is possible to show that X̄ becomes approximately distributed according to N (· | µ,N−1σ2) as N → ∞. In other
words, for a large sample, the sample mean becomes distributed according to a Gaussian distribution that has the
same expected value as any of the (iid) variables in the sample, and a precision that is proportional to N .

The multivariate Gaussian joint pdf N (· | µ,Σ) is defined on RD as

N (x | µ,Σ) =
1√

(2π)D|Σ|
e−

1
2 (x−µ)TΣ−1(x−µ),

where µ ∈ RD is the mean vector and Σ is the D×D (positive definite) covariance matrix. Indeed, if X ∼ N (· |
µ,Σ), it is possible to show that E[X] = µ and cov[X] = Σ. The matrix Λ = Σ−1 is also called precision matrix.

The Gamma function Γ is defined on R as

Γ(z) =

∫ ∞

0

xz−1e−x dx.

It is possible to show that Γ(z) = (z − 1)Γ(z − 1), for every z ∈ R. If z ∈ N, Γ(z) = (n− 1)!.
The (non-standardized) Student’s t pdf T (· | µ, σ2, ν) is defined on R as

T (x | µ, σ2, ν) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνσ

(
1 +

1

ν

(
x− µ

σ

)2
)− ν+1

2

,

where µ is the mean, σ2 is a scale parameter (not variance), and ν > 0 is called degrees of freedom. Indeed,
if X ∼ T (· | µ, σ2, ν) and ν > 1, E[X] = µ. Also, if ν > 2, var[X] = ν

ν−2σ
2. The Student’s t pdf is symmetric

about its mean, and has heavier tails than the Gaussian pdf (specially for small ν). In other words, compared to a
Gaussian pdf with the same expected value and variance, the Student’s t pdf assigns higher density to outliers.

The Laplace pdf Lap(· | µ, b) is defined on R as

Lap(x | µ, b) = 1

2b
e−

|x−µ|
b ,

where b > 0. If X ∼ Lap(· | µ, b), E[X] = µ and var[X] = 2b2. The Laplace distribution is symmetric about its
mean, and has heavier tails than the Gaussian.

The Gamma pdf Ga(· | a, b) is defined on R>0 as

Ga(t | a, b) = ba

Γ(a)
ta−1e−tb,

where a > 0 is the shape, and b > 0 is the rate. If X ∼ Ga(· | a, b), E[X] = a
b , and var[X] = a

b2 . The pdf has
a maximum (mode) at a−1

b for a ≥ 1. The Gamma pdf is very flexible, and has several important pdfs as special
cases.

The exponential pdf Expon(· | λ) is defined as Expon(t | λ) = Ga(t | 1, λ). Intuitively, if λ events are expected
to occur in a unit of time, and the occurrence of an event is independent of the time since the previous occurrence,
Expon(t | λ) is the density for the event occurring at time t.

The chi-squared pdf χ2(· | ν) is defined as χ2(x | ν) = Ga(x | ν
2 ,

1
2 ), where ν ∈ N are the degrees of freedom.

The importance of this distribution comes from the fact that if Z1, . . . , Zν are iid according to a standard Gaussian
pdf and S =

∑
i Z

2
i , then S ∼ χ2(· | ν).

The beta pdf Beta(· | a, b) is defined on [0, 1] as

Beta(x | a, b) = 1

B(a, b)
xa−1(1− x)b−1,

where a, b > 0, and the beta function B is defined as B(a, b) = Γ(a)Γ(b)
Γ(a+b) . If X ∼ Beta(· | a, b), E[X] = a

a+b , and
var[X] = ab

(a+b)2(a+b+1) . If a = b = 1, the beta pdf is equal to the uniform pdf on [0, 1]. If a = b and 0 < a < 1, the
distribution has modes at 0 and 1. This pdf will be discussed in the context of parameter estimation.

The Dirichlet pdf Dirichlet(· | α) is defined over the so-called probability simplex SD = {x | 0 < xi <

1 for all i,
∑D

i=1 xi = 1} as

7



Dirichlet(x | α) =
1

B(α)

D∏
i=1

xαi−1
i ,

where αi > 0 for all i, α0 =
∑D

i=1 αi, and the generalized Beta function B is defined as B(α) =
∏D

i=1 Γ(αi)

Γ(α0)
. If

X ∼ Dirichlet(· | α), E[Xi] =
αi

α0
, and var[Xi] =

αi(α0−αi)
α2

0(α0+1)
, for all i. This pdf will also be discussed in the context

of parameter estimation.
The Pareto pdf Pareto(· | k,m) is defined on [m,∞) as

Pareto(x | k,m) =
kmk

xk+1
,

where k,m > 0. If X ∼ Pareto(· | k,m) and k > 1, E[X] = k
k−1m. This pdf places high density at m, which

decreases fast (particularly when k is large).

2.3 Information theory
The entropy (in bits) H[X] of a discrete random variable X ∼ p is defined as

H[X] = E[− log2 p(X)] = −
∑
k

p(k) log2 p(k),

where p(k) > 0 for every k. If p(k) = 0 for some k, 0 loga 0 is conventionally replaced by 0, which is justified by
the fact that lima→0 a log2 a = 0. It is also common to denote H[X] by H[p].

Consider the task of transmitting a sequence of assignments to N iid discrete random variables, and let X ∼ p
denote one of these variables. Shannon’s source coding theorem states that, as N → ∞, H[X] is a lower bound on
the average number of bits required to transmit an assignment (after the encoding is established).

The cross-entropy H[p, q] between two pmfs p and q is defined as H[p, q] = −
∑

k p(k) log2 q(k), where 0 loga 0 is
again replaced by 0. Considering the transmission task mentioned above, the cross-entropy H[p, q] can be interpreted
as the average number of bits required to transmit an assignment when the encoding is ideal for q (instead of p).

The Kullback-Leibler divergence KL(p||q) between two pmfs p and q is defined as

KL(p||q) =
∑
k

p(k) log2
p(k)

q(k)
= H[p, q]−H[p],

where p(k), q(k) > 0 for every k. If either p(k) or q(k) are 0, the corresponding term is conventionally replaced
by 0. Considering again the transmission task, the Kullback-Leibler divergence KL(p||q) can be interpreted as the
increase in the average number of bits required to transmit an assignment when the encoding is ideal for q (instead
of p).

We now show that KL(p||q) ≥ 0 for any two pmfs p and q, assuming p(k), q(k) > 0 for every k. By definition,

−KL(p||q) = −
∑
k

p(k) log2
p(k)

q(k)
=
∑
k

p(k) log2
q(k)

p(k)
.

Jensen’s inequality states that if f is a concave function and λ1, . . . , λN are positive numbers such that
∑

i λi = 1,
then f(

∑
i λixi) ≥

∑
i λif(xi). Using this result,

−KL(p||q) ≤ log2

[∑
k

p(k)
q(k)

p(k)

]
= log2 1 = 0.

Therefore, −KL(p||q) ≤ 0, and KL(p||q) ≥ 0.
We now show that a discrete random variable has maximum entropy when it is distributed uniformly. Firstly,

note that a pmf q defined as q(k) = 1
K for k ∈ {1, . . . ,K} has entropy

H[q] = −
K∑

k=1

1

K
log2

1

K
= − log2

1

K
= log2 K.
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Let p be a pmf that is non-zero on D = {1, . . .K}. By definition:

KL(p||q) =
∑
k

p(k) log2
p(k)

q(k)

=
∑
k

p(k) log2
p(k)

1
K

=
∑
k

p(k) log2 p(k)−
∑
k

p(k) log2
1

K

= −H[p] + log2 K.

Because KL(p||q) ≥ 0 for any p and q,

−H[p] + log2 K ≥ 0,

H[p] ≤ log2 K.

Thus, an arbitrary pmf p that is non-zero on D has at most the same entropy as the uniform distribution on D.
Consider an iid (discrete) dataset D = x1, . . . ,xN , and a joint pmf q(· | θ) parameterized by θ, such that

q(x | θ) > 0 for any x,θ. The likelihood q(D | θ) of D under q(· | θ) is defined as

q(D | θ) =
N∏
i=1

q(xi | θ) =
∏
x

q(x | θ)Nx ,

where Nx is the number of occurrences of x in D. Maximum likelihood estimation consists on finding a θ such
that q(D | θ) is maximum. Because the logarithm is an increasing function (and q(x | θ) > 0 for any x,θ), this is
equivalent to finding a θ that maximizes the log-likelihood

log2 q(D | θ) = log2
∏
x

q(x | θ)Nx =
∑
x

log2
[
q(x | θ)Nx

]
=
∑
x

Nx log2 q(x | θ).

Let pemp denote the empirical distribution for D. We now show that maximum likelihood estimation minimizes
the Kullback-Leibler divergence between pemp and q(· | θ). By definition,

KL(pemp||q(· | θ)) =
∑
x

pemp(x) log2
pemp(x)

q(x | θ)

=
∑
x

pemp(x) log2 pemp(x)−
∑
x

pemp(x) log2 q(x | θ)

=
∑
x

pemp(x) log2 pemp(x)−
1

N

∑
x

Nx log2 q(x | θ),

where the summation only involves the x for which pemp(x) > 0. Because the leftmost summation is a constant
wrt θ, minimizing KL(pemp||q(· | θ)) corresponds to maximizing

1

N

∑
x

Nx log2 q(x | θ)

wrt θ, which corresponds to maximum likelihood estimation (since 1
N is a positive constant), as we wanted to show.

Consider two discrete random variables X and Y . The conditional entropy H[X | Y ] of X given Y is defined as

H[X | Y ] = −
∑
y

pY (y)
∑
x

p(x | y) log2 p(x | y) =
∑
y

pY (y)H[X | Y = y],

where 0 loga 0 is replaced by 0. It is possible to show that H[X | Y ] ≤ H[X] for any X and Y .
The mutual information I(X;Y ) between two discrete random variables X and Y is defined as

I(X;Y ) = KL(pX,Y ||pXpY ) =
∑
x

∑
y

p(x, y) log2
p(x, y)

pX(x)pY (y)
,
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where pX(x), pY (y) and p(x, y) are non-zero for all x, y. If any of them is zero, the corresponding term is
conventionally replaced by 0. It is easy to show that

I(X;Y ) = H[X]−H[X | Y ] = H[Y ]−H[Y | X].

Intuitively, the mutual information I(X;Y ) between X and Y measures the amount of information that Y has
about X (dependence between X and Y ). Clearly, I(X;Y ) = I(Y ;X), and I(X;Y ) ≥ 0. It is also possible to show
that I(X;Y ) = 0 if and only if X and Y are independent.

2.4 Iterative minimization
Consider a real-valued function f : RD → R. The task of minimizing f(θ) with respect to θ ∈ RD corresponds to
finding a global minimum θ∗ such that f(θ∗) = minθ f(θ).

A continuous function f : RD → R is convex if, for any θ1 and θ2 in its domain,

f(λθ1 + (1− λ)θ2) ≤ λf(θ1) + (1− λ)f(θ2),

for any 0 < λ < 1. Intuitively, the value of the function f on a line segment between θ1 and θ2 is either on or
below the line segment that connects f(θ1) to f(θ2), for any θ1 and θ2. The function f is strictly convex if the
inequality above is strict. A function f is concave if −f is convex. A strictly convex function has at most one local
minimum, which would also be global minimum.

If a real-valued function f is defined only on a subset A ⊆ RD, the definition of convexity only applies if A is a
convex set. The set A is convex if and only if for any θ1,θ2 ∈ A, we have λθ1 + (1− λ)θ2 ∈ A, for any 0 < λ < 1.

A twice continuously differentiable function f : R → R is convex if and only if its second derivative is always
non-negative. A twice continuously differentiable function f : RD → R is convex if and only if its Hessian matrix
∇2f(θ) at every θ is positive semidefinite. A matrix ∇2f(θ) is positive semidefinite if and only if vT∇2f(θ)v ≥ 0,
for any nonzero vector v. The Hessian matrix ∇2f(θ) at θ of a twice continuously differentiable function f is given
by

∇2f(θ)i,j =
∂2

∂θi∂θj
f(θ).

Convexity is a highly desirable property, since finding a (global) minimum generally becomes much easier.
Gradient descent is a simple procedure to minimize differentiable functions. This procedure starts at an arbitrary

estimate θ0, which is iteratively updated by the rule θt+1 = θt−ηt∇f(θt), where ηt > 0 is the so-called learning rate
at iteration t. Gradient descent is based on the fact that the vector −∇f(θt) points to the direction of maximum
local decrease in f . If f is strictly convex and the learning rates are sufficiently small, this procedure is guaranteed
to converge to a global minimum (if such minimum exists).

Using a single learning rate for all iterations may be a very poor strategy. If the learning rate is too small, the
procedure will converge prohibitively slowly. If the learning rate is too large, the procedure might diverge.

In gradient descent with exact line search, the learning rate ηt for iteration t minimizes

ϕt(η) = f(θt − η∇f(θt))

with respect to η. Intuitively, this corresponds to restricting the minimization of f to the direction of the gradient
at iteration t.

Suppose ϕt is differentiable with respect to η, and let ϕt(η) = f(z), such that zj = θt,j − η∂f(θt)/∂θj . By the
chain rule,

ϕ′
t(η) =

D∑
j=1

∂f(z)

∂zj

∂zj
∂η

= −
D∑

j=1

∂f(z)

∂zj

∂f(θt)

∂θj
= −∇f(θt − η∇f(θt))∇f(θt).

Now suppose ϕt(η
∗) = minη ϕt(η), for some global minimum η∗. In that case, ϕ′

t(η
∗) = 0. Therefore, ∇f(θt −

η∗∇f(θt)) and ∇f(θt) must be orthogonal. In other words, the gradient at consecutive estimates obtained by
gradient descent with exact line search must be orthogonal. Unfortunately, it is generally too expensive to solve
the minimization problem posed by exact line search at each iteration of gradient descent.

A common heuristic employed in minimization by gradient descent is called the momentum (or heavy ball)
method. This method updates the current estimate θt by the rule θt+1 = θt−ηt∇f(θt)+µt(θt−θt−1). Intuitively,
the so-called momentum coefficient µt ≥ 0 at iteration t controls how much the previous update direction affects the
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direction given by the gradient at θt. This method allows larger updates when the update direction is consistent
over many iterations, an is typically combined with comparatively lower learning rates.

Recall that the linear approximation gt to a differentiable function f at point θt is given by

gt(θ) = f(θt) +∇f(θt)(θ − θt),

which corresponds to the equation of the plane tangent to f at θt when D = 2.
Analogously, the quadratic approximation ht to a twice differentiable function f at point θt is given by

ht(θ) = f(θt) +∇f(θt)(θ − θt) +
1

2
(θ − θt)

T∇2f(θt)(θ − θt),

which corresponds to the equation of a quadratic surface when D = 2.
Newton’s method is an iterative minimization method based on finding the minimum θt+1 of the quadratic

approximation ht to f at the current estimate θt. Firstly, note that

∇ht(θ) = ∇θ

[
f(θt) +∇f(θt)(θ − θt) +

1

2
(θ − θt)

T∇2f(θt)(θ − θt)
]
= ∇f(θt) +∇2f(θt)(θ − θt),

since ∇a

[
aTAa

]
= (A+AT )a = 2Aa for vector a and symmetric matrix A.

Therefore, if θt+1 is a local minimum of the quadratic approximation ht to f at the current estimate θt, then

∇2f(θt)θt+1 = −∇f(θt) +∇2f(θt)θt

θt+1 = −
[
∇2f(θt)

]−1∇f(θt) +
[
∇2f(θt)

]−1∇2f(θt)θt = θt −
[
∇2f(θt)

]−1∇f(θt),

where we have assumed that ∇2f(θt) is invertible. Notice that if f is strictly convex, its Hessian matrix is always
invertible, and the condition above is sufficient for θt+1 to be a global minimum of ht.

More generally, the update rule used by Newton’s method is typically given by

θt = θt−1 − ηt
[
∇2f(θt−1)

]−1∇f(θt−1),

where 0 < ηt ≤ 1 is the learning rate at iteration t, which is particularly useful when the Hessian is approximated.
In practice, computing the inverse Hessian matrix at each iteration of Newton’s method may be too computa-

tionally expensive. BFGS (Broyden–Fletcher–Goldfarb–Shanno) and L-BFGS (limited-memory BFGS) are highly
successful methods that approximate the inverse Hessian matrix

[
∇2f(θt)

]−1 at iteration t without employing the
exact Hessian. Both methods only require a function f , its gradient function ∇f , and an initial estimate θ0.

Consider the task of minimizing a differentiable function f : RD → R given by f(θ) =
∑N

i=1 fi(θ), where each
fi : RD → R is also differentiable. Naturally, the gradient ∇f(θ) of f at θ is given by

∇f(θ) =

N∑
i=1

∇fi(θ).

Mini-batch stochastic gradient descent randomly partitions the set {1, . . . , N} into sets of (almost) equal size called
batches. A batch S is used to compute a surrogate for ∇f(θ) given by∑

i∈S

∇fi(θ),

which is used in an update analogous to gradient descent. After each batch is considered in turn (one so-called
epoch), another random partition into batches is employed. This technique is more computationally efficient than
gradient descent when many individual gradients are expected to be similar.

3 Discrete generative models
Consider a sequence of binary random variables X1, . . . , XN , each distributed according to p(· | θ∗), for an unknown
parameter θ∗ ∈ [0, 1]. Furthermore, suppose Xi ⊥⊥ X−i | Θ, for every i, and let p(x | θ) = Ber(x | θ) = θx(1− θ)1−x,
for any x ∈ {0, 1} and θ ∈ [0, 1]. We say that a dataset D = x1, . . . , xN is iid given Θ according to p(· | θ∗).
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The likelihood p(D | θ) of the dataset D = x1, . . . , xN under θ can be written as

p(D | θ) = p(x1, . . . , xN | θ) =
N∏
i=1

p(xi | θ) =
N∏
i=1

θxi(1− θ)1−xi = θN1(1− θ)N0 ,

where Nk is the number of occurences of k in D.
In this context, p(θ) is the prior density for θ. Suppose Θ ∼ Beta(· | a, b), for constant hyperparameters a and

b, which encode prior beliefs. By definition,

p(θ) = Beta(θ | a, b) = 1

B(a, b)
θa−1(1− θ)b−1.

The posterior density p(θ | D) for θ given D is then given by

p(θ | D) =
p(D | θ)p(θ)

p(D)
=

1

p(D)

θN1(1− θ)N0θa−1(1− θ)b−1

B(a, b)
=

1

p(D)

θN1+a−1(1− θ)N0+b−1

B(a, b)
.

The (unconditional) probability p(D) of the dataset D can be obtained through marginalization:

p(D) =

∫ 1

0

p(D, θ) dθ =

∫ 1

0

p(D | θ)p(θ) dθ =

∫ 1

0

θN1+a−1(1− θ)N0+b−1

B(a, b)
dθ =

B(N1 + a,N0 + b)

B(a, b)
,

where the last equality comes from the definition of the Beta function B. Thus,

p(θ | D) =
θN1+a−1(1− θ)N0+b−1

B(N1 + a,N0 + b)
= Beta(θ | N1 + a,N0 + b).

Notice that the prior and posterior densities are given by the same distribution under (possibly) distinct hyper-
parameters. For this reason, the Beta pdf is said to be a conjugate prior for the likelihood function of an iid Bernoulli
dataset. Because the hyperparameters a and b are analogous to N1 and N0, they are also called pseudo-counts.

For any θ and D, the counts N0 and N1 contain all the information about D that is needed to compute the
posterior p(θ | D) given the prior p(θ). In the general case, if p(θ | D) = p(θ | S = s(D)), for every θ and D, then
s(D) is a sufficient statistic for D.

Suppose the dataset D is partitioned into two datasets D′ and D′′. By definition,

p(θ | D′,D′′) =
p(D′,D′′ | θ)p(θ)

p(D′,D′′)
=

p(D′ | D′′, θ)p(D′′ | θ)p(θ)
p(D′ | D′′)p(D′′)

=
p(D′ | θ)p(θ | D′′)

p(D′ | D′′)

=
p(D′ | θ)
p(D′ | D′′)

Beta(θ | N ′′
1 + a,N ′′

0 + b) =
θN

′
1(1− θ)N

′
0 Beta(θ | N ′′

1 + a,N ′′
0 + b)∫ 1

0
p(D′ | θ′)p(θ′ | D′′) dθ′

= Beta(θ | N ′
1 +N ′′

1 + a,N ′
0 +N ′′

0 + b)

= p(θ | D),

where N ′
k is the number of occurences of k in D′ (analogously for N ′′

k ). This result states that inference (computing
the posterior density) can be performed incrementally (as more data becomes available). Furthermore, the posterior
density p(θ | D′′) can be seen as a new prior density after D′′ is taken into account (the same is true for D′).

It is possible to show that Beta(· | N1 + a,N0 + b) has a mode (global maxima) at θ̂ = argmaxθ p(θ | D) =
N1+a−1
N+a+b−2 when N1 + a,N0 + b > 1. Therefore, θ̂ is a maximum a posteriori estimate. Similarly, the posterior mean
E[Θ | D] is given by

E[Θ | D] =

∫ 1

0

θp(θ | D) dθ =
N1 + a

N + a+ b
.

The variance var[Θ | D] can be approximated by θ̂(1−θ̂)
N whenever N ≫ a, b, where θ̂ denotes the maximum

likelihood estimate. Notice that less data is required to achieve a low variance when θ̂ is either very close to 0 or 1.
In the case of a Beta(· | 1, 1) prior, which is uniform on [0, 1], the maximum a posteriori estimate θ̂MAP = N1

N is
equivalent to the maximum likelihood estimate θ̂MLE = argmaxθ p(D | θ). This is derived easily from the equality

θ̂MAP = argmax
θ

p(θ | D) = argmax
θ

p(D | θ)p(θ)
p(D)

= argmax
θ

p(D | θ)p(θ) = argmax
θ

log p(D | θ) + log p(θ).
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Considering the equality above, suppose D+ corresponds to the dataset D extended by a single element x̃.
Clearly, log p(D+ | θ) < log p(D | θ) for any θ, except possibly for θ ∈ {0, 1}. Thus, the term log p(θ) loses importance
as the amount of data tends to infinity, and the maximum a posteriori estimate converges to the maximum likelihood
estimate.

The task of predicting the assignment to an additional random variable X̃ ∼ p(· | θ∗) given D can be solved by
computing the posterior predictive distribution for each x̃ ∈ {0, 1}, which is given by

p(x̃ | D) =

∫ 1

0

p(x̃, θ | D) dθ =

∫ 1

0

p(x̃ | θ,D)p(θ | D) dθ =

∫ 1

0

p(x̃ | θ)p(θ | D) dθ.

For x̃ = 1,

p(x̃ | D) =

∫ 1

0

θp(θ | D) dθ = E[Θ | D] =
N1 + a

N + a+ b
.

Thus, it is very easy to make predictions given the sufficient statistics and the prior hyperparameters. It is crucial
to notice the distinction between p(x̃ | D) and p(x̃ | θ̂MAP). Clearly, the first alternative never gives probability 1
to a particular x̃. This is highly desirable, since no finite amount of data would warrant such certainty.

Consider the related task of predicting the assignment to a random variable X that represents the number of
successes in a sequence X̃1, . . . , X̃M of binary random variables, such that X̃i ∼ p(· | θ∗) and X̃i ⊥⊥ X̃−i,D | Θ,
after seeing the dataset D. The corresponding (beta-binomial) posterior predictive distribution is defined on
x ∈ {0, . . . ,M} as

p(x | D,M) =

∫ 1

0

p(x, θ | D,M) dθ =

∫ 1

0

p(x | θ,M)p(θ | D) dθ

=

∫ 1

0

Bin(x | M, θ)p(θ | D) dθ =

∫ 1

0

Bin(x | M, θ) Beta(θ | N1 + a,N0 + b) dθ

=

(
M

x

)
B(N1 + a+ x,N0 + b+M − x)

B(N1 + a,N0 + b)
.

Consider a sequence of discrete random variables X1, . . . , XN such that Xi ∼ p(· | θ∗) and Xi ⊥⊥ X−i | Θ, for
every i. In particular, let p(x | θ) = Cat(x | θ) = θx, for every x ∈ {1, . . . ,K} and valid θ.

The likelihood p(D | θ) of the dataset D = x1, . . . , xN under θ is defined as

p(D | θ) = p(x1, . . . , xN | θ) =
N∏
i=1

p(xi | θ) =
N∏
i=1

θxi =

K∏
k=1

θNk

k ,

where Nk is the number of occurrences of k in D. A convenient (conjugate) prior is the Dirichlet joint pdf,
which we already defined as

Dirichlet(θ | α) =
1

B(α)

K∏
k=1

θαk−1
k ,

for every θ in the probability simplex SK and hyperparameter vector α, whose elements are the pseudo-counts.
The posterior is also Dirichlet:

p(θ | D) =
p(D | θ)p(θ)

p(D)
=

1

p(D)B(α)

K∏
k=1

θNk

k

K∏
k=1

θαk−1
k =

1

p(D)B(α)

K∏
k=1

θNk+αk−1
k

= Dirichlet(θ | α+N),

where N = (N1, . . . , NK) is the vector of counts (a sufficient statistic). The last equality follows from the fact
that

∫
SK

p(θ | D)dθ = 1.
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The posterior predictive for an additional random variable X̃ ∼ p(· | θ∗) given D is given, for x̃ = j, by

p(x̃ | D) =

∫
SK

p(x̃,θ | D) dθ =

∫
SK

p(x̃ | θ,D)p(θ | D) dθ =

∫
SK

θjp(θ | D) dθ

=

∫
SK

θjp(θj ,θ−j | D) dθ =

∫
SK

θjp(θj ,θ−j | D) dθ−jdθj

=

∫ 1

0

θj

∫
SK,j,θj

p(θj ,θ−j | D) dθ−jdθj =

∫ 1

0

θjp(θj | D) dθj

= E[Θj | D] =
Nj + αj

N + α0
,

where SK,j,θj = {θ′ ∈ [0, 1]K−1 | θj +
∑

i θ
′
i = 1}.

A maximum a posteriori estimate θ̂ = argmaxθ p(θ | D) can be found using Lagrangian multipliers. Consider
a differentiable function f : RK → R, and the task of finding the local minima of f restricted to the set S = {a ∈
RK | ∀i, gi(a) = 0}, given differentiable real-valued functions g1, . . . , gc. The Lagrange multiplier theorem states
that, if a is a local minimum of f restricted to S, and the vectors ∇g1(a), . . . ,∇gc(a) are linearly independent, then
∇f(a) =

∑c
i=1 λi∇gi(a), for some λi ∈ R. The converse is not generally true.

Consider the task of maximizing

logDirichlet(θ | α+N) =

K∑
k=1

αk log θk +

K∑
k=1

Nk log θk −
K∑

k=1

log θk − logB(α+N)

with respect to θ, subject to g(θ) = 1−
∑K

k=1 θk = 0. This is equivalent to minimizing

ℓ(θ) = −
K∑

k=1

αk log θk −
K∑

k=1

Nk log θk +

K∑
k=1

log θk

wrt θ, with the same restriction. Notice that ∇g(θ) = −1 is non-zero (linearly independent), for every θ. Therefore,
if θ is a local minimum of ℓ subject to g(θ) = 0,

∇ℓ(θ) = λ∇g(θ),

for some λ ∈ R, by the Lagrange multiplier theorem. Because

∂ℓ(θ)

∂θj
=

Nj + αj − 1

θj

for every j ∈ {1, . . . ,K}, a local minimum of ℓ subject to g(θ) = 0 obeys the system of equations

θj =
Nj + αj − 1

λ
,

for every j ∈ {1, . . . ,K}. The requirement
∑

j θj = 1 gives λ = N + α0 − K. Thus, if a maximum a posteriori
estimate θ̂ = argmaxθ p(θ | D) is a local maximum of p(· | D) restricted to the probability simplex SK , it follows
that

θ̂j =
Nj + αj − 1

N + α0 −K
.

When the prior is Dirichlet(· | 1), the maximum likelihood estimate is given by Nj

N , as expected.
Consider the task of creating a classifier given the dataset D = (x1, y1), . . . , (xN , yN ) distributed according to

p(· | θ∗), for an unknown θ∗. Consider also that x ∈ RD and y ∈ {1, . . . C}, for all (x, y) ∈ D. Furthermore, let
Xi, Yi ⊥⊥ X−i, Y−i | Θ, for every i ∈ {1, . . . , N}. We say that D is iid given Θ according to p(· | θ∗).

In general, a generative classifier is a probabilistic classifier that uses the fact that

p(y | x,θ) = p(x | y,θ)p(y | θ)
p(x | θ)

∝y p(x | y,θ)p(y | θ),
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for all x, y and θ.
A naive Bayes classifier is a generative classifier that assumes

p(x, y | θ) = p(y | θ)p(x | y,θ) = p(y | θ)
D∏

j=1

p(xj | y,θ),

for all x, y and θ. In other words, it assumes that each feature is independent of the others given the class and
the parameters.

According to this model, the likelihood p(D | θ) of the dataset D under θ can be written as

p(D | θ) =
N∏
i=1

p(xi, yi | θ) =
N∏
i=1

p(yi | θ)
D∏

j=1

p(xi,j | yi,θ).

For simplicity, the remainder of this section presupposes binary features, i.e., x ∈ {0, 1}D, for all (x, y) ∈ D.
Letting πy = p(y | θ) and p(xj | y,θ) = Ber(xj | θj,y) = θ

xj

j,y(1− θj,y)
1−xj , the likelihood p(D | θ) of D given θ can

be written as

p(D | θ) =
N∏
i=1

πyi

D∏
j=1

θ
xi,j

j,yi
(1− θj,yi)

1−xi,j =

[
C∏

y=1

πNy
y

][
C∏

y=1

D∏
j=1

θ
Nj,y

j,y (1− θj,y)
Ny−Nj,y

]
,

where Ny is the number of occurrences of class y in D and Nj,y is the number of occurrences of feature j equal
to 1 when the class is y.

We will assume that the prior density p(θ) can be written as

p(θ) = p(π)

D∏
j=1

C∏
y=1

p(θj,y) = Dirichlet(π | α)

D∏
j=1

C∏
y=1

Beta(θj,y | β0, β1),

for every θ, where α,β are the prior hyperparameters, and π = (π1, . . . , πC).
Under these assumptions, it is possible to show that

p(θ | D) =
p(D | θ)p(θ)

p(D)
= p(π | D)

D∏
j=1

C∏
y=1

p(θj,y | D),

where

p(π | D) = Dirichlet(π | N1 + α1, . . . , NC + αC)

p(θj,y | D) = Beta(θj,y | β0 + (Ny −Nj,y), β1 +Nj,y).

Thus, fitting a naive Bayes classifier to binary features simply requires the sufficient statistics Ny and Nj,y, for
every y and j.

Classification can be formulated as follows. Consider an additional pair X, Y distributed according to p(· | θ∗),
for the same unknown θ∗ that generated D. By definition,

p(y | x,D) =
p(y,x | D)

p(x | D)
=

1

p(x | D)

∫
Val(Θ)

p(y,x,θ | D) dθ =
1

p(x | D)

∫
Val(Θ)

p(y,x | θ)p(θ | D) dθ

=
1

p(x | D)

∫
Val(Θ)

[
p(y | θ)

D∏
j=1

p(xj | y,θ)

][
p(π | D)

D∏
j=1

C∏
y′=1

p(θj,y′ | D)

]
dθ

∝y

[∫
Val(Π)

πyp(π | D) dπ

][
D∏

j=1

∫ 1

0

θ
xj

j,y(1− θj,y)
1−xjp(θj,y | D) dθj,y

]

∝y
Ny + αy

N + α0

D∏
j=1

θ̂
xj

j,y(1− θ̂j,y)
1−xj ,

where
θ̂j,y =

Nj,y + β1

Ny + β1 + β0
.
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Thus, p(y | x,D) = cvy, for every y, where vy is a variable that depends on y, and c is a constant with
respect to y. Clearly,

∑
y p(y | x,D) =

∑
y cvy = c

∑
y vy = 1. Because

∑
y vy must be non-zero, c = 1∑

y vy
.

Thus, p(y | x,D) =
vy∑
y′ vy′

, for every y. This procedure is called renormalization, and often avoids a significant
computational challenge. Due to numerical issues, it is also safer to obtain p(y | x,D) through log p(y | x,D), for
every y. Naturally, log p(y | x,D) = log cvy = log vy + log c = log vy − log

∑
y′ elog vy′ . The term log

∑
y′ elog vy′ can

be computed more safely using the so-called log-sum-exp trick, which we omit.
Consider once again a dataset D = (x1, y1), . . . , (xN , yN ), which is iid given Θ and distributed according to

p(· | θ∗). Suppose the features are binary, and let X, Y be a pair distributed according to p(· | θ∗). It is possible to
define the mutual information I(Xj ;Y | D) between Xj and Y given the dataset D as

I(Xj ;Y | D) =
∑
xj

∑
y

p(xj , y | D) log

[
p(xj , y | D)

p(xj | D)p(y | D)

]
.

In the case of a naive Bayes model with binary features, it can be shown that

I(Xj ;Y | D) =
∑
y

θ̂j,y
Ny + αy

N + α0
log

θ̂j,y

θ̂j
+
∑
y

(1− θ̂j,y)
Ny + αy

N + α0
log

1− θ̂j,y

1− θ̂j
,

where θ̂j =
∑

y θ̂j,y
Ny+αy

N+α0
. Because the mutual information between Xj and Y can be interpreted as the

reduction in uncertainty about Y when Xj is observed, it can be used to discard features that are individually
uninformative about the class. However, this method does not take into account whether features are informative
when considered in groups. The general task of identifying features that are important for classification is called
feature selection.

4 Gaussian models
As already mentioned, a multivariate Gaussian joint pdf N (· | µ,Σ) is defined on RD as

N (x | µ,Σ) =
1√

(2π)D|Σ|
e−

1
2 (x−µ)TΣ−1(x−µ),

where µ ∈ RD is the mean vector and Σ is the D ×D (positive definite) covariance matrix.
Because Σ is positive definite, it can be written as Σ = UΛUT , where each column j of the D ×D matrix U

is an eigenvector uj of Σ, and Λ is a diagonal matrix such that Λj,j = λj is the eigenvalue that corresponds to uj .
Furthermore, U is chosen so that UTU = UUT = I, which means that (u1, . . . ,uD) is an orthonormal basis for
RD. Because Σ,U and Λ must be invertible,

Σ−1 = (UΛUT )−1 = U−T (UΛ)−1 = U−TΛ−1U−1 = UΛ−1UT ,

where the second and third equalities follow from a property of the inverse of a product of invertible matrices,
and the last equality follows from UUT = I. Since Λ is invertible and diagonal, Λ−1 = diag( 1

λ1
, . . . , 1

λD
), and the

equation above can be rewritten as

Σ−1 = UΛ−1UT =

D∑
i=1

1

λi
uiu

T
i ,

which leads to

(x− µ)TΣ−1(x− µ) =

D∑
i=1

1

λi
(x− µ)Tuiu

T
i (x− µ) =

D∑
i=1

y2i
λi

,

where yi = (x− µ)ui is the projection of x− µ onto the unit vector ui.
For D = 2, it is important to notice that, given a constant c, the set {x ∈ R2 | (x− µ)TΣ−1(x− µ) = c} is an

ellipse centered on µ. The axis of this ellipse are aligned with u1 and u2, and scaled according to
√
λ1 and

√
λ2

(recall that λi ≥ 0, since Σ is positive-definite). This intuition generalizes for higher dimensions.
Consider a dataset D = x1, . . . ,xN , which is iid given Θ according to a multivariate Gaussian pdf N (· | µ∗,Σ∗),

where each assignment to Θ represents a particular parameterization of the multivariate Gaussian distribution.
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The likelihood p(D | µ,Σ) of D under the parameters µ and Σ is given by

p(D | µ,Σ) =

N∏
i=1

p(xi | µ,Σ) =

N∏
i=1

1√
(2π)D|Σ|

exp

[
− 1

2
(xi − µ)TΣ−1(xi − µ)

]

=
1

(2π)
ND
2 |Σ|N2

exp

[
− 1

2

N∑
i=1

(xi − µ)TΣ−1(xi − µ)

]
.

Thus, the log-likelihood log p(D | µ,Σ) of D under the parameters µ and Σ is given by

log p(D | µ,Σ) = −1

2

N∑
i=1

(xi − µ)TΣ−1(xi − µ)− log
[
(2π)

ND
2 |Σ|N2

]
= −1

2

N∑
i=1

(xi − µ)TΣ−1(xi − µ)− ND

2
log 2π − N

2
log |Σ|.

Consider the task of finding the (valid) µ and Σ that maximize the log-likelihood ℓ = log p(D | µ,Σ) of the
dataset D. For this purpose, we will find the partial derivatives of ℓ with respect to µj , for every j. By definition,

∂ℓ

∂µj
=− 1

2

N∑
i=1

∂

∂µj

[
(xi − µ)TΣ−1(xi − µ)

]
.

By letting yi = xi − µ and using the chain rule,

∂ℓ

∂µj
= −1

2

N∑
i=1

∂yi,j
∂µj

∂

∂yi,j

[
yT
i Σ

−1yi

]
=

1

2

N∑
i=1

∂

∂yi,j

[
yT
i Σ

−1yi

]
.

It can be shown that ∇a

[
aTAa

]
= (A+AT )a for any (valid) matrix A and vector a. Therefore,

∂ℓ

∂µj
=

1

2

N∑
i=1

∂

∂yi,j

[
yT
i Σ

−1yi

]
=

1

2

N∑
i=1

[
(Σ−1 +Σ−T )yi

]
j

Because Σ must be positive-definite, Σ−1 must also be positive-definite, and thus symmetric. Therefore,

∂ℓ

∂µj
=

1

2

N∑
i=1

[
(Σ−1 +Σ−T )yi

]
j

=
1

2

N∑
i=1

[
2Σ−1yi

]
j

=
1

2

N∑
i=1

2

D∑
k=1

Σ
(−1)
j,k yi,k =

N∑
i=1

D∑
k=1

Σ
(−1)
j,k yi,k.

Thus, the gradient ∇µℓ of ℓ wrt µ is given by

∇µℓ =

N∑
i=1

Σ−1yi =

N∑
i=1

Σ−1(xi − µ) = Σ−1

[
N∑
i=1

xi −
N∑
i=1

µ

]
= Σ−1

[
−Nµ+

N∑
i=1

xi

]
.

If µ̂ is a local maximum of ℓ, then ∇µℓ = 0 at µ = µ̂. Therefore, a local maximum µ̂ of ℓ can be written as

Σ−1

[
−N µ̂+

N∑
i=1

xi

]
= 0 =⇒ −N µ̂+

N∑
i=1

xi = 0 =⇒ N µ̂ =

N∑
i=1

xi =⇒ µ̂ =
1

N

N∑
i=1

xi.

The condition above is also sufficient for µ̂ to be a local maximum of ℓ. In simple terms, the maximum likelihood
estimate for the mean of a multivariate Gaussian corresponds to the empirical mean.

We now find the partial derivatives of ℓ with respect to Σ
(−1)
k,l , for any k and l. From the definition of ℓ,

∂ℓ

∂Σ
(−1)
k,l

= −1

2

N∑
i=1

∂

∂Σ
(−1)
k,l

[
(xi − µ)TΣ−1(xi − µ)

]
− N

2

∂

∂Σ
(−1)
k,l

[
log |Σ|

]
.
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Firstly, notice that log |Σ| = log 1
|Σ−1| = − log |Σ−1| by a property of the determinant of an invertible matrix

Σ. Also, ∇A log |A| = A−T , for any invertible matrix A. Therefore, because Σ−1 is invertible and symmetric,

∂ℓ

∂Σ
(−1)
k,l

= −1

2

N∑
i=1

∂

∂Σ
(−1)
k,l

[
(xi − µ)TΣ−1(xi − µ)

]
+

N

2
Σk,l.

The next steps involve properties of the trace of a matrix. By definition, tr(A) =
∑

i Ai,i for any matrix A. It
is particularly important to note that tr(ABC) = tr(CAB) = tr(BCA), for any matrices A,B and C, whenever
the multiplications are valid. Also, tr(a) = a for any scalar a represented as a 1 × 1 matrix. Using the equality
(xi − µ)TΣ−1(xi − µ) = tr((xi − µ)TΣ−1(xi − µ)) and reordering the multiplications,

∂ℓ

∂Σ
(−1)
k,l

= −1

2

N∑
i=1

∂

∂Σ
(−1)
k,l

[
tr((xi − µ)(xi − µ)TΣ−1)

]
+

N

2
Σk,l.

Because ∇A tr(BA) = BT and (AAT )T = AAT , for any matrices A and B,

∂ℓ

∂Σ
(−1)
k,l

= −1

2

N∑
i=1

[
(xi − µ)(xi − µ)T

]
k,l

+
N

2
Σk,l.

Therefore, the gradient ∇Σ−1ℓ of ℓ with respect to Σ−1 can be written as

∇Σ−1ℓ = −1

2

N∑
i=1

(xi − µ)(xi − µ)T +
N

2
Σ.

If Σ̂
−1

is a maximum of ℓ, then ∇Σ−1ℓ = 0 when Σ−1 = Σ̂
−1

and µ = µ̂. Therefore, a maximum Σ̂
−1

of ℓ has
an inverse Σ̂ that is given by

∇Σ−1ℓ = 0 =⇒ −1

2

N∑
i=1

(xi − µ̂)(xi − µ̂)T +
N

2
Σ̂ = 0 =⇒ N

2
Σ̂ =

1

2

N∑
i=1

(xi − µ̂)(xi − µ̂)T

=⇒ Σ̂ =
1

N

N∑
i=1

(xi − µ̂)(xi − µ̂)T .

The condition above is also sufficient for Σ̂
−1

to be a maximum of ℓ. In simple terms, the maximum likelihood
estimate for the covariance matrix is the empirical covariance.

Consider the task of creating a classifier given the dataset D = (x1, y1), . . . , (xN , yN ), which is iid given Θ
according to p(· | θ∗). Consider also that x ∈ RD and y ∈ {1, . . . C}, for all (x, y) ∈ D. Gaussian discriminant
analysis assumes that p(x | y,θ) = N (x | µy,Σy) for every x, y and θ, where µy and Σy are represented in θ. In
words, it assumes that each class is distributed according to a distinct multivariate Gaussian distribution. For a
particular estimate θ̂ of the parameters (maximum likelihood, for instance), classification uses the fact that

p(y | x, θ̂) = p(x | y, θ̂)p(y | θ̂)
p(x | θ̂)

∝y p(x | y, θ̂)p(y | θ̂) = N (x | µ̂y, Σ̂y)π̂y,

for all x and y.
In this context, a decision boundary (for a particular θ) is the set of x such that

max
y

p(y | x,θ) = p(y′ | x,θ) = p(y′′ | x,θ),

for some y′ ̸= y′′. In other words, the decision boundary is the set of observations for which the classifier is undecided
between at least two classes. In a binary classification task, the decision boundary given by Gaussian discriminant
analysis is a quadratic surface, which originates the term quadratic discriminant analysis.
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Consider the task of finding the maximum likelihood estimate for Gaussian discriminant analysis. By definition,

log p(D | θ) = log

N∏
i=1

p(xi | yi,θ)p(yi | θ) =
C∑

y=1

∑
i|yi=y

logN (xi | µy,Σy) +

C∑
y=1

Ny log πy.

Because the first summation can be maximized (wrt the mean vectors and covariance matrices) independently
for each class, it should not be surprising that the maximum likelihood estimates are given by

µ̂y =
1

Ny

∑
i|yi=y

xi,

Σ̂y =
1

Ny

∑
i|yi=y

(xi − µ̂y)(xi − µ̂y)
T ,

π̂y =
Ny

N
.

However, if there are insufficient observations in class y, Σ̂y may be singular (non-invertible, and thus invalid
as a covariance matrix). Even if Σ̂y is not singular, it may overfit the data. We discuss some techniques that avoid
this issue by making additional assumptions about the data.

Linear discriminant analysis additionally assumes that the covariance matrix is the same for all classes. Thus,
for a particular estimate θ̂,

p(y | x, θ̂) ∝y N (x | µ̂y, Σ̂)π̂y = π̂y
1√

(2π)D|Σ̂|
e−

1
2 (x−µ̂y)

T Σ̂
−1

(x−µ̂y) ∝y π̂ye
− 1

2 (x−µ̂y)
T Σ̂

−1
(x−µ̂y),

for all x and y. Using the distributivity of matrix multiplication over addition,

p(y | x, θ̂) ∝y π̂y exp

[
µ̂T

y Σ̂
−1

x− 1

2
µ̂T

y Σ̂
−1

µ̂y −
1

2
xT Σ̂

−1
x

]

= elog π̂y exp

[
µ̂T

y Σ̂
−1

x− 1

2
µ̂T

y Σ̂
−1

µ̂y

]
exp

[
− 1

2
xT Σ̂

−1
x

]

∝y exp

[
µ̂T

y Σ̂
−1

x− 1

2
µ̂T

y Σ̂
−1

µ̂y + log π̂y

]
.

Letting βy = µ̂T
y Σ̂

−1
and γy = − 1

2 µ̂
T
y Σ̂

−1
µ̂y + log π̂y,

p(y | x, θ̂) = eβyx+γy∑C
y′=1 e

βy′x+γy′
.

The function S defined by S(η) =
(

eη1∑C
j=1 eηj

, . . . , eηC∑C
j=1 eηj

)
is also called softmax.

Consider the set S composed of all x such that p(y | x, θ̂) = p(y′ | x, θ̂), for a particular choice of y ̸= y′ and θ̂.
Clearly, eβyx+γy = eβy′x+γy′ , and βyx + γy = βy′x + γy′ . Rearranging the terms, (βy − βy′)x = γy′ − γy. Thus,
the set S is an affine hyperplane (a set of vectors whose inner product by a particular vector is a constant), which
originates the term linear discriminant analysis.

In diagonal linear discriminant analysis, the covariance matrix is additionally assumed to be diagonal. Implicitly,
this corresponds to assuming that each feature is independent of the others given the class and the parameters (as in
Naive Bayes models). In this case, appropriate estimates are given by µ̂y = 1

Ny

∑
i|yi=y xi and Σ̂ = diag( 1

σ̂2
1
, . . . , 1

σ̂2
D
),

where

σ̂2
j =

∑
i(xi,j − µ̂yi,j)

2

N − C
.

It is important to mention that these (unbiased) estimates do not achieve maximum likelihood.
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Let p(x) = N (x | µ,Σ) for some x ∈ RD given µ and Σ, and suppose that x can be split into two vectors
x1 ∈ RD1 and x2 ∈ RD2 , which we denote by x = (x1,x2). Analogously, let µ = (µ1,µ2) and Σ =

(Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
,

where each Σr,c is a Dr ×Dc matrix. It can be shown that p(x1) = N (x1 | µ1,Σ1,1) and p(x2) = N (x2 | µ2,Σ2,2).
Furthermore, p(x1 | x2) = N (x1 | µ1|2,Σ1|2), where µ1|2 = µ1+Σ1,2Σ

−1
2,2(x2−µ2) and Σ1|2 = Σ1,1−Σ1,2Σ

−1
2,2Σ2,1.

In summary, both conditioning and marginalization result in multivariate Gaussian distributions.
Suppose p(x) = N (x | µx,Σx) and p(y | x) = N (y | Ax + b,Σy), for all x ∈ RDx and y ∈ RDy , for fixed

µx,Σx,Σy, Dy ×Dx matrix A and real vector b ∈ RDy . Such a random process is called a linear Gaussian system.
It can be shown that

p(x | y) = N (x | µx|y,Σx|y),

for all x and y, where Σ−1
x|y = Σ−1

x +ATΣ−1
y A, and µx|y = Σx|y

[
ATΣ−1

y (y−b)+Σ−1
x µx

]
. Also, p(y) = N (y |

Aµx + b,Σy +AΣxA
T ), for every y.

As an example, suppose p(x) = N (x | µ0, λ
−1
0 ) for all x ∈ R, where µ0 is the prior mean and λ0 = 1/σ2

0 is the
prior precision. Furthermore, suppose that p(yi | x) = N (yi | x, λ−1

y ) for a given precision λ−1
y , for all i ∈ {1, . . . N},

yi ∈ R, and x ∈ R. This random process can be modeled as a linear Gaussian system by letting

p(y | x) = N (y | Ax+ b,Σy) = N (y | 1x, λ−1
y I).

Using the properties of a linear Gaussian system,

p(x | y) = N (x | µN , λ−1
N ),

for all x and y, where λN = λ0 +Nλy and

µN =
Nλy

λ0 +Nλy

[
1

N

N∑
i=1

yi

]
+

λ0

λ0 +Nλy
µ0.

In this example, notice how the posterior mean is a convex combination of the prior mean and the empirical
mean, weighted according to their precisions. Notice also that the posterior given N observations with precision λy

is equivalent to a posterior given a single observation with precision Nλy. Furthermore, inference can be performed
incrementally, i.e., the posterior given each observation can become the prior for the next observations.

As a generalization of the previous example, let p(x) = N (x | µ0,Σ0), for every x ∈ RD, where µ0,Σ0 are fixed.
Also, let p(yi | x) = N (yi | x,Σy), for all i ∈ {1, . . . , N}, yi ∈ RD, x ∈ RD, and a fixed Σy. It can be shown that
p(x | y1, . . . ,yN ) = N (x | µN ,ΣN ), where Σ−1

N = Σ−1
0 +NΣ−1

y and µN = ΣN

[
Σ−1

y

[∑N
i=1 yi

]
+Σ−1

0 µ0

]
.

Consider the task of computing the posterior p(µ | D,Σ) for some µ given a fixed Σ and the dataset D =
x1, . . . ,xN , which is iid given Θ according to N (· | µ∗,Σ), for an unknown µ∗. Using an appropriate (conjugate)
Gaussian prior defined by p(µ) = N (µ | m0,V 0) for all µ, it is possible to show that the desired posterior is given
by p(µ | D,Σ) = N (µ | mN ,V N ), where V −1

N = V −1
0 +NΣ−1 and mN = V N

[
Σ−1

[∑N
i=1 xi

]
+ V −1

0 m0

]
. Notice

that the uncertainty about the parameter µ is being modeled in a manner analogous to the previous example.

5 Bayesian statistics
Several models presented so far represent uncertainty about unknown parameters using (prior) probability distribu-
tions. This allows computing (posterior) probability distributions that represent the uncertainty about the unknown
parameters after some data is observed. Models with these characteristics are studied by Bayesian statistics.

More concretely, in Bayesian models, the prior density p(θ) of the parameters θ can be used to compute the
posterior density p(θ | D) of the parameters θ given the dataset D using

p(θ | D) =
p(D | θ)p(θ)

p(D)
,

where p(D | θ) is the likelihood of dataset D under the parameters θ, and p(D) =
∫
Val(Θ)

p(D | θ′)p(θ′) dθ′ is
the marginal likelihood of D.

A point estimate θ̂ is an element in the domain of a posterior distribution that can be used (as an attempt) to
summarize it. Common point estimates are the posterior mode (maximum a posteriori estimate), posterior mean,
and posterior median. The obvious drawback of summarizing a posterior distribution by a point estimate is that
the information about uncertainty is lost.
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Although maximum a posteriori estimates are often useful for being easy to compute, they have several issues.
In particular, maximum a posteriori estimates are not invariant to reparameterization. Concretely, consider a
continuous random variable X ∼ pX . If Y = f(X) for an invertible function f : R → R, g = f−1, and g is dif-
ferentiable, then pY (y) = pX(g(y))|g′(y)|. Now consider the maximum a posteriori estimates x̂ = argmaxx′ pX(x′)
and ŷ = argmaxy′ pY (y

′). It is not generally true that x̂ = g(ŷ). Consequently, a maximum a posteriori estimate
θ̂ = argmaxθ′ p(θ′ | D) is dependent on how the parameters are represented.

A 100(1−α)% credible interval for a random variable Θ distributed according to a (posterior) probability density
function p(· | D) is an interval (l, u) such that

P (l < Θ < u | D) =

∫ u

l

p(θ | D) dθ = 1− α.

Intuitively, if α is small and (l, u) is a 100(1 − α)% credible interval for Θ, there is a high probability that Θ is
in the interval (l, u) according to the posterior distribution. This is an alternative way to summarize a posterior
distribution, which preserves more information about uncertainty than point estimates.

The 100(1− α)% central credible interval for a random variable Θ distributed according to a (posterior) prob-
ability density function p(· | D) is an interval (l, u) such that∫ l

−∞
p(θ | D) dθ =

∫ +∞

u

p(θ | D) dθ =
α

2
.

For instance, the 95% central credible interval for a random variable Θ ∼ N (· | µ, σ2) is approximately (µ −
1.96σ, µ + 1.96σ). In the general case, central credible intervals can be found by Monte Carlo approximations of
quantiles. Credible intervals should not be confused with confidence intervals.

Consider two random variables Θ1 and Θ2, which represent the unknown rates of success of two independent
processes. Comparing such rates is a common task in statistics. Suppose the dataset D contains exactly yi successes
in Ni independent trials of process i, for i = 1 and i = 2. Using a Bayesian approach, we could use Beta(· | a, b) as
a prior distribution for both Θ1 and Θ2. Therefore, the posterior probability that Θ1 > Θ2 would be given by

P (Θ1 > Θ2 | D) =

∫
R

p(θ1, θ2 | D) dθ1dθ2

=

∫
R

p(θ1 | D)p(θ2 | D) dθ1dθ2

=

∫
R

Beta(θ1 | a+ y1, N1 − y1 + b) Beta(θ2 | a+ y2, N2 − y2 + b) dθ1dθ2,

where the second equality follows from the assumption of independence, and R = {(θ1, θ2) ∈ [0, 1]2 | θ1 > θ2}.
Such an integral can be approximated by Monte Carlo methods.

Usually, there are many ways to model a problem in statistical inference. For instance, different models can
make different independence assumptions between random variables, which can lead to different numbers of free
parameters. In Bayesian statistics, uncertainty about a model m is represented by a prior probability p(m). Thus,
it becomes possible to compute the posterior probability p(m | D) of m given a dataset D by

p(m | D) =
p(D | m)p(m)∑

m′ p(m′,D)
.

In this context, the marginal likelihood p(D | m) of the dataset D under the model m is given by

p(D | m) =

∫
Val(Θ)

p(D,θ | m) dθ =

∫
Val(Θ)

p(D | θ,m)p(θ | m) dθ,

where Val(Θ) is the set of admissible parameterizations of the model m. Notice that although a complex model
may have particular parameterizations that have higher likelihood than a simpler model, its marginal likelihood is
not necessarily higher. Intuitively, a complex model usually also has many parameterizations with low likelihood,
which bring the marginal likelihood down. This phenomenon is called conservation of probability mass, and is
highly related to the concepts of overfitting and Occam’s razor.

Consider a prior density function p for a random vector of parameters Θ defined by p(θ) = q(θ)
Z0

for every θ,
where q(θ) is an unnormalized positive density (i.e., q is a positive real function of θ), and Z0 > 0. Furthermore,
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suppose the likelihood p(D | θ) of any dataset D under any θ is defined by p(D | θ) = q(D|θ)
Zl

, where q(D | θ) is an
unnormalized positive density, and Zl > 0. Finally, suppose p(θ | D) = q(D|θ)q(θ)

ZN
, where ZN > 0. By definition,

p(θ | D) =
p(D | θ)p(θ)

p(D)
,

q(D | θ)q(θ)
ZN

=

q(D|θ)
Zl

q(θ)
Z0

p(D)
,

p(D) =
ZN

ZlZ0
,

for every θ and D. This result can be used to compute the marginal likelihood of many models that employ
conjugate priors.

For instance, consider the Beta-Bernoulli model, already discussed in a previous section. The prior density
is given by p(θ) = 1

B(a,b)θ
a−1(1 − θ)b−1, the likelihood by p(D | θ) = θN1(1 − θ)N0 , and the posterior density

by p(θ | D) = θN1+a−1(1−θ)N0+b−1

B(N1+a,N0+b) , for all θ ∈ (0, 1), dataset D, and valid hyperparameters a and b. Let q(θ) =

θa−1(1 − θ)b−1, Z0 = B(a, b), q(D | θ) = θN1(1 − θ)N0 , and Zl = 1. In that case, ZN = B(N1 + a,N0 + b) to
satisfy p(θ | D) = q(D|θ)q(θ)

ZN
. Using the result mentioned in the previous paragraph, p(D) = B(N1+a,N0+b)

B(a,b) , which
we already knew from a previous section.

When the prior over models is uniform, finding argmaxm′ p(m′ | D) corresponds to finding the model with
maximum marginal likelihood argmaxm′ p(D | m′). In cases where computing the marginal likelihood p(D | m)
for each m is intractable, it is possible to maximize alternative heuristic scores. One example is the BIC score for
model m given the dataset D, defined as log p(D | m, θ̂) − dof(m)

2 logN , where dof(m) is the number of degrees of
freedom in model m (related to the number of free parameters in m), θ̂ is the maximum likelihood estimate of the
parameters for model m under the dataset D, and N is the number of observations in D.

The Bayes factor between models m0 and m1 given the dataset D is defined as the ratio p(D|m0)
p(D|m1)

, and can
be used to decide between models when the prior over models is uniform. Consider, as an example, a dataset
D = x1, . . . , xN , which is iid given Θ according to a Bernoulli distribution Ber(· | θ∗), for an unknown θ∗. A model
m0 that states with complete certainty that θ = 1

2 has marginal likelihood p(D | m0) =
1
2N

. A model m1 such that
p(θ | m1) = Beta(θ | a, b) has marginal likelihood p(D | m1) = B(N1+a,N0+b)

B(a,b) , as previously noted. For instance,
letting a = b = 1, N0 = 2 and N1 = 5, the Bayes factor is in favor of m0, whereas if N0 = 20 and N1 = 50, the
Bayes factor is overwhelmingly in favor of m1.

Consider a mixture prior defined by p(θ) =
∑

k p(k)p(θ | k), for every parameter θ. By definition,

p(θ | D) =
p(D | θ)p(θ)

p(D)

=
p(D | θ)

∑
k p(k)p(θ | k)

p(D)

=
∑
k

p(k)p(D | θ)p(θ | k)
p(D)

.

By the definition of conditional probability, p(k)
p(D) =

p(k|D)
p(D|k) , whenever p(D), p(D | k) > 0. Thus,

p(θ | D) =
∑
k

p(k)p(D | θ)p(θ | k)
p(D)

=
∑
k

p(k | D)p(D | θ)p(θ | k)
p(D | k)

=
∑
k

p(k | D)p(D | θ, k)p(θ | k)
p(D | k)

=
∑
k

p(k | D)p(θ | D, k),

by simply assuming that the likelihood of any dataset D is independent of K given Θ, where

p(k | D) =
p(D | k)p(k)∑
k′ p(D | k′)p(k′)

.
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In simple terms, this result states that the posterior of a mixture of priors is a particular mixture of corresponding
posteriors. If computing the posterior density p(θ | D, k) and the marginal likelihood p(D | k) are easy tasks given
the prior density p(θ | k), for all θ, k and D, then computing the posterior is also easy. By mixing conjugate priors,
it is possible to perform tractable inference using very complex priors.

Instead of choosing hyperparameters η that define a prior density for every θ, it is also possible to model the
uncertainty about hyperparameters (models) by a probability density p(η), for every η. This approach is typically
called hierarchical Bayes. The resulting prior density for each θ becomes p(θ) =

∫
Val(H)

p(θ | η)p(η) dη, where H

is the random variable that represents the hyperparameters. Suppose the likelihood of D is independent of H given
Θ. In that case, the posterior density for η and θ given D becomes

p(η,θ | D) =
p(D | η,θ)p(η,θ)

p(D)
=

p(D | θ)p(θ | η)p(η)
p(D)

.

Therefore,

p(η | D) =

∫
Val(Θ)

p(D | θ)p(θ | η)p(η)
p(D)

dθ =
p(η)

p(D)

∫
Val(Θ)

p(D | θ)p(θ | η) dθ,

In this context, the hyperparameters argmaxη′ p(η′ | D) are called a type-II maximum a posteriori estimate. The
hyperparameters argmaxη′ p(D | η′) are called a type-II maximum likelihood estimate, and the general approach
for obtaining this estimate is called empirical Bayes. Using the data to estimate hyperparameters is useful when
priors for parameters that are assumed to be similar share the same hyperparameters.

Bayesian decision theory formalizes the task of making decisions under uncertainty. Concretely, let y ∈ Y
represent the state of the environment, and x ∈ X represent the corresponding state observed by the decision-
making agent. Also, let A be the set of actions available for the agent, and ℓ : Y ×A → R be a loss function. The
posterior expected loss ρ(a | x) of taking action a given the observation x is defined by

ρ(a | x) = EP (Y|x)[ℓ(Y, a)] =

∫
Val(Y)

ℓ(y, a)p(y | x) dy,

where p(y | x) is the density associated to state y given the observation x.
The goal in a decision task is to find an optimal decision policy δ : X → A such that, for all x ∈ X ,

δ(x) = argmin
a∈A

ρ(a | x).

Intuitively, if ℓ(y, a) is the penalty for taking action a in the (typically unknown) state y, the action δ(x)
minimizes the expected penalty given the observation x.

A classification task can be formulated as a decision task by letting X = Rd be the set of observations and
Y = A = {1, . . . , C} be the set of classes. In this case, the optimal decision policy δ is a classifier given by

δ(x) = argmin
a∈Y

ρ(a | x) = argmin
a

∑
y

ℓ(y, a)p(y | x),

In a classification task, the typical choice of loss function ℓ is the 0-1 loss function, given by

ℓ(y, a) =

{
0 if y = a,

1 if y ̸= a.

By definition,

ρ(a | x) = EP (Y |x)[ℓ(Y, a)] =
∑
y

ℓ(y, a)p(y | x) =
∑
y:y ̸=a

p(y | x) = P (Y ̸= a | x) = 1− P (Y = a | x).

Thus,

δ(x) = argmin
a∈Y

ρ(a | x) = argmin
a∈Y

[1− P (Y = a | x)] = argmax
a

P (Y = a | x) = argmax
y

p(y | x).

In other words, the maximum a posteriori estimate argmaxy p(y | x) is the optimal classification for observation
x under a 0-1 loss function.
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As an alternative, consider a classification task where one of the available actions r is to reject an observation.
We let A = Y ∪ {r} represent such extended action set. An appropriate loss function ℓ is given by

ℓ(y, a) =


0 if a ̸= r, a = y,

λs if a ̸= r, a ̸= y,

λr if a = r,

for λs, λr > 0. In this case, it is easy to show that

ρ(a | x) =

{
λr if a = r,

λs[1− P (Y = a | x)] if a ̸= r.

As a consequence, the corresponding optimal decision policy (classifier) δ is given by

δ(x) =

{
r if maxy p(y | x) < 1− λr

λs
,

argmaxy p(y | x) otherwise.

Consider a binary classification task where the loss function ℓ is defined by

ℓ(y, a) =


0 if a = y,

ℓFN if a ̸= y, a = 0,

ℓFP if a ̸= y, a = 1,

where ℓFN > 0 represents the loss for a false negative, and ℓFP > 0 represents the loss for a false positive. In
this case, it is easy to show that the optimal decision policy δ is given by δ(x) = 1 iff ρ(1|x)

ρ(0|x) >
ℓFP

ℓFN
, and 0 otherwise.

Consider an arbitrary decision policy (classifier) δ for a binary classification task such that

δ(x) =

{
1, if f(x) > τ,

0, if f(x) ≤ τ,

for some function f that represents the confidence that x belongs to class 1, and a threshold τ ∈ R. Consider
also a dataset D = (x1, y1), . . . , (xN , yN ), where xi ∈ Rd and yi ∈ {0, 1}, for every i. For any threshold τ , it
is possible to compute the true positive rate (TPR, ratio of positive observations classified as positive) and false
positive rate (FPR, ratio of negative observations classified as positive) of δ on D. Clearly, at most N+1 thresholds
will result in different pairs of TPR and FPR. The TPR and FPR never increase as the threshold τ increases. A
perfect classifier δ for D achieves FPR zero and TPR one for some threshold. A line chart depicting FPR × TPR
can be created by connecting each attainable pair of FPR and TPR, in order of corresponding thresholds. Such
chart depicts the so-called receiver operating characteristic (ROC) curve of δ on D. The area under the ROC curve
(AUC) can be used to summarize the efficacy of δ on D. The ROC curve or AUC can be used to compare classifiers
independently of how false negatives/positives are weighted.

A regression task can also be formulated as a decision task by letting X = Rd be the set of observations
and Y = A = R be the set of targets. A typical choice of loss function is the squared error loss ℓ defined by
ℓ(y, a) = (y − a)2. In this case, by definition,

ρ(a | x) =
∫ +∞

−∞
ℓ(y, a)p(y | x) dy =

∫ +∞

−∞
(y − a)2p(y | x) dy =

∫ +∞

−∞
(y2 − 2ay + a2)p(y | x) dy

=

∫ +∞

−∞
y2p(y | x) dy − 2a

∫ +∞

−∞
yp(y | x) dy + a2

∫ +∞

−∞
p(y | x) dy

= E[Y 2 | x]− 2aE[Y | x] + a2.

Notice that ρ(a | x) is differentiable with respect to a. Therefore, if a is a local minima of ρ(· | x), then

∂

∂a
ρ(a | x) = −2E[Y | x] + 2a = 0.

Rearranging terms, if a is a local minima of ρ(· | x), then a = E[Y | x]. The second derivative test confirms that
such a is always local minima. Therefore,

δ(x) = argmin
a

ρ(a | x) = E[Y | x] =
∫ +∞

−∞
yp(y | x) dy.
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In other words, the posterior mean estimate is the optimal assignment for observation x under a squared error
loss function.

If the absolute loss function ℓ defined by ℓ(y, a) = |y − a| is used instead of the squared error loss function, the
estimate corresponding to the optimal assignment δ(x) is the posterior median given x. We omit the proof, which
can be obtained by applying the Leibniz integral rule to ∂

∂aρ(a | x).
Consider a supervised learning task (either regression or classification), and a corresponding decision policy

(classifier) δ : X → Y. The generalization error L(θ, δ) of δ on an environment parameterized by θ is defined by

L(θ, δ) = E[ℓ(Y, δ(X))] =

∫
Val(Y )

∫
Val(X)

ℓ(y, δ(x))p(x | y,θ)p(y | θ) dxdy,

where p(x, y | θ) is the density associated to the observation-target pair (x, y).
Intuitively, the generalization error L(θ, δ) averages every penalty ℓ(y, δ(x)), weighted by the probability of each

observation-target pair (x, y) occurring in the environment (given θ).
Consider a dataset D = (x1, y1), . . . (xN , yN ), which is iid given Θ and distributed according to p(· | θ∗), for an

unknown θ∗. The goal in supervised learning is to find a decision policy δ∗ that minimizes the posterior expected
loss ρ(δ | D) of δ given D defined by

ρ(δ | D) =

∫
Val(Θ)

L(θ, δ)p(θ | D) dθ.

6 Frequentist statistics
Frequentist statistical methods avoid representing uncertainty about parameters using probabilities. Instead, they
focus on the sampling distribution of estimators.

Suppose that each assignment D to a random variable D represents an iid dataset with N elements, distributed
according to p(· | θ∗), for an unknown θ∗.

An estimator δ is a function that maps each dataset D to a parameter estimate θ̂ (e.g., maximum likelihood).
The probability distribution for the random variable δ(D) is called the sampling distribution of the estimator δ.
An estimator δ is consistent if its estimates converge in probability to the true unknown parameters when the size
of the dataset tends to infinity.

The bootstrap is a method to approximate the sampling distribution of an estimator δ. Given an observed
dataset D, parametric bootstrap relies on sampling S datasets D1, . . . ,DS of size N from the distribution p(· | θ̂),
where θ̂ = δ(D). Non-parametric bootstrap relies on sampling N elements (with replacement) from the elements in
the observed dataset D to create each dataset Di, for i ∈ {1, . . . , S}. In both cases, the sampling distribution of the
estimator δ can be approximated, for instance, by the empirical distribution given by p(θ) = 1

S

∑
s I[δ(Ds) = θ].

The probability density p(θ) should not be confused with the approximate density associated to a particular
parameterization θ. Instead, p(θ) is the approximate density associated to making a particular estimate θ when
considering all possible datasets distributed according to the distribution governed by the (unknown and fixed)
parameter θ∗.

In frequentist decision theory, the expected risk R(θ, δ) of the estimator δ on an environment parameterized by
θ is defined by

R(θ, δ) = EP (D|θ)[L(θ, δ(D))] =

∫
Val(D)

L(θ, δ(D))p(D | θ) dD,

where L(θ, δ(D)) is the loss associated to estimating δ(D) when the environment is parameterized by θ. Intu-
itively, the expected risk R(θ, δ) corresponds to the average loss of the estimates over all possible datasets, weighted
by the probability of each dataset given the true (but typically unknown) θ.

It is important to compare the expected risk to the posterior expected loss defined in the previous section.
Concretely, let Y = Val(Θ) be the set of states of the environment, X = Val(D) be the set of observations, and
A = Y be the set of actions. The posterior expected loss ρ(δ(D) | D) of estimate (action) δ(D) given the dataset D
is given by

ρ(δ(D) | D) = EP (Θ|D)[L(Θ, δ(D))] =

∫
Val(Θ)

L(θ, δ(D))p(θ | D) dθ.

Intuitively, the posterior expected loss corresponds to the average loss of the estimates over all parameterizations,
weighted by the probability of each parameterization given the observed data.
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The expected risk and the posterior expected loss are connected through the Bayes risk. The Bayes risk of
estimator δ for loss function L and prior density p(θ) for each state θ of the environment is given by

EP (Θ)[R(Θ, δ)] =

∫
Val(Θ)

R(θ, δ)p(θ) dθ

=

∫
Val(Θ)

[∫
Val(D)

L(θ, δ(D))p(D | θ) dD

]
p(θ) dθ

=

∫
Val(Θ)

∫
Val(D)

L(θ, δ(D))p(D,θ) dD dθ

=

∫
Val(D)

∫
Val(Θ)

L(θ, δ(D))p(θ,D) dθdD

=

∫
Val(D)

[∫
Val(Θ)

L(θ, δ(D))p(θ | D) dθ

]
p(D) dD

=

∫
Val(D)

ρ(δ(D) | D)p(D) dD

= EP (D)[ρ(δ(D) | D)],

under the assumptions that enable Fubini’s theorem. Therefore, an estimator that minimizes the posterior
expected loss for each dataset individually will also minimize the Bayes risk. An estimator that minimizes the
Bayes risk is called a Bayes estimator.

The maximum risk of an estimator δ is defined as maxθ R(θ, δ). The estimator with minimum maximum risk is
called the minimax estimator, and intuitively corresponds to a very defensive estimator. Minimizing the maximum
risk does not require a prior over states of the environment.

Consider two estimators δ1 and δ2, and suppose R(θ, δ1) < R(θ, δ2) for all θ. In this case, the estimator δ1 is
said to strictly dominate the estimator δ2. Intuitively, the estimator δ1 is always a better choice according to the
expected risk. An estimator is admissible when it is not strictly dominated by any other estimator.

The bias of an estimator δ is defined as bias(δ) = EP (D|θ∗)[δ(D) − θ∗], where θ∗ is the true parameter that
generates the data. An estimator is unbiased if its bias is zero.

As an example, consider a dataset D = x1, . . . , xN , which is iid according to a Gaussian distribution N (· | µ, σ2).
We have already shown that the MLE for the mean is given by x̂ = 1

N

∑
i xi, and the MLE for the variance is

σ̂2 = 1
N

∑
i(xi − x̂)2. Therefore, the bias of the maximum likelihood estimator for the mean (seen individually) is

given by

EP (D)[X̂ − µ] = EP (D)

[ 1
N

∑
i

Xi

]
− EP (D)[µ]

=
1

N
EP (D)

[∑
i

Xi

]
− µ

=
1

N

∑
i

EP (Xi)[Xi]− µ

=
Nµ

N
− µ = 0.

The bias of the maximum likelihood estimator for the variance is given by

EP (D)

[ 1
N

∑
i

(Xi − X̂)2 − σ2
]
=

1

N
EP (D)

[∑
i

(Xi − X̂)2
]
− σ2

=
1

N

∑
i

EP (D)

[
X2

i

]
− 2EP (D)

[
XiX̂

]
+ EP (D)

[
X̂2
]
− σ2

= σ2

(
N − 1

N
− 1

)
,

although we omit important steps for brevity. Intuitively, the ML estimator typically underestimates the variance
because it employs the empirical mean x̂ instead of the true (but unknown) mean µ. An unbiased estimator for the
variance is given by N

N−1 σ̂
2 = 1

N−1

∑
i(xi − x̂)2.
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An unbiased estimator does not necessarily minimize the expected risk. For instance, consider a loss function L
given by L(θ∗, θ) = (θ∗ − θ)2. The corresponding expected risk of estimator δ is the mean squared error given by

R(θ∗, δ) = EP (D|θ∗)[L(θ
∗, δ(D))] =

∫
Val(D)

(θ∗ − δ(D))2p(D | θ∗) dD.

Let θ̄ = EP (D|θ∗)[δ(D)] denote the expected estimate. It can be easily shown that

R(θ∗, δ) = EP (D|θ∗)[(δ(D)− θ̄)2] + EP (D|θ∗)[δ(D)− θ∗]2.

In words, the expected risk under a squared error loss is given by the variance of the estimator plus the squared
bias of the estimator. Therefore, a biased estimator might be beneficial, as long as its variance is low. This
bias-variance trade-off is highly related to the concept of overfitting.

Consider a supervised learning task (either regression or classification), and a corresponding decision policy
(estimator) δ. The risk R(θ, δ) of the decision policy δ on an environment parameterized by θ can be redefined as

R(θ, δ) =

∫
Val(Y )

∫
Val(X)

L(y, δ(x))p(x, y | θ) dxdy,

where L(y, δ(x)) is the loss associated to predicting δ(x) when the target is y, and p(x, y | θ) is the density
associated to (x, y) given θ.

Consider a supervised dataset D = (x1, y1), . . . , (xN , yN ), which is iid according to p(· | θ∗) for an unknown θ∗.
The empirical risk Re(D, δ) is defined as

Re(D, δ) =
1

N

N∑
i=1

L(yi, δ(xi)),

which is a Monte Carlo approximation to the risk R(θ∗, δ). The task of finding δ∗ = argminδ Re(D, δ) for a given
dataset D is called empirical risk minimization, and is crucial in supervised learning.

Regularized risk minimization is the task of finding δ∗ = argminδ Re(D, δ) + λC(δ), where C(δ) ∈ R measures
the complexity of the decision policy δ, and λ ∈ R is a hyperparameter that penalizes complexity. Penalizing
complex decision policies is a way to avoid overfitting.

In structural risk minimization, the penalty hyperparameter for regularized risk minimization is chosen as

λ∗ = argmin
λ

R̂(argmin
δ

[
Re(D, δ) + λC(δ)

]
),

where R̂(δ) is a risk estimate for the decision policy δ. In words, the penalty hyperparameter is chosen in a way
that leads to choosing a decision policy with low risk estimate. A typical choice of risk estimate is the average k-fold
cross validation empirical risk of δ.

7 Linear regression
Consider a dataset D = (x1, y1), . . . , (xN , yN ), which is iid according to p(· | θ∗) for an unknown θ∗. Suppose also
that xi ∈ RD, and yi ∈ R, for all i. Consider the task of regression, which consists on predicting targets from
observations based on generalization from D.

Linear regression is a regression technique that assumes that the density p(y | x,θ) associated to target y given
the observation x and parameter θ can be written as

p(y | x,θ) = N (y | wx, σ2),

for every x, for some weight vector w and variance σ2, which are represented in θ. Intuitively, the uncertainty about
the target is given by a Gaussian distribution with mean f(x) = wx and variance σ2. Notice that the predictor
f : RD → R is a linear functional, and f(x) is the optimal prediction given x under a squared error loss function
according to Bayesian decision theory.

Although the assumptions made by linear regression appear very restrictive, an input observation x can be
transformed by a pre-defined feature map ϕ : RD → RD′

before the technique is applied. In that case, we say the
density p(y | x,θ) is given by

p(y | x,θ) = N (y | wϕ(x), σ2).
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If we let f(x) = wϕ(x), the corresponding predictor f : RD → R is no longer (necessarily) a linear functional
in the original space.

For instance, consider a dataset composed of single dimensional observations (D = 1), and the polynomial
feature map ϕ given by

ϕ(x) =
(
1, x1, . . . , xD′)

,

for some D′ ≥ 1. In this case, the corresponding predictor f : R → R is given, for some w, by

f(x) = wϕ(x) =

D′∑
j=0

wjx
j ,

which is (potentially) a polynomial of degree D′ on x. Therefore, linear regression is able to fit a polynomial of
arbitrary degree to a dataset composed of single dimensional observations. This example generalizes to polynomials
involving multiple variables (D > 1).

In what follows, we assume that the observations were already transformed by a feature map. It is advisable
to at least prefix each original observation x by the constant 1, leading to a transformed observation x′ = (1,x),
so that the first element w0 of the weight vector w becomes the intercept the corresponding predictor f given by
f(x) = w0 +w1:Dx.

The (conditional) likelihood p(D | θ) of the dataset D under θ according to a linear regression model is given by

p(D | θ) = p(y | x1, . . . ,xN ,θ) =

N∏
i=1

p(yi | xi,θ) =

N∏
i=1

N (yi | wxi, σ
2),

for a choice of w and σ2, and where y = (y1, . . . , yN ). Notice that this likelihood is not based on the joint density
over observations and targets, which is irrelevant for our purposes. Instead, p(D | θ) is the density associated
to the particular assignment y when the observations x1, . . . ,xN are seen as constants (according to D), and
Yi ⊥⊥ X−i | Xi,Θ.

The log-likelihood ℓ(θ) = log p(D | θ) of the dataset D under θ is given by

log

N∏
i=1

N (yi | xiw, σ2) = log

N∏
i=1

1√
2πσ2

e−
(yi−wxi)

2

2σ2 =

N∑
i=1

log

[
1√
2πσ2

e−
(yi−wxi)

2

2σ2

]

=

N∑
i=1

log
1√
2πσ2

+

N∑
i=1

log e−
(yi−wxi)

2

2σ2

= N log
1√
2πσ2

+

N∑
i=1

− (yi −wxi)
2

2σ2

= −N

2
log 2πσ2 − 1

2σ2

N∑
i=1

(yi −wxi)
2.

Consider the task of finding a maximum likelihood estimate ŵ = argmaxw p(D | w, σ2) given a dataset D and
a constant variance σ2. Finding such estimate would be sufficient to define a candidate predictor f . Clearly, the
maximum likelihood estimate also minimizes half the residual sum of squares RSS(·) given by

RSS(w)

2
=

1

2

N∑
i=1

(yi −wxi)
2 =

1

2
(y −Xw)T (y −Xw),

where X is the so-called design matrix, where each row i corresponds to observation xi, and y = (y1, . . . , yN ). Using
elementary properties of matrices,

RSS(w)

2
=

1

2
(yT − (Xw)T )(y −Xw) =

1

2

[
yT (y −Xw)− (Xw)T (y −Xw)

]
=

1

2

[
yTy − yTXw − (Xw)Ty + (Xw)TXw

]
=

1

2

[
yTy − yTXw −wTXTy +wTXTXw

]
=

1

2

[
yTy − 2wTXTy +wTXTXw

]
.
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Using the facts that ∇a

[
aTAa

]
= (A + AT )a, and ∇a

[
ab
]
= b, the gradient of RSS(w)

2 with respect to w is
given by

∇w

[
RSS(w)

2

]
=

1

2
∇w

[
yTy

]
−∇w

[
wTXTy

]
+

1

2
∇w

[
wTXTXw

]
= −XTy +XTXw,

since XTX is always symmetric. Finally, if ŵ is a local minimum of RSS(·)
2 , then

XTXŵ = XTy,

by equating the gradient found above with zero. Assume that XTX is invertible, which is the case whenever the
columns in X are linearly independent. In that case, if a local minimum ŵ exists, then it must be given by

ŵ = (XTX)−1XTy.

The equation above is a sufficient condition for ŵ to be a maximum likelihood estimate, although we omit the
proof. There are more efficient methods to obtain this estimate, although the details are out of the scope of this
text.

Given the maximum likelihood estimate ŵ, the vector ŷ = Xŵ has an interesting geometrical interpretation.
Clearly ŷ belongs to the span S of the columns of X. In fact, ŷ is the vector in S that is closest (in Euclidean
distance) to the desired target y. Notice that this is related to the assumption that the columns in X are linearly
independent, which is necessary to obtain the maximum likelihood estimate ŵ.

The negative log-likelihood of a linear regression model is convex with respect to w. This is a highly desirable
property, since finding a (global) minimum generally becomes much easier.

However, a maximum likelihood estimate ŵ = argmaxw p(D | w, σ2) may have very large coefficients (in absolute
value), making the corresponding predictor f very sensitive to small changes in its inputs.

Instead, consider the task of maximizing the posterior density p(w | D) with respect to w. Firstly, suppose the
prior density p(w) associated to the weight vector w is given by

p(w) =

D∏
j=1

N (wj | 0, τ2).

In words, this represents the prior belief that each coefficient is distributed according to a Gaussian distribution
with mean zero and variance τ2.

Naturally, the maximum a posteriori estimate ŵ = argmaxw p(w | D) also maximizes

log p(w | D) = log p(D | w) + log p(w)− log p(D).

Since the last term is a constant with respect to w, the desired estimate can be obtained by maximizing log p(D |
w) + log p(w) with respect to w.

Firstly, note that

log p(w) = log

D∏
j=1

N (wj | 0, τ2) = −
D∑

j=1

w2
j

2τ2
−

D∑
j=1

log
√
2πτ2 = − 1

2τ2

D∑
j=1

w2
j −

D

2
log 2πτ2.

Therefore,

log p(D | w) + log p(w) = −N

2
log 2πσ2 − 1

2σ2

N∑
i=1

(yi −wxi)
2 − 1

2τ2

D∑
j=1

w2
j −

D

2
log 2πτ2.

By eliminating the constants with respect to w and letting σ2 = λτ2, the maximum a posteriori estimate ŵ
minimizes the cost function J given by

J(w) =

N∑
i=1

(yi −wxi)
2 + λ

D∑
j=1

w2
j .
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The hyperparameter λ relates the prior beliefs about the variance of the targets given the observations to the
variance of the coefficients around zero, and intuitively penalizes weight vectors with large norms. Penalizing large
coefficients is a specific instance of a general approach called regularization.

Let I denote the D ×D identity matrix. If we assume that λI +XTX is invertible, then a local minimum ŵ
of J must be given by

ŵ = (λI +XTX)−1XTy,

using a similar argument to the one that led to the maximum likelihood estimate. The equation above is also a
sufficient condition for ŵ to be a maximum a posteriori estimate, although we omit the proof.

Note that if a coefficient w0 in a weight vector is used as an intercept term (due to a choice of feature map
ϕ), then it should not be penalized by regularization, since it does not make the corresponding predictor f more
sensitive to small changes in its inputs.

Consider the task of computing the posterior density p(w | D, σ2) given by

p(w | D, σ2) =
p(D | w, σ2)p(w | σ2)

p(D | σ2)
∝w p(D | w, σ2)p(w | σ2).

Firstly, notice that the likelihood p(D | w, σ2) can be written as

p(D | w, σ2) =

N∏
i=1

N (yi | wxi, σ
2) = N (y | Xw, σ2I),

where y = (y1, . . . , yN ), X is the design matrix corresponding to D, and I is the N ×N identity matrix.
Furthermore, suppose the prior density for w is given by p(w | σ2) = N (w | w0,V0), for some hyperparameters

w0 and V0.
In that case, the posterior density is given by p(w | D, σ2) ∝w N (y | Xw, σ2I)N (w | w0,V0). By noting that

the random variables W and Y are related by a linear Gaussian system (conditionally on σ2), the desired posterior
density is given by

p(w | D, σ2) = N (w | µ,Σ),

where

Σ−1 = V−1
0 +XT

[
σ2I
]−1

X = V−1
0 +

1

σ2
XTX,

µ = Σ
[
XT
[
σ2I
]−1

y +V−1
0 w0

]
=

1

σ2
ΣXTy +ΣV−1

0 w0.

Consider again the assumptions V0 = τ2I and w0 = 0, which were used to obtain a maximum a posteriori
estimate, and let σ2 = λτ2. The corresponding posterior parameters Σ and µ are given by

Σ−1 =
1

τ2
I+

1

σ2
XTX =

1

τ2
[
I+

1

λ
XTX

]
,

µ =
1

λτ2

[ 1

τ2
[
I+

1

λ
XTX

]]−1

XTy =
1

λ

[
I+

1

λ
XTX

]−1

XTy =
[
λI+XTX

]−1

XTy,

by twice using the fact that (cA)−1 = c−1A−1, for any c ̸= 0 and invertible matrix A. Therefore, under the same
assumptions, the posterior mean matches the maximum a posteriori estimate. This follows from the fact that the
multivariate Gaussian mean and mode are the same.

Finally, consider the task of computing the posterior predictive density p(y | x,D, σ2) associated to target y
given a new observation x, and the observed dataset D. By marginalizing the parameters,

p(y | x,D, σ2) =

∫
Val(W)

p(y,w | x,D, σ2)dw =

∫
Val(W)

p(y | x,w,D, σ2)p(w | x,D, σ2)dw

=

∫
Val(W)

p(y | x,w, σ2)p(w | D, σ2)dw =

∫
Val(W)

N (y | wx, σ2)N (w | µ,Σ)dw,

where µ is the posterior mean and Σ is the posterior covariance matrix, for a particular choice of prior hyper-
parameters w0,V0 and σ2. Intuitively, the posterior predictive density of target y given x and D corresponds
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to the average probability of y given x under each parameterization, weighted by the posterior density of each
parameterization given D.

Because the random variables W and Y are related (conditionally on D and σ2) by a linear Gaussian system,
the marginalization of their joint density function over W results in a posterior predictive density given by

p(y | x,D, σ2) = N (y | µx, σ2 + xTΣx).

Notice that the posterior predictive mean matches the prediction made by the maximum a posteriori estimate.
However, the posterior predictive provides a measure of uncertainty that takes into consideration the underlying
variance and the covariance of the parameters after the data is observed.

8 Logistic regression
Consider a dataset D = (x1, y1), . . . , (xN , yN ), which is iid according to p(· | θ∗) for some unknown θ∗. Also,
suppose xi ∈ RD, and yi ∈ {0, 1}, for all i. Consider the task of binary classification, which corresponds to
predicting binary targets from observations based on generalization from D.

Logistic regression is a technique that assumes that the probability p(y | x,w) of class y ∈ {0, 1} given observation
x and weight vector w is given by

p(y | x,w) = σ(wx)y(1− σ(wx))1−y,

where σ is the sigmoid function given by

σ(t) =
1

1 + e−t
,

for all t ∈ R. Intuitively, a logistic regression model assigns more probability to class 1 whenever wx > 0, and
each element wj of w indicates how much feature j contributes (or detracts) to the detection of class 1. Because
the probability of the distinct classes given x is the same if and only if wx = 0, the decision boundary of this
classification technique is the hyperplane S = {x ∈ RD | wx = 0}.

Although the assumptions made by logistic regression appear very restrictive, an input observation x can be
transformed by a pre-defined feature map ϕ : RD → RD′

before the technique is applied. In that case, we say the
probability p(y | x,w) is given by

p(y | x,w) = σ(wϕ(x))y(1− σ(wϕ(x)))1−y.

Therefore, the decision boundary is no longer (necessarily) a hyperplane on the original space.
In what follows, we assume that the observations were already transformed by a feature map. It is advisable to

at least prefix each original observation x by the constant 1, leading to a transformed observation x′ = (1,x). In this
case, the decision boundary on the original space becomes an affine hyperplane S = {x ∈ RD | w0 +w1:Dx = 0}.

The (conditional) likelihood p(D | w) of the dataset D is given by

p(D | w) =

N∏
i=1

p(yi | xi,w) =

N∏
i=1

σ(wxi)
yi(1− σ(wxi))

1−yi ,

for a choice of w. Notice that this likelihood is not based on the joint density over observations and targets,
which is irrelevant for our purposes. Instead, p(D | w) is the probability associated to the particular assignment
y = (y1, . . . , yN ) when the observations x1, . . . ,xN are seen as constants (according to D), and Yi ⊥⊥ X−i, Y−i |
Xi,W.

The log-likelihood ℓ(w) = log p(D | w) is given by

ℓ(w) = log

N∏
i=1

σ(wxi)
yi(1− σ(wxi))

1−yi

=

N∑
i=1

log
[
σ(wxi)

yi
]
+ log

[
(1− σ(wxi))

1−yi
]

=

N∑
i=1

yi log σ(wxi) + (1− yi) log(1− σ(wxi)).
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It can be shown that there is no analytical expression for the maximum (log-)likelihood estimate ŵ for a logistic
regression model.

For any k, the partial derivative ∂ℓ(w)/∂wk of ℓ at w with respect to the variable wk is given by

∂ℓ(w)

∂wk
=

N∑
i=1

yi
∂

∂wk

[
log σ(wxi)

]
+ (1− yi)

∂

∂wk

[
log(1− σ(wxi))

]
=

N∑
i=1

yi
1

σ(wxi)

∂

∂wk

[
σ(wxi)

]
+ (1− yi)

1

1− σ(wxi)

∂

∂wk

[
1− σ(wxi)

]
=

N∑
i=1

yi
1

σ(wxi)
σ(wxi)(1− σ(wxi))

∂

∂wk

[
wxi

]
+ (1− yi)

1

1− σ(wxi)

∂

∂wk

[
1− σ(wxi)

]
,

=

N∑
i=1

yi(1− σ(wxi))xi,k − (1− yi)σ(wxi)xi,k

=

N∑
i=1

(yi − σ(wxi))xi,k.

Thus, the gradient of ℓ with respect to w is given by

∇wℓ(w) = XT (y − σ(Xw)),

where σ is applied element-wise, X is the design matrix (where each observation corresponds to a row), and
y = (y1, . . . , yN ).

For any j and k, the second order partial derivative ∂2ℓ(w)/∂wj∂wk at w is given by

∂2ℓ(w)

∂wj∂wk
=

N∑
i=1

∂

∂wj

[
(yi − σ(wxi))xi,k

]
=

N∑
i=1

∂

∂wj

[
− σ(wxi)xi,k

]
= −

N∑
i=1

xi,k
∂

∂wj

[
σ(wxi)

]
= −

N∑
i=1

xi,kxi,jσ
′(wxi) = −

N∑
i=1

xi,kxi,jσ(wxi)(1− σ(wxi)).

Recall that the Hessian matrix ∇2ℓ(w) of ℓ at w is given by ∇2ℓ(w)j,k = ∂2ℓ(w)/∂wj∂wk. Using the result
above, it can easily be shown that

∇2ℓ(w) = −
N∑
i=1

σ(wxi)(1− σ(wxi))xix
T
i = −XTSX,

where X is the design matrix (where each observation corresponds to a row), and S is given by

S = diag(σ(wx1)(1− σ(wx1)), . . . , σ(wxN )(1− σ(wxN ))).

Because ∇2ℓ(w) is negative definite for any w, the log-likelihood ℓ is concave, and thus has at most one local
maximum, which would necessarily be a global maximum.

Many iterative optimization methods may be employed to maximize such log-likelihood ℓ. We present some
minimization methods in Sec. 2.4, which may be applied to minimize the negative log-likelihood −ℓ.

However, the resulting estimate may have extremely large coefficients, particularly when the data is linearly
separable. Alternatively, consider the task of finding a maximum a posteriori estimate. As before, the maximum a
posteriori estimate ŵ = argmaxw p(w | D) also maximizes log p(D | w) + log p(w).

As in the previous section, suppose the prior density p(w) associated to the weight vector w is given by

p(w) =

D∏
j=1

N (wj | 0, τ2).

We have already seen that

log p(w) = − 1

2τ2

D∑
j=1

w2
j −

D

2
log 2πτ2.
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Therefore,

log p(D | w) + log p(w) = ℓ(w)− 1

2τ2

D∑
j=1

w2
j −

D

2
log 2πτ2.

Eliminating the constants with respect to w leads to the task of maximizing the regularized log-likelihood ℓλ
given by

ℓλ(w) = ℓ(w)− λ

2
||w||2,

where λ = 1/τ2. It is easy to show that

∇ℓλ(w) = ∇ℓ(w)− λw,

∇2ℓλ(w) = ∇2ℓ(w)− λI,

where I is the D ×D identity matrix.
Note that if each observation was prefixed by the constant 1, the corresponding weight should not be penalized

by λ, as already explained in the previous section.
Logistic regression can be generalized to multi-class problems. In that case, the technique assumes that the

probability p(y | x,w) of class y ∈ {1, . . . , C} given observation x ∈ RD and parameter vector w is given by

p(y | x,w) =
exp(wyx)∑
y′ exp(wy′x)

,

where w = (w1, . . . ,wC) ∈ RCD contains a parameter vector wy corresponding to each class y.
Consider a dataset D = (x1,y1), . . . , (xN ,yN ), which is iid according to p(· | θ∗) for some unknown θ∗, such

that xi ∈ RD, and yi ∈ {0, 1}C . Suppose also that each observation belongs to a single class, and yi,c = 1 if and
only if xi belongs to class c. This is a one-of-C encoding, which will simplify our presentation.

The (conditional) likelihood p(D | w) of D under w is given by

p(D | w) =

N∏
i=1

p(yi | xi,w) =

N∏
i=1

C∏
j=1

z
yi,j

i,j ,

where
zi,j =

exp(wjxi)∑
j′ exp(wj′xi)

.

Therefore, the log-likelihood ℓ = log p(D | w) is given by

ℓ = log p(D | w) = log

N∏
i=1

C∏
j=1

z
yi,j

i,j =

N∑
i=1

C∑
j=1

yi,j log zi,j .

Once again, the methods presented in Sec. 2.4 may be employed to minimize the negative log-likelihood −ℓ
given the gradient and Hessian of −ℓ with respect to w.

The partial derivative ∂ℓ/∂wk,l of ℓ with respect to parameter wk,l is given by

∂ℓ

∂wk,l
=

∂

∂wk,l

 N∑
i=1

C∑
j=1

yi,j log zi,j

 =

N∑
i=1

C∑
j=1

yi,j
zi,j

∂zi,j
∂wk,l

,

where the second equality follows from the chain rule.
Let ai,j = wjxi, and notice that wk,l only affects zi,j through ai,k. By the chain rule,

∂ℓ

∂wk,l
=

N∑
i=1

C∑
j=1

yi,j
zi,j

∂zi,j
∂ai,k

∂ai,k
∂wk,l

=

N∑
i=1

C∑
j=1

yi,jxi,l

zi,j

∂zi,j
∂ai,k

.

By the definition of zi,j ,

∂zi,j
∂ai,k

=
∂

∂ai,k

[
exp(ai,j)∑
j′ exp(ai,j′)

]
.
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Firstly, suppose j = k. By the quotient rule,

∂zi,j
∂ai,j

=
∂

∂ai,j

[
exp(ai,j)∑
j′ exp(ai,j′)

]
=

[∑
j′ exp(ai,j′)

]
exp(ai,j)− exp(ai,j) exp(ai,j)[∑
j′ exp(ai,j′)

]2 = zi,j − z2i,j .

Alternatively, suppose j ̸= k. In that case,

∂zi,j
∂ai,k

=
∂

∂ai,k

[
exp(ai,j)∑
j′ exp(ai,j′)

]
= −exp(ai,j) exp(ai,k)[∑

j′ exp(ai,j′)
]2 = −zi,jzi,k.

Therefore, for any j and k,

∂zi,j
∂ai,k

= zi,j(I [j = k]− zi,k),

where I is the indicator function.
Therefore, ∂ℓ/∂wk,l is given by

∂ℓ

∂wk,l
=

N∑
i=1

C∑
j=1

yi,jxi,l

zi,j

∂zi,j
∂ai,k

=

N∑
i=1

xi,l

C∑
j=1

yi,j(I [j = k]− zi,k)

=

N∑
i=1

xi,l

 C∑
j=1

yi,jI [j = k]−
C∑

j=1

yi,jzi,k

 =

N∑
i=1

xi,l(yi,k − zi,k),

where we used the fact that
∑

j yi,j = 1, for any i.
Using this result, the gradient ∇wk

ℓ of ℓ with respect to the weight vector wk associated to class k is given by

∇wk
ℓ =

N∑
i=1

(yi,k − zi,k)xi.

Using a similar argument, the second order partial derivative ∂2ℓ/∂wm,n∂wk,l is given by

∂2ℓ

∂wm,n∂wk,l
=

∂

∂wm,n

[
N∑
i=1

xi,lyi,k − xi,lzi,k

]
= −

N∑
i=1

xi,l
∂zi,k
∂wm,n

= −
N∑
i=1

xi,l
∂zi,k
∂ai,m

∂ai,m
∂wm,n

= −
N∑
i=1

xi,lxi,nzi,k(I[k = m]− zi,m).

It is straightforward to show that the corresponding (negative definite) Hessian matrix ∇2
wℓ is a CD × CD

matrix composed of D ×D blocks, such that block j, k is given by

−
N∑
i=1

zi,k(I[k = j]− zi,j)xix
T
i .

Maximum a posteriori estimation is analogous to the binary case.
Consider the task of computing the posterior density p(w | D) ∝w p(D | w)p(w) associated to weight vector

w given D according to a binary logistic regression model. In contrast to linear regression, there is no convenient
conjugate prior.

Instead of computing the exact posterior, we will compute its Laplace approximation. Firstly, recall that the
desired posterior is given by

p(w | D) =
p(D | w)p(w)

p(D)
=

p(D,w)

p(D)
.
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By the assumptions made by binary logistic regression, we know that p(D,w) > 0, for any D and w. Therefore,
the desired posterior may be rewritten as

p(w | D) =
e−E(w)

p(D)
,

where E is the so-called energy function given by E(w) = − log p(D,w) = − log p(D | w)− log p(w). Recall that we
already know the first and second order partial derivatives required to minimize E(w) with respect to w considering
a multivariate Gaussian prior given by p(w) =

∏D
j=1 N (wj | 0, τ2).

Let w∗ denote a maximum a posteriori (minimum energy) estimate such that E(w∗) = minw E(w) = maxw p(w |
D), and consider the quadratic approximation Ê to E at point w∗, which is given by

Ê(w) = E(w∗) + (w −w∗)∇E(w∗) +
1

2
(w −w∗)T∇2E(w∗)(w −w∗).

Because w∗ is a local minimum of the twice differentiable function E (by construction), we know that ∇E(w∗) =
0. Therefore,

Ê(w) = E(w∗) +
1

2
(w −w∗)T∇2E(w∗)(w −w∗).

The corresponding approximate posterior is given by

p(w | D) ∝w e−E(w) ≈ e−Ê(w).

The appropriate normalization constant Z, also called Laplace approximation to the marginal likelihood, is given
by

Z =

∫
Val(W)

e−Ê(w)dw =

∫
Val(W)

e−E(w∗)e−
1
2 (w−w∗)T∇2E(w∗)(w−w∗)dw

= e−E(w∗)

∫
Val(W)

e−
1
2 (w−w∗)T∇2E(w∗)(w−w∗)dw = e−E(w∗)

√
(2π)D|∇2E(w∗)|−1,

by assuming that ∇2E(w∗) is positive definite, and recognizing the last integral as the normalization constant of a
multivariate Gaussian distribution.

Finally, the desired approximate posterior is given by

p(w | D) ≈ e−Ê(w)

Z
=

e−E(w∗)e−
1
2 (w−w∗)T∇2E(w∗)(w−w∗)

e−E(w∗)
√
(2π)D|∇2E(w∗)|−1

= N (w | w∗,
[
∇2E(w∗)

]−1
).

In other words, the Laplace approximation to the posterior distribution is a multivariate Gaussian distribution
whose mean is the maximum a posteriori estimate and whose covariance matrix is the inverse of the Hessian of the
energy function at that estimate.

The posterior predictive probability p(y | x,D) of class y given observation x and dataset D is given by

p(y | x,D) =

∫
Val(W)

p(y,w | x,D)dw =

∫
Val(W)

p(y | w,x,D)p(w | x,D)dw =

∫
Val(W)

p(y | w,x)p(w | D)dw,

by using the facts that Y ⊥⊥ D | W,X, and W ⊥⊥ X | D. In other words, the posterior predictive probability is an
expected value with respect to the posterior distribution.

We may combine the Laplace approximation with a Monte Carlo approximation to obtain an approximate
posterior predictive probability. Concretely, we may approximate p(y | x,D) by

p(y | x,D) ≈
∫
Val(W)

p(y | w,x)N (w | w∗,
[
∇2E(w∗)

]−1
)dw ≈ 1

S

S∑
s=1

σ(wsx)
y(1− σ(wsx))

1−y,

where w1, . . . ,wS is an iid dataset distributed according to N (· | w∗,
[
∇2E(w∗)

]−1
), which may be obtained by

standard methods.
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9 Exponential family
A probability density or mass function p(· | θ) belongs to the exponential family if it can be written as

p(x | θ) = h(x) exp(η(θ)ϕ(x))

Z(θ)
= h(x) exp (η(θ)ϕ(x)−A(θ)) ,

for every assignment x ∈ Val(X), for some choice of functions h : Val(X) → R>0, η : Val(Θ) → RD, and
ϕ : Val(X) → RD. If η(θ) = θ for all θ, the distribution is said to be in canonical form.

Furthermore, the log-partition function A is given by A(θ) = logZ(θ), and the partition function Z must be
given by either

Z(θ) =

∫
Val(X)

h(x) exp(η(θ)ϕ(x)) dx

or

Z(θ) =
∑

x∈Val(X)

h(x) exp(η(θ)ϕ(x)),

depending on whether p(· | θ) is a density or mass function, respectively.
As an example, consider the Bernoulli pmf Ber(· | θ), which is defined on {0, 1} as Ber(x | θ) = θx(1 − θ)1−x.

Assuming θ ∈ (0, 1),

Ber(x | θ) = exp
(
log
(
θx(1− θ)1−x

))
= exp(x log θ + (1− x) log(1− θ)).

By letting h(x) = 1, ϕ(x) = (x, 1 − x), η(θ) = (log θ, log(1 − θ)), and Z(θ) = 1, we see that the Bernoulli pmf
Ber(· | θ) is in the exponential family, for any θ ∈ (0, 1).

Alternatively, by letting h(x) = 1, ϕ(x) = x, η(θ) = log θ
1−θ , and Z(θ) = 1

1−θ , it is easy to inspect that

Ber(x | θ) = (1− θ) exp

(
x log

(
θ

1− θ

))
,

for x ∈ {0, 1} and θ ∈ (0, 1). In this case, the Bernoulli parameter θ is a sigmoid function of η(θ), since

η(θ) = log
θ

1− θ
=⇒ eη(θ) =

θ

1− θ
=⇒ θ =

eη(θ)

1 + eη(θ)
=

1

1 + e−η(θ)
.

As another example, consider the Gaussian pdf N (· | µ, σ2). By letting θ = (µ, σ2), h(x) = 1, ϕ(x) = (x, x2),
η(θ) = ( µ

σ2 ,− 1
2σ2 ), and Z(θ) =

√
2πσ2 exp

(
µ2

2σ2

)
,

exp(xµσ2 − x2

2σ2 )
√
2πσ2 exp

(
µ2

2σ2

) =
1√
2πσ2

exp

(
xµ

σ2
− x2

2σ2
− µ2

2σ2

)
=

1√
2πσ2

e−
(x−µ)2

2σ2 = N (x | µ, σ2).

Therefore, the Gaussian pdf N (· | µ, σ2) is in the exponential family for any µ and σ2 > 0.
The exponential family also includes the gamma, beta, Dirichlet, categorical, and Poisson distributions.
Consider a univariate probability density function p(· | θ) in canonical form given by

p(x | θ) = h(x) exp (θϕ(x))

Z(θ)
,

and suppose the partition function Z is differentiable. By the chain rule,

d

dθ
A(θ) =

d

dθ
logZ(θ) =

d

dθ
log

[∫
Val(X)

h(x) exp (θϕ(x)) dx

]
=

1

Z(θ)

d

dθ

∫
Val(X)

h(x) exp (θϕ(x)) dx.

Furthermore, suppose the function f given by f(x, θ) = h(x) exp (θϕ(x)) is differentiable with respect to θ, and
that both f and ∂f/∂θ are continuous in Val(X)×Val(Θ). In that case, the Leibniz integral rule states that

d

dθ

∫
Val(X)

h(x) exp (θϕ(x)) dx =

∫
Val(X)

d

dθ
[h(x) exp (θϕ(x))] dx.
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By the chain rule and the definition of p(x | θ),
d

dθ
A(θ) =

1

Z(θ)

∫
Val(X)

h(x) exp (θϕ(x))ϕ(x) dx =

∫
Val(X)

p(x | θ)ϕ(x) dx = Ep(X|θ)[ϕ(X)].

Using the assumptions outlined above, the second derivative of A with respect to θ is given by

d2

dθ2
A(θ) =

d

dθ

∫
Val(X)

h(x) exp (θϕ(x)−A(θ))ϕ(x) dx.

Supposing that the function f given by f(x, θ) = h(x) exp (θϕ(x)−A(θ))ϕ(x) is differentiable with respect to θ,
and that both f and ∂f/∂θ are continuous in Val(X)×Val(Θ), the Leibniz integral rule states that

d2

dθ2
A(θ) =

∫
Val(X)

d

dθ
[h(x) exp (θϕ(x)−A(θ))ϕ(x)] dx

=

∫
Val(X)

h(x)ϕ(x) exp (θϕ(x)−A(θ))

[
ϕ(x)− d

dθ
A(θ)

]
dx

=

∫
Val(X)

h(x)ϕ(x) exp (θϕ(x)−A(θ))
[
ϕ(x)− Ep(X|θ)[ϕ(X)]

]
dx

=

[∫
Val(X)

ϕ(x)2p(x | θ) dx

]
− Ep(X|θ)[ϕ(X)]

∫
Val(X)

h(x)ϕ(x) exp (θϕ(x)−A(θ)) dx

= Ep(X|θ)[ϕ(X)2]− Ep(X|θ)[ϕ(X)]2 = varp(X|θ)[ϕ(X)].

The analogous result for a well-behaved multivariate probability density function p(· | θ) in canonical form
states that the gradient ∇A(θ) of A at θ is given by ∇A(θ) = Ep(X|θ)[ϕ(X)] , and that the Hessian matrix ∇2A(θ)
of A at θ is given by ∇2A(θ) = covp(X|θ)[ϕ(X)]. Because a covariance matrix is always positive semidefinite, the
log-partition function A of such well-behaved multivariate probability density function is convex.

Consider an iid dataset D = x1, . . . ,xN distributed according to p(· | θ), which is in the exponential family.
The corresponding likelihood p(D | θ) is given by

p(D | θ) =
N∏
i=1

p(xi | θ) =
N∏
i=1

h(xi) exp(η(θ)ϕ(xi))

Z(θ)
=

1

Z(θ)N

[
N∏
i=1

h(xi)

][
N∏
i=1

exp(η(θ)ϕ(xi))

]

=
1

Z(θ)N

[
N∏
i=1

h(xi)

]
exp

(
N∑
i=1

η(θ)ϕ(xi)

)
=

1

Z(θ)N

[
N∏
i=1

h(xi)

]
exp

(
η(θ)

N∑
i=1

ϕ(xi)

)
.

Notice that if the function h is constant and the number of observations N is known, the so-called sufficient
statistics ϕ(D) =

∑N
i=1 ϕ(xi) of the dataset D are sufficient to compute the likelihood under any parameter θ. This

is a crucial property of distributions in the exponential family.
Now suppose that p(· | θ) can be written in canonical form, and that h(x) = 1, for all x. In that case, the

log-likelihood p(D | θ) is given by

log p(D | θ) = log

[
1

Z(θ)N
exp

(
θ

N∑
i=1

ϕ(xi)

)]
= θ

N∑
i=1

ϕ(xi)−N logZ(θ) = θϕ(D)−NA(θ),

where ϕ(D) =
∑N

i=1 ϕ(xi) are the sufficient statistics.
As already mentioned, the log-partition function A of a well-behaved probability density (or mass) function

in canonical form is convex. Since θϕ(D) is a linear function of θ, the log-likelihood given by log p(D | θ) =
θϕ(D)−NA(θ) is concave, and therefore has at most one global maximum.

Furthermore, the gradient ∇θ log p(D | θ) at θ of such well-behaved probability density (or mass) function in
canonical form is given by

∇θ log p(D | θ) = ∇θ [θϕ(D)−NA(θ)] = ϕ(D)−NEp(X|θ)[ϕ(X)].

Therefore, if the parameter θ is an (interior) local maximum, which would necessarily be the maximum likelihood
estimate, then

Ep(X|θ)[ϕ(X)] =
1

N
ϕ(D) =

1

N

N∑
i=1

ϕ(xi).
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In other words, if the parameter θ is an (interior) local maximum, the expected value of the sufficient statistics
given θ must match the empirical mean of the sufficient statistics.

A generalized linear model is a regression/classification model that assumes that the probability density/mass
function associated to the target variable Y given an observation x and a parameter vector w is in the exponential
family. Furthermore, the conditional expected value of Y must be given by E[Y | X = x,W = w] = f(wx), where
f is a so-called activation function, whose inverse f−1 is called a link function.

Linear regression is a generalized linear model whose activation function f is the identity, since the probability
density associated to target y ∈ R given observation x ∈ RD and parameter vector w is given by

p(y | x,w) = N(y | wx, σ2),

assuming a known variance σ2.
Logistic regression is a generalized linear model whose activation function f is sigmoid, since the probability

associated to target y ∈ {0, 1} given observation x ∈ RD and parameter vector w is given by

p(y | x,w) = σ(wx)y(1− σ(wx))1−y = Ber(y | σ(wx)).

10 Bayesian networks
This section briefly presents Bayesian networks, which are probabilistic graphical models. For more details, see the
corresponding notes.

Consider the task of representing a joint probability mass function p for a random vector X = (X1, . . . , XD).
By the chain rule of probability, for any assignment x ∈ Val(X),

p(x) = p(x1, . . . , xD) = p(x1)

D∏
j=2

p(xj | x1, . . . , xj−1).

Suppose each discrete random variable in X has exactly K valid assignments. In that case, the conditional probabil-
ity mass function for Xj given X1, . . . , Xj−1 may be represented by a table with (K − 1)Kj−1 elements. Therefore,
the total number of free parameters needed to represent the full joint p is

D∑
j=1

(K − 1)Kj−1 = (K − 1)
1−KD

1−K
= KD − 1.

Because the number of free parameters grows exponentially with the number of variables D, learning requires a
large amount of data, unless independence assumptions are made.

A Bayesian network (G, p) represents independence statements about a joint probability mass/density function
p for a random vector X = (X1, . . . , XD) using a directed acyclic graph G = (V,E), such that V = {X1, . . . , XD},
and E ⊆ V 2. The joint probability function p is said to factorize over G, and is given by

p(x) = p(x1, . . . , xD) =

D∏
j=1

p(xj | paXj
),

for every x ∈ Val(X), where paXj
is the assignment to the parents PaXj

of Xj in G.
In the case of a Bayesian network over discrete random variables with exactly K valid assignments, the condi-

tional probability mass function for Xj given PaXj
may be represented by a table with (K − 1)K |PaXj

| elements.
Therefore, independence assumptions may lead to a drastic decrease in the number of free parameters.

In a Bayesian network, every random variable is conditionally independent of its non-descendants given its
parent variables. This is called the local Markov property. Every variable is also independent of every other given
its Markov blanket: its children, parents and other parents of its children.

Different directed acyclic graphs may represent the same independence statements between random variables in
a Bayesian network. Two directed acyclic graphs are Markov equivalent if they represent the same set of conditional
independence statements. Let an immorality in a directed acyclic graph G = (V,E) be defined as a set of distinct
vertices {U, V,W} such that (U, V ) ∈ E, (W,V ) ∈ E, (U,W ) /∈ E and (W,U) /∈ E. Two directed acyclic graphs
are Markov equivalent if and only if they they have the same set of immoralities and the same underlying graph.
The underlying (undirected) graph of a directed graph G is the graph obtained by replacing all edges of G with
undirected edges.
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The following definitions are useful to establish if a random variable X is independent of Y given Z in a Bayesian
network.

Let G = (V,E) be a directed acyclic graph, G′ its underlying graph and P ′ a path on G′. A set of three distinct
nodes {U, V,W} in P ′ is a v-structure if (U, V ) ∈ E and (W,V ) ∈ E and these two edges are in P ′. In this structure,
V is called a collider. In simple terms, in a v-structure, a collider V has two distinct neighbors U and W in P ′ with
edges ending in V in the corresponding directed acyclic graph.

An undirected path P is said to be active given the set of random variables Z if all non-colliders in P are not
in Z, and all colliders in P are in Z or have a descendant in Z.

In a Bayesian network (G, p), if all undirected paths between random variables X and Y are inactive given the
set of random variables Z, then X ⊥⊥ Y |Z. In such case, it is said that X and Y are d-separated by Z, denoted
d-sepG(X;Y |Z). The notation extends to sets of variables naturally. Random variables that are not d-separated
are d-connected. It is important to note that d-connected variables may still be independent. However, variables
that are d-separated by Z are always independent given Z.

We let I(p) denote the set of independence statements of the form X ⊥⊥ Y|Z that hold according to the joint
probability mass/density function p. If G is a graph in a Bayesian network, then I(G) denotes the set of statements
of the form X ⊥⊥ Y|Z such that d-sepG(X ;Y|Z). A graph is an I-map for a set of independence statements I if
I(G) ⊆ I. Therefore, if B = (G, p) is a Bayesian network, G is an I-map for I(p). If I(G) = I(p), then G is a
perfect map for p.

Causal relationships may be useful for building models intuitively. In this case, a causal variable often has an
edge ending at an effect variable. In causal models, causal reasoning is defined as computing the posterior probability
of effects given causes. The posterior probability of causes given effects is called evidential reasoning. Intercausal
reasoning combines causal and evidential reasoning. Explaining away is the term given to the intercausal reasoning
pattern in that a cause explains an effect and, by consequence, lowers the probability of another cause. However,
it must be clear that independencies in Bayesian networks are not (in general) causal. A model in which the edges
are causally reversed may be equally valid to represent the same set of independencies.

We now present some examples of probabilistic models that are conveniently represented as Bayesian networks.
Consider an iid dataset D = x1, . . . , xN distributed according to p(· | θ). The corresponding joint density

p(x1, . . . , xN , θ) is given by

p(x1, . . . , xN , θ) = p(θ)p(x1, . . . , xN | θ) = p(θ)

N∏
i=1

p(xi | θ),

which may be represented by a Bayesian network (G, p) where G = (V,E), V = {Θ} ∪ {X1, . . . , XN}, and E =
{(Θ, Xi) ∈ V 2 | 1 ≤ i ≤ N}.

A naive Bayes classifier assumes that the joint density p(x, y) of observation x and class y is given by

p(x, y) = p(y)p(x | y) = p(y)

D∏
j=1

p(xj | y),

which may be represented by a Bayesian network (G, p) where G = (V,E), V = {Y } ∪ {X1, . . . , XD}, and E =
{(Y,Xj) | 1 ≤ j ≤ D}.

A Markov chain is a probabilistic model defined over a sequence of random variables X1, . . . , XT . Each random
variable Xt typically represents the state of a process at time step t, and the model encodes the assumption that
the future is independent of the past given the present. The density p(x1, . . . , xT ) is given by

p(x1, . . . , xT ) = p(x1)

T−1∏
t=1

p(xt+1 | xt),

which may be represented by a Bayesian network (G, p) where G = (V,E), V = {X1, . . . , XT }, and E =
{(Xt, Xt+1) | 1 ≤ t ≤ T − 1}.

A hidden Markov model is a probabilistic model defined over two sequences of random variables: Z1, . . . , ZT ,
and X1, . . . , XT . Each random variable Zt typically represents the underlying state of a process at time step t,
while Xt represents the observed state at time step t. The density p(z1, . . . , zT , x1, . . . , xT ) is given by

p(z1, . . . , zT , x1, . . . , xT ) = p(z1)p(x1 | z1)
T∏

t=2

p(zt | zt−1)p(xt | zt),
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which may be represented by a Bayesian network (G, p) where G = (V,E), V = {X1, . . . , XT } ∪ {Z1, . . . , ZT }, and
E = {(Zt−1, Zt) | 2 ≤ t ≤ T} ∪ {(Zt, Xt) | 1 ≤ t ≤ T}.

Consider a Bayesian network (G, p) for a discrete random vector X, and suppose X is partitioned into a query
vector Xq, a visible vector Xv, and a nuisance vector Xn. The task of computing the probability p(xq | xv) =∑

xn
p(xq,xn | xv) for some assignment xq,xv ∈ Val(Xq,Xv) is called inference. The continuous random vector

case is analogous. Inference may be performed by either exact or approximate algorithms, which are outside the
scope of this text. For more details, see the corresponding notes.

Consider an iid dataset D = x1, . . . ,xN distributed according to p(· | θ∗), for an unknown θ∗. Furthermore,
suppose p(· | θ∗) factorizes over a known graph G.

Suppose p(· | θ) also factorizes over G. In that case, the likelihood p(D | θ) of D under θ is given by

p(D | θ) =
N∏
i=1

p(xi | θ) =
N∏
i=1

D∏
j=1

p(xi,j | paXi,j
,θ).

This definition leads to the usual tasks of maximum likelihood and maximum a posteriori estimation. For more
details on learning in Bayesian networks, see the corresponding notes.

11 Expectation maximization
Expectation maximization is a method that may be employed to estimate parameters associated to so-called hidden
random variables, whose assignments are never directly observed.

There are two main reasons for estimating such parameters. Firstly, the task naturally appears in practical
problems. Secondly, positing the existence of hidden random variables allows defining complex joint probability
density functions for observed random variables using few parameters. For instance, it may be impossible to
represent all independence statements on given set of (observed) variables by a Bayesian network without adding
hidden variables.

Concretely, consider a dataset D = (x1, z1), . . . , (xN , zN ), which is iid according to p(· | θ∗), for some unknown
θ∗. Furthermore, suppose that each xi is an assignment to a continuous random vector Xi, and that each zi is an
assignment to a discrete random vector Zi. By our definition of iid, for every parameter θ ∈ Val(Θ),

p(x1, z1, . . . ,xN , zN | θ) =
N∏
i=1

p(xi, zi | θ).

If Z1, . . . ,ZN are hidden random vectors, then the assignments z1, . . . , zN are unknown, and the (observed)
likelihood p(D | θ) of the partially observed dataset D given the parameter θ is defined as

p(D | θ) = p(x1, . . . ,xN | θ).

Consider the task of finding a maximum likelihood or maximum a posteriori estimate given a partially observed
dataset D. By marginalization,

p(D | θ) = p(x1, . . . ,xN | θ) =
∑
z1

· · ·
∑
zN

N∏
i=1

p(xi, zi | θ) =
N∏
i=1

p(xi | θ) =
N∏
i=1

∑
zi

p(xi, zi | θ).

Assume that p(xi | θ) > 0, for every i and θ. In that case, the corresponding log-likelihood ℓ(θ) is given by

ℓ(θ) = log p(D | θ) = log

N∏
i=1

p(xi | θ) =
N∑
i=1

log p(xi | θ) =
N∑
i=1

log

[∑
zi

p(xi, zi | θ)

]
.

The log-likelihood ℓ(θ) could be maximized with respect to θ by typical gradient-based methods (Sec. 2.4).
However, many models of practical interest require enforcing parameter constraints that require non-trivial adap-
tations.

Expectation maximization is an iterative maximization procedure that starts at a (possibly arbitrary) parameter
estimate θ(0), and obtains each parameter estimate θ(t+1) by maximizing a function Q(·,θ(t)). The procedure relies
on three simple requirements, which we present next.

Firstly, the procedure requires that Q(θ′,θ′) = ℓ(θ′), for every θ′.
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Secondly, the procedure requires Q(·,θ′) to be a lower bound on ℓ, for every θ′. In that case, ℓ(θ) ≥ Q(θ,θ′),
for every θ and θ′.

Thirdly, the procedure requires that Q(θ(t+1),θ(t)) ≥ Q(θ(t),θ(t)), for every θ(t), where θ(t+1) is the subsequent
estimate obtained by the procedure. Notice that this is obviously true if θ(t+1) is a global maximum of Q(·,θ(t)).
Expectation maximization is particularly useful when Q(·,θ(t)) is easy to maximize, for every θ(t).

Combining these three requirements,

ℓ(θ(t+1)) ≥ Q(θ(t+1),θ(t)) ≥ Q(θ(t),θ(t)) = ℓ(θ(t)),

for every θ(t), where θ(t+1) is the subsequent estimate obtained by the procedure. Consequently, the sequence
ℓ(θ(0)), . . . , ℓ(θ(T )) is non-decreasing. Notice that this fact does not guarantee convergence to either local or global
maxima, although the procedure is guaranteed to converge to critical points for many models of practical interest.

A convenient auxiliary function Q : Val(Θ)2 → R that satisfies these requirements, and therefore allows maxi-
mizing the log-likelihood given a partially observed dataset, is given by

Q(θ,θ′) =

N∑
i=1

∑
zi

p(zi | xi,θ
′) log

p(xi, zi | θ)
p(zi | xi,θ

′)

=

N∑
i=1

∑
zi

p(zi | xi,θ
′) log p(xi, zi | θ)−

N∑
i=1

∑
zi

p(zi | xi,θ
′) log p(zi | xi,θ

′)

=

N∑
i=1

Ep(Zi|xi,θ′)[log p(xi,Zi | θ)] +
N∑
i=1

H[p(Zi | xi,θ
′)],

assuming that p(zi | xi,θ
′) > 0, for every i, and assignment θ′ to Θ. Without further assumptions, notice that

ℓ(θ) =

N∑
i=1

log

[∑
zi

p(xi, zi | θ)

]
=

N∑
i=1

log

[∑
zi

p(zi | xi,θ
′)
p(xi, zi | θ)
p(zi | xi,θ

′)

]
,

for every θ,θ′ ∈ Val(Θ). Furthermore, notice that

Q(θ,θ′) =

N∑
i=1

∑
zi

p(zi | xi,θ
′) log

p(xi, zi | θ)
p(zi | xi,θ

′)
=

N∑
i=1

∑
zi

p(zi | xi,θ
′) log

p(zi | xi,θ)p(xi | θ)
p(zi | xi,θ

′)

=

N∑
i=1

∑
zi

p(zi | xi,θ
′) log

p(zi | xi,θ)

p(zi | xi,θ
′)

+

N∑
i=1

∑
zi

p(zi | xi,θ
′) log p(xi | θ)

= −
N∑
i=1

∑
zi

p(zi | xi,θ
′) log

p(zi | xi,θ
′)

p(zi | xi,θ)
+

N∑
i=1

log p(xi | θ)

= ℓ(θ)−
N∑
i=1

KL(p(Zi | xi,θ
′)||p(Zi | xi,θ)),

for every θ and θ′. Recall that the Kullback-Leibler divergence between two pmfs is always non-negative. Therefore,
ℓ(θ) ≥ Q(θ,θ′), for any θ and θ′. The Kullback-Leibler divergence between two pmfs is also zero if and only if they
are equal. Therefore, Q(θ′,θ′) = ℓ(θ′), for every θ and θ′. The first two requirements are satisfied.

Therefore, if we guarantee that Q(θ(t+1),θ(t)) ≥ Q(θ(t),θ(t)) during expectation maximization, then it is guar-
anteed that the sequence ℓ(θ(0)), . . . , ℓ(θ(T )) is non-decreasing.

As a final note, recall that the auxiliary function Q is given by

Q(θ,θ′) =

N∑
i=1

Ep(Zi|xi,θ′)[log p(xi,Zi | θ)] +
N∑
i=1

H[p(Zi | xi,θ
′)] =

N∑
i=1

Ep(Zi|xi,θ′)[log p(xi,Zi | θ)] + C,

where C is a constant with respect to θ. Thus, for practical purposes, the term C may be omitted.
A Gaussian mixture model assumes that the probability density p(x | θ) associated to observation x given the

parameter vector θ is given by

p(x | θ) =
∑
z

p(z | θ)p(x | z,θ) =
∑
z

πzN (x | µz,Σz),
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where Val(Z) = {1, . . . ,K}, and the parameter vector θ contains the parameters πz, µz, and Σz, for every z. A
parameter vector θ is valid if and only if

∑
z′ πz′ = 1, and, for every z, πz > 0, and Σz is a valid covariance matrix.

In other words, a Gaussian mixture model assumes that the probability density function over observations is a
weighted average (mixture) of K Gaussian density functions.

Clustering is a typical application for Gaussian mixture models. Clustering is the task of partitioning a set
of observations into so-called clusters (sets of observations), such that similar observations belong to the same
cluster. In the case of clustering based on Gaussian mixture models, each z ∈ Val(Z) corresponds to a cluster, and
p(z | x,θ) ∝z πzN (x | µz,Σz) represents the probability of observation x belonging to cluster z according to the
parameter vector θ.

In a Gaussian mixture model, E[X | θ] =
∑

z πzµz, since

E[Xj | θ] =
∫
Val(Xj)

xjp(xj | θ) dxj =

∫
Val(Xj)

xj

[∫
Val(X−j)

[∑
z

πzN (x | µz,Σz)

]
dx−j

]
dxj

=

∫
Val(X)

[∑
z

πzxjN (x | µz,Σz)

]
dx =

∑
z

πz

[∫
Val(X)

xjN (x | µzΣz) dx

]
=
∑
z

πzµz,j .

Consider a dataset D = (x1, z1), . . . , (xN , zN ), which is iid according to p(· | θ∗), for an unknown θ∗. Further-
more, suppose the assignments z1, . . . , zN are unknown.

In that case, the (observed) log-likelihood ℓ(θ) = log p(D | θ) of the partially observed dataset D given the
parameter θ under a Gaussian mixture model is given by

ℓ(θ) =

N∑
i=1

log p(xi | θ) =
N∑
i=1

log

[∑
z

πzN (xi | µz,Σz)

]
.

It is possible to attempt to maximize ℓ(θ) with respect to θ using expectation maximization. An appropriate
auxiliary function Q is given by

Q(θ,θ′) =

N∑
i=1

Ep(Zi|xi,θ′)[log p(xi, Zi | θ)] =
N∑
i=1

K∑
zi=1

p(zi | xi,θ
′) log p(xi, zi | θ)

=

N∑
i=1

K∑
zi=1

p(zi | xi,θ
′) log [p(zi | θ)p(xi | zi,θ)]

=

N∑
i=1

K∑
zi=1

p(zi | xi,θ
′) log p(zi | θ) +

N∑
i=1

K∑
zi=1

p(zi | xi,θ
′) log p(xi | zi,θ)

=

K∑
zi=1

N∑
i=1

p(zi | xi,θ
′) log πzi +

K∑
zi=1

N∑
i=1

p(zi | xi,θ
′) logN (xi | µzi ,Σzi),

where p(zi | xi,θ
′) ∝zi p(xi | zi,θ′)p(zi | θ′), which is easy to compute for every θ′ and i. These computations

constitute the so-called expectation step of the algorithm. We next discuss the so-called maximization step of the
algorithm, which consists on maximizing Q(θ,θ′) with respect to θ.

Firstly, consider the task of maximizing Q(θ,θ′) with respect to π, which is contained in θ. Because the
remaining terms of Q(θ,θ′) are constant with respect to π, this task is equivalent to maximizing

K∑
zi=1

N∑
i=1

p(zi | xi,θ
′) log πzi ,

with respect to π, subject to the constraint
∑

z′ πz′ = 1. As will become clear, the constraint πz > 0, for every
z, will be satisfied naturally assuming proper initialization. By the Lagrange multiplier theorem, if π is a local
maximum subject to our constraint, then

∇π

[
K∑

zi=1

N∑
i=1

p(zi | xi,θ
′) log πzi + λ

(
1−

∑
z′

πz′

)]
= 0,
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for some λ ∈ R. Therefore, for every z ∈ Val(Z),

∂

∂πz

[
K∑

zi=1

N∑
i=1

p(zi | xi,θ
′) log πzi + λ

(
1−

∑
z′

πz′

)]
=

1

πz

[
N∑
i=1

p(Zi = z | xi,θ
′)

]
− λ = 0.

If π is a local maximum subject to our constraint, then

λπz =

N∑
i=1

p(Zi = z | xi,θ
′),

for every z. The fact that
∑

z′ πz′ = 1 also implies that

λ =
∑
z′

λπz′ =

N∑
i=1

K∑
z′=1

p(Zi = z′ | xi,θ
′) = N.

Finally, if π is a local maximum subject to our constraint, then

πz =
1

N

N∑
i=1

p(Zi = z | xi,θ
′),

for every z. Notice that πz > 0, as long as the analogous statement is true for the previous parameter vector θ′,
satisfying the missing constraint. In summary, the updated probability πz of cluster z is the average probability of
an observation belonging to class z according to the previous parameter vector θ′.

We now consider the task of maximizing Q(θ,θ′) with respect to µz and Σz, individually for each z. Because
the remaining terms of Q(θ,θ′) are constant with respect to these parameters, this task is equivalent to maximizing

N∑
i=1

p(Zi = z | xi,θ
′) logN (xi | µz,Σz),

with respect to µz and Σz, subject to the constraint that Σz is a valid covariance matrix. This task is very similar
to the task of maximizing the log-likelihood of a dataset that is iid according to a multivariate Gaussian distribution,
which we discussed in Sec. 4.

It is possible to show that if µz and Σz are local maxima of Q(θ,θ′) subject to our constraint, then

µz =
1

Nπz

N∑
i=1

p(Zi = z | xi,θ
′)xi,

Σz =
1

Nπz

[
N∑
i=1

p(Zi = z | xi,θ
′)xix

T
i

]
− µzµ

T
z .

Intuitively, the updated mean µz associated to cluster z is the average observation weighted by how strongly class
z is associated to each observation.

This completes the description of the steps involved in attempting to maximize the (observed) log-likelihood
under a Gaussian mixture model. However, this procedure may lead to severe overfitting, which may be avoided
by using expectation maximization to attempt to obtain a maximum a posteriori estimate.

It is important to notice that the (observed) log-likelihood under a Gaussian mixture model does not generally
have a single global optimum. For instance, swapping (πz, µz,Σz) with (πz′ , µz′ ,Σz′) leads to the same (observed)
log-likelihood, for any z ̸= z′.

K-means is a widely employed iterative clustering algorithm that resembles expectation maximization applied
to Gaussian mixture models. Consider a sequence µ

(t)
1 , . . . ,µ

(t)
K composed of K so-called cluster centers at iteration

t. For a maximum number of iterations T , for every z, the K-means algorithm obtains the z-th cluster center at
iteration t+ 1 given by

µ(t+1)
z =

1

Nz

N∑
i=1

I(zi = z)xi,
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where zi = argminz ||xi −µ
(t)
z || is the closest cluster center at iteration t to observation xi, and Nz =

∑
i I(zi = z)

is the number of observations whose closest cluster center at iteration t is z. In other words, at each iteration,
each cluster center is moved to the average of the observations assigned to it. The success of K-means is highly
dependent on how the cluster centers are initialized.

The number of clusters K is a hyperparameter for Gaussian mixture models and for K-means.
In practice, for Gaussian mixture models, K is typically chosen from a finite set of alternatives by comparing

their (observed) log-likelihood on a test set. Comparisons based on the training set are inconclusive, since larger K
will generally achieve a higher value, which is another example of overfitting.

In practice, for K-means, K is typically chosen from a finite set of alternatives by comparing their average
reconstruction error J on the training set. The average reconstruction error J is given by

J =
1

N

N∑
i=1

||xi − µzi ||
2,

where µzi is the closest cluster center to observation xi. The average reconstruction error will also typically decrease
when K increases. Heuristically, K is typically selected when the rate of decrease in J becomes small.

A Bernoulli mixture model assumes that the probability p(x | θ) associated to observation x ∈ {0, 1}D given
the parameter vector θ is given by

p(x | θ) =
∑
z

p(z | θ)p(x | z,θ) =
∑
z

πz

D∏
j=1

Ber(xj | θz,j) =
∑
z

πz

D∏
j=1

θ
xj

z,j(1− θz,j)
1−xj ,

where Val(Z) = {1, . . . ,K}, and the parameter vector θ contains πz and θz,j , for every z and j. A parameter vector
θ is valid if and only if

∑
z′ πz′ = 1, πz > 0, and 0 < θz,j < 1, for every z and j. In other words, a Bernoulli mixture

model assumes that the joint probability mass function over observations is a weighted average (mixture) of K
joint probability mass functions, each of which assumes that each feature is independent of the others. Analogously
to a Gaussian mixture model, expectation maximization may be employed to attempt to maximize the (observed)
log-likelihood under a Bernoulli mixture model.

Consider a regression model that assumes that the probability density p(y | x,θ) associated to target y ∈ R
given observation x ∈ RD and parameter vector θ is given by

p(y | x,θ) =
∑
z

p(y, z | x,θ) =
∑
z

p(y | x, z,θ)p(z | x,θ) =
∑
z

N (y | wzx, σ
2
z)S(VTx)z,

where S : RK → (0, 1)K is the softmax function, Val(Z) = {1, . . . ,K}, and the parameter vector θ contains
the D × K matrix V, and the parameters wz ∈ RD and σ2

z > 0, for every z. In other words, the probability
density function over targets given an observation x is a weighted average (mixture) of K Gaussian probability
density functions, whose weights depend on x. This model is a particular instance of a mixture of experts, and
is particularly useful when the probability density function over targets given observations is multimodal. In such
cases, the posterior mean, which is the optimal prediction under a squared error loss function, is not generally a
good prediction, and should be substituted by the posterior mode. Once again, expectation maximization may be
employed to attempt to maximize the (conditional, observed) log-likelihood of such model.

The models described so far expected a dataset containing unknown assignments to a sequence of hidden random
vectors (or variables) Z1, . . . ,ZN .

In contrast, consider a dataset D = x1, . . . ,xN , where xi ∈ RD, which is iid according to p(· | θ∗), for an
unknown θ∗. Furthermore, suppose that each observation xi can be partitioned into an assignment xi,v to an
observed random vector Xi,v, and an unknown assignment xi,h to a hidden random vector Xi,h. In other words,
there is not (necessarily) a correspondence between hidden random vectors across elements of the dataset.

In such case, it is important to consider the so-called observation model, which models the mechanism that hides
assignments. Concretely, consider the dataset D mentioned above, and let oi ∈ {0, 1}D represent which features
are observed in observation xi, for every i, such that oi,j = 1 if and only if Xi,j is an observed random variable.

The corresponding probability density p(xi,v,oi | θ) associated to the assignment xi,v given θ when only xi,v is
observed (which is encoded in oi) is given by

p(xi,v,oi | θ) =
∫
Val(Xi,h)

p(xi,v,xi,h,oi | θ) dxi,h =

∫
Val(Xi,h)

p(oi | xi,v,xi,h,θ)p(xi,v,xi,h | θ) dxi,h.
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The so-called missing at random assumption states that Oi ⊥⊥ Xi,h,Θ | Xi,v, for every i. In other words, which
variables are observed is independent of the assignment to the hidden variables (and parameter vector) given the
assignment to the observed variables. Under such assumption,

p(xi,v,oi | θ) =
∫
Val(Xi,h)

p(oi | xi,v)p(xi,v,xi,h | θ) dxi,h = p(oi | xi,v)p(xi,v | θ).

Therefore, the probability density associated to the sequence of observed random vectors and their corresponding
assignments in D given θ under a missing at random assumption is given by

p(x1,v,o1, . . . ,xN,v,oN | θ) =
N∏
i=1

p(xi,v,oi | θ) =

[
N∏
i=1

p(oi | xi,v)

][
N∏
i=1

p(xi,v | θ)

]
.

Clearly, maximizing such probability density with respect to θ is equivalent to maximizing the (observed) log-
likelihood, which we define as

ℓ(θ) = log

N∏
i=1

p(xi,v | θ) =
N∑
i=1

log p(xi,v | θ),

assuming that p(xi,v | θ) > 0, for every i and θ.
In summary, maximizing the (observed) log-likelihood is only appropriate when the observation model hides a

random vector (or variable) disregarding its assignment. Expectation maximization may be employed to attempt
to maximize the corresponding (observed) log-likelihood under many joint probability density/mass functions of
practical interest, such as the multivariate Gaussian distribution.

Similarly, expectation maximization may also be employed to attempt to maximize the (observed) log-likelihood
of partially observed data in the context of Bayesian networks. For details, see the corresponding notes.

12 Continuous hidden variables
Dimensionality reduction techniques address the task of representing a dataset D = x1, . . . ,xN , where xi ∈ RD, by
a dataset Z = z1, . . . , zN , where zi ∈ Rd, d < D, and each zi corresponds to xi. Different techniques attempt to
preserve different aspects of a dataset D in the corresponding dataset Z.

We now present principal component analysis, a widely used technique for dimensionality reduction. This
technique is highly related to a probabilistic model with continuous hidden variables, which is discussed later in
this section.

Consider a dataset D = x1, . . . ,xN . Firstly, note that the mean projection onto the vector u1 ∈ RD of the
vectors in D can be written as

1

N

N∑
i=1

u1xi = u1
1

N

N∑
i=1

xi = u1x̄,

where x̄ is the empirical mean. Consider the task of finding a unit vector u1 such that the variance

v(u1) =
1

N

N∑
i=1

(u1xi − u1x̄)
2

of the projections onto u1 of the vectors in D is maximum. It can be easily shown that v(u1) can also be written as

v(u1) =
1

N

N∑
i=1

[
(u1xi)

2 − 2(u1xi)(u1x̄) + (u1x̄)
2
]
= uT

1 Σu1,

where Σ = 1
N

∑N
i=1(xi − x̄)(xi − x̄)T is the empirical covariance matrix of the dataset D.

The maximization task outlined above corresponds to finding the maxima of v restricted to the D-dimensional
unit sphere S = {u1 ∈ RD | g(u1) = 0}, where g(u1) = 1 − u1u1. The Lagrange multiplier theorem states that if
u1 is a local maximum of v restricted to S, and ∇g(u1) ̸= 0, then

∇v(u1) + λ1∇g(u1) = 0,
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for some λ1 ∈ R. Thus,

0 = ∇u1

[
uT
1 Σu1

]
+ λ1∇u1

[
1− u1u1

]
= (Σ+ΣT )u1 − 2λ1u1 = 2Σu1 − 2λ1u1,

where (Σ + ΣT ) = 2Σ because Σ is symmetric. Therefore, if u1 is a local maximum of v restricted to S, then
Σu1 = λ1u1 for some λ1. In other words, u1 is an eigenvector of Σ with eigenvalue λ1. Because the variance
v(u1) corresponding to such an eigenvector u1 is the corresponding eigenvalue λ1 = uT

1 Σu1, the eigenvector with
maximum associated eigenvalue is the desired global maximum restricted to S. We omit the proof that such
eigenvector is necessarily a constrained local maximum.

Consider an orthonormal list Li−1 = (u1, . . .ui−1) containing the largest eigenvectors (with respect to their
corresponding eigenvalues), sorted in non-increasing order, of the empirical covariance matrix Σ, for some 1 < i < D.
Furthermore, consider the task of maximizing v(ui) with respect to ui, subject to the constraints that 0 = 1−uiui

and 0 = uiu1 = . . . = uiui−1. In other words, we are interested in a unit vector ui that is orthogonal to every
vector in the list Li−1, and that also has maximum possible variance v(ui). By the Lagrange multiplier theorem,
if ui is a local maximum of v subject to these constraints, then

0 = ∇ui

[
uT
i Σui

]
+ λi∇ui

[
1− uiui

]
+

i−1∑
j=1

λj∇ui

[
uiuj

]
= 2Σui − 2λiui +

i−1∑
j=1

λjuj ,

for some λ1, . . . , λi ∈ R. Consider any vector uk in Li−1. By left-multiplying the equation above by uT
k ,

0 = 2uT
kΣui − 2λiu

T
k ui +

i−1∑
j=1

λju
T
k uj .

Since uk and the desired ui must be orthogonal, and since Li−1 is an orthogonal list of vectors,

0 = 2uT
kΣui + λk.

Because uT
kΣui = (uT

kΣui)
T = (Σui)

Tuk = uT
i Σ

Tuk = uT
i Σuk, and because Σuk = αkuk for some αk ∈ R,

λk = −2uT
i Σuk = −2αku

T
i uk = 0.

Therefore, λk = 0 for any 1 ≤ k ≤ i− 1. Recall that if ui is a local maximum subject to our constraints, then

0 = 2Σui − 2λiui +

i−1∑
j=1

λjuj = 2Σui − 2λiui.

Therefore, Σui = λiui for some λi ∈ R. In other words, ui is an eigenvector of Σ with associated eigenvalue
λi = v(ui). Because the vector ui must be orthogonal to any vector already in Li−1 = (u1, . . .ui−1), the constrained
global maximum is one of the remaining eigenvectors with maximum corresponding eigenvalue. Once again, we
omit the proof that such eigenvector is necessarily a constrained local maximum. Because the list Li = (u1, . . . ,ui)
is composed of orthonormal eigenvectors of the empirical covariance matrix Σ with the highest corresponding
eigenvalues and sorted in non-increasing order, we have completed the inductive step. We also note that Σ is
positive definite whenever (x1, . . . ,xN ) spans RD.

Using such a list of eigenvectors Ld, any observation xi ∈ RD can be represented by an observation zi =
(u1xi, . . . ,udxi) in Rd.

In practice, it is essential to transform an original dataset D′ into a dataset D with empirical mean x̄ = 0
before applying principal component analysis, since the increase in variance along a direction due to translations
is usually irrelevant. In that case, principal component analysis also finds the linear map with minimum average
reconstruction error [2]. In many applications, the dataset D should also have the same empirical variance across
each feature (i.e., the dataset D′ should also be standardized) to minimize the effect of the choice of units.

Consider a dataset D = x1, . . . ,xN with empirical mean x̄ = 0, and the corresponding N × D design matrix
X, where each observation corresponds to a row. A singular value decomposition of X is a factorization given by
X = LSRT , where L is an N ×N orthogonal matrix (LLT = LTL = I), S is a diagonal N ×D matrix composed
of non-negative elements, and R is a D ×D orthogonal matrix. Such factorization always exists.

Since we assumed that D is centered, the corresponding empirical covariance matrix Σ can be written as

Σ =
1

N

N∑
i=1

xix
T
i =

1

N
XTX =

1

N

(
LSRT

)T
LSRT =

1

N
RSTLTLSRT =

1

N
RSTSRT .
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Finally, because R is an orthogonal matrix, ΣR = 1
NRSTS. Therefore, since STS is a D ×D diagonal matrix,

this implies that Σrj =
S2
j,j

N rj , where rj is the j-th column of R. In other words, the j-th column rj of R is an

eigenvector of Σ with eigenvalue S2
j,j

N . Because (r1, . . . , rD) is also an orthonormal basis for RD, this result allows
using a singular value decomposition of X to perform dimensionality reduction using principal component analysis.

We now present probabilistic principal component analysis. Consider a dataset D = (x1, z1), . . . , (xN , zN ),
which is iid according to p(· | θ∗), for some unknown θ∗. Furthermore, suppose that each xi ∈ RD is an assignment
to a continuous random vector Xi, and that each zi ∈ Rd is an assignment to a continuous random vector Zi.

If Z1, . . . ,ZN are hidden random vectors, then the assignments z1, . . . , zN are unknown, and the (observed)
likelihood p(D | θ) of the partially observed dataset D given the parameter θ is defined as

p(D | θ) = p(x1, . . . ,xN | θ) =
N∏
i=1

p(xi | θ).

Probabilistic principal component analysis assumes that the probability density p(z | θ) associated to a hidden
assignment z ∈ Rd given a parameter vector θ is given by p(z | θ) = N (z | 0, I). Furthermore, it assumes that the
conditional probability density p(x | z,θ) associated to an observation x ∈ RD given the hidden assignment z ∈ Rd

and the parameter vector θ is given by

p(x | z,θ) = N (x | Wz+ µ, σ2I),

such that θ contains the D × d matrix W, the vector µ ∈ RD, and σ2 > 0.
Since this probabilistic model is a linear Gaussian system (Sec. 4), the probability density p(x | θ) associated

to an observation x ∈ RD given the parameter vector θ is given by

p(x | θ) =
∫
Val(Z)

p(x | z,θ)p(z | θ) dz =

∫
Val(Z)

N (x | Wz+ µ, σ2I)N (z | 0, I) dz = N (x | µ,WWT + σ2I).

Notice that such joint probability density function over observations only requires Dd + D + 1 parameters,
whereas a multivariate Gaussian distribution over observations would require D(D + 1)/2 +D parameters.

Consider two parameter vectors θ and θ′, which are equal except possibly for their respective weight matrices
W and W′, and suppose that W′ = WR, for an arbitrary d× d orthogonal matrix R. Clearly,

p(x | θ′) = N (x | µ,W′W′T + σ2I) = N (x | µ,WRRTWT + σ2I) = N (x | µ,WWT + σ2I) = p(x | θ).

Therefore, there is an infinite number of weight matrices that lead to each possible joint probability density
function over observations according to this model.

It can also be shown that the probability density p(z | x,θ) associated to the hidden assignment z ∈ Rd given
the observation x ∈ RD and the parameter vector θ is given by

p(z | x,θ) = N (z | M−1WT (x− µ), σ2M−1),

where M = WTW + σ2I is a d× d matrix.
Consider the task of maximizing the (observed) log-likelihood ℓ(θ) with respect to θ, which is given by

ℓ(θ) = log p(D | θ) =
N∑
i=1

log p(xi | θ) =
N∑
i=1

logN (xi | µ,WWT + σ2I).

Furthermore, consider a list (u1, . . . ,ud) composed of orthonormal eigenvectors of the empirical covariance
matrix Σ with the highest corresponding eigenvalues and sorted in non-increasing order. Let U denote a D × d
matrix whose j-th column is uj ∈ RD, and let Λ denote a d×d diagonal matrix such that Λj,j = λj is the eigenvalue
associated to eigenvector uj . It can be shown that the (observed) log-likelihood is maximized when

µ = x̄ =
1

N

N∑
i=1

xi,

σ2 =
1

D − d

D∑
j=d+1

λj ,

W = U(Λ− σ2I)
1
2 .
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Consider the expected value E[Z | x,θ] of the hidden random vector Z given the observation x and the parameter
vector θ, which is given by

E[Z | x,θ] = M−1WT (x− µ) = (WTW + σ2I)−1WT (x− µ).

Using the maximum likelihood estimate θ described above and the fact that UTU = I,

WTW + σ2I = (Λ− σ2I)
1
2UTU(Λ− σ2I)

1
2 + σ2I = Λ− σ2I+ σ2I = Λ.

Therefore, using the same maximum likelihood estimate θ,

E[Z | x,θ] = Λ−1(Λ− σ2I)
1
2UT (x− x̄).

Furthermore, notice that when σ2 → 0, the corresponding expected value

E[Z | x,θ] → Λ− 1
2UT (x− x̄)

is very similar to d-dimensional representation of an observation x ∈ RD obtained by principal component analysis
(after the dataset D is centered), except for the multiplication by the diagonal matrix Λ− 1

2 .

13 Sparse linear models
The success of supervised learning techniques is highly dependent on the appropriate choice of features. Using
few features may lead to poor generalization, while using many features may be too expensive, or even introduce
confounding information into the training data. The task of identifying features that are important for supervised
learning is called feature selection.

In classification, the mutual information I(Xj ;Y ) may be used to measure how much information a discrete
feature variable Xj ∼ pXj has about the class variable Y ∼ pY . This requires approximating the (typically unknown)
probability mass functions pXj

, pY and pXj ,Y by their corresponding empirical distributions given an iid dataset
D. However, these approximations may be unreliable, particularly when the number of observations in D is small.
Furthermore, notice that this approach does not take into account whether a feature is important when considered
together with other features.

Because there are 2D−1 distinct non-empty subsets of a set of D features, evaluating the efficacy of every feature
subset using cross-validation is generally infeasible. Instead, feature selection is typically performed by heuristic
methods. This section describes feature selection heuristics based on logistic regression. Analogous heuristics exist
based on other generalized linear models.

Consider a dataset D = (x1, y1), . . . , (xN , yN ), which is iid according to p(· | θ∗) for some unknown θ∗. Also,
suppose xi ∈ RD, and yi ∈ {0, 1}, for all i.

Recall that logistic regression is a binary classification technique that assumes that the probability p(y | x,w)
of class y ∈ {0, 1} given observation x and weight vector w is given by

p(y | x,w) = σ(wx)y(1− σ(wx))1−y,

where σ is the sigmoid function.
We have already shown that the corresponding log-likelihood log p(D | w) associated to the dataset D given w

is given by

log p(D | w) =

N∑
i=1

yi log σ(wxi) + (1− yi) log(1− σ(wxi)).

However, the corresponding maximum (log-)likelihood estimate argmaxw p(D | w) may have extremely large
elements, particularly when the data is linearly separable. This leads to a classifier that is very sensitive to small
changes in the input observations, which may be overfitted to the training data. This issue can be circumvented
by finding a maximum a posteriori estimate argmaxw p(w | D). Naturally, such estimate also maximizes log p(D |
w) + log p(w).

For this purpose, we have already considered a prior density p(w) associated to a weight vector w given by

p(w) =

D∏
j=1

N (wj | 0, τ2),
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where τ2 > 0 is a hyperparameter. The corresponding maximum a posteriori estimate also maximizes (with respect
to w) the so-called l2-regularized log-likelihood given by

log p(D | w)− λ

2
||w||2,

where λ = 1/τ2.
Alternatively, consider a prior density p(w) associated to a weight vector w given by

p(w) =

D∏
j=1

Lap(wj | 0,
1

λ
) =

D∏
j=1

λ

2
e−λ|wj | =

(
λ

2

)D D∏
j=1

e−λ|wj |.

Clearly,

log p(w) = log

(λ

2

)D D∏
j=1

e−λ|wj |

 = D log
λ

2
− λ

D∑
j=1

|wj |.

Therefore, by eliminating irrelevant constants, the corresponding maximum a posteriori estimate also maximizes
(with respect to w) the so-called l1-regularized log-likelihood given by

log p(D | w)− λ||w||1,

where ||w||1 =
∑

j |wj | is the so-called l1-norm of vector w

In comparison to the l2-regularized log-likelihood, the l1-regularized log-likelihood favors a sparse solution w∗

(where many elements are zero), although we omit the rigorous argument. Notice that the l1-regularized log-
likelihood is not differentiable with respect to w, requiring optimization methods that we also omit.

Feature selection using logistic regression is based on the the idea that if w∗ is a weight vector that maximizes
the l1-regularized log-likelihood, and w∗

j = 0, then feature j is (probably) not relevant for classification. Notice that
this heuristic takes into consideration that a feature may be discriminative when combined with others even if it is
not discriminative by itself.

However, notice that w∗
j = 0 does not necessarily imply that a feature is not relevant for classification. For

instance, a feature k that is always identical to feature j could exist, and w∗
k could be nonzero. Clearly, this example

generalizes to groups of features. Although this behavior is appropriate for selecting subsets of features, it is not
appropriate for scoring features individually.

Randomized logistic regression deals with this issue by introducing randomness into the learning process. We
discuss one possible implementation of the original approach, which is based on stability selection.

Consider a sequence of datasets D1, . . . ,DS , each obtained by randomly choosing subsets composed of N ′ < N
elements from an original iid dataset D = (x1, y1), . . . , (xN , yN ). Suppose a logistic regression classifier is fitted
independently for each of these datasets, resulting in a sequence of weight vectors w∗

1, . . . ,w
∗
S .

The score sj of feature j is defined as the fraction of classifiers where feature j was associated to a significant
coefficient, and is given by

sj =
1

S

S∑
i=1

I(|w∗
i,j | ≥ ϵ),

where I is the indicator function, and ϵ ≥ 0 is a small constant. Intuitively, the variability introduced by subsampling
is likely to affect which features are used by each classifier, avoiding the issue involving related features.

So far, we have omitted the main idea in stability selection applied to logistic regression, which is penalizing each
feature differently when considering each dataset. This idea can be implemented by maximizing, for each dataset
Di, the l1-regularized log-likelihood with respect to w considering randomized penalties, which is given by

log p(D | w)− λ

D∑
j=1

|wj |
ωj

,

where λ is the usual penalty hyperparameter, but each ωj is chosen uniformly at random from the set {r, 1}, where
0 < r < 1 is a hyperparameter of the feature selection method. Intuitively, this introduces even more variability in
the set of features that is likely to be used by each classifier.
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14 Kernel methods
We have already mentioned that it is often useful to apply a feature map ϕ : RD → RD′

to the observations in a
dataset. In classification, for instance, an appropriate feature map can make a dataset linearly separable.

A Mercer kernel is a function κ : X × X → R given by

κ(x,x′) = ϕ(x)ϕ(x′) = ϕ(x′)ϕ(x),

for some feature map ϕ : X → V, and all observations x,x′ ∈ X . In contrast to our usual definition, the observations
in X may be of any sort, and V may be an arbitrary inner product space (over the field of real numbers). For our
purposes, the scalar κ(x,x′) should roughly correspond to a measure of similarity between x and x′.

Consider a dataset D = x1, . . . ,xN , where xi ∈ X . The Gram matrix K of κ for D is given by Ki,j = κ(xi,xj).
It is possible to show that a function κ : X × X → R is a Mercer kernel if and only if its Gram matrix is positive
semidefinite for every possible dataset [2].

The following are examples of Mercer kernels.
The linear kernel κ : RD × RD → R given by κ(x,x′) = xx′.
The polynomial kernel κ : RD × RD → R given by κ(x,x′) = (xx′ + r)M , where r > 0 and M ∈ N>0 are

hyperparameters.
The radial basis function kernel κ : RD × RD → R given by

κ(x,x′) = exp

(
−||x− x′||2

2σ2

)
,

where σ2 > 0 is a hyperparameter. The corresponding feature map ϕ maps RD into an infinite dimensional inner
product space V. As will become clear, kernels allow applying some traditional techniques as if observations were
transformed by such intractable feature maps.

The string kernel κ : A∗ ×A∗ → R given by

k(x, x′) =
∑
s∈A∗

wsϕs(x)ϕs(x
′),

where A∗ is the set of all possible strings over the alphabet A, ϕs(x) ≥ 0 is the number of times that string s ∈ A∗

appears inside string x ∈ A∗, and ws ≥ 0, for all s. As will become clear, kernels allow applying some traditional
techniques to such observations.

Kernel machines are simple supervised learning models based on kernels. A kernel machine is a generalized
linear model that receives observations transformed by a feature map ϕ : X → RK given by

ϕ(x) = (κ(x,µ1), . . . , κ(x,µK)),

for some function κ : X × X → R (not necessarily a Mercer kernel), and pre-defined prototypes µ1, . . . ,µK ,
where µi ∈ X . In logistic regression, for instance, an appropriate choice of prototypes can make a dataset linearly
separable. In linear regression, an appropriate choice of prototypes allows fitting arbitrary functions.

Consider a dataset D = (x1, y1), . . . , (xN , yN ), where xi ∈ X and yi ∈ R. A kernel machine whose prototypes
are given by xi = µi, for every i, and that employs a sparsity promoting prior over weight vectors is called a sparse
vector machine. After obtaining a maximum a posteriori weight vector w = argmaxw p(w | D), any observation xi

such that wi = 0 is no longer needed to compute E[Y | X = x,W = w] = f(wϕ(x)) for a new observation x ∈ X .
The kernel trick is one of the most important applications of kernels. As will become clear, the kernel trick

consists on adapting a learning technique so that it is only affected by observations through inner products, which can
be substituted by corresponding kernel evaluations. More concretely, the kernel trick allows a learning technique
to receive the Gram matrix K of a Mercer kernel κ for a dataset D = x1, . . . ,xN , where xi ∈ X , instead of
such observations (together with the corresponding targets, in the case of supervised learning). If applicable, the
kernel trick also allows predicting the target corresponding to a new observation x ∈ X based only on the vector
(κ(x,x1), . . . , κ(x,xN )) and on the scalar κ(x,x).

Kernelized nearest neighbors is a simple classification technique based on the kernel trick. It is analogous to
(K-)nearest neighbors, except for the fact that distances are computed using kernels.

Concretely, recall that the squared Euclidean distance ||x− x′||2 between vectors x,x′ ∈ RD is given by

||x− x′||2 = (x− x′)(x− x′) = xx+ x′x′ − 2xx′.
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Analogously, the squared distance between vectors ϕ(x) and ϕ(x′) in an arbitrary inner product space V can be
defined as

||ϕ(x)− ϕ(x′)||2 = ϕ(x)ϕ(x) + ϕ(x′)ϕ(x′)− 2ϕ(x)ϕ(x′) = κ(x,x) + κ(x′,x′)− 2κ(x,x′),

where κ : X × X → R is the Mercer kernel corresponding to the feature map ϕ : X → V, and x,x′ ∈ X are the
original observations.

It is crucial to notice that computing distances between vectors in V using a kernel κ does not require evaluating
the corresponding feature map ϕ. This allows dealing with a potentially infinite dimensional inner product space
V, and considering arbitrary sets of observations (as long as an appropriate kernel can be devised).

Kernelized K-medoids is a kernelized iterative clustering technique similar to K-means. Consider the dataset
D = x1, . . . ,xN , where xi ∈ X . The technique initially chooses K so-called centroids randomly from the dataset
D (without replacement). Each observation in D is then assigned to its closest centroid (according to a kernelized
distance), which partitions the dataset D into K clusters (groups of observations). Each centroid is then changed
to the observation whose average kernelized distance to the other observations in the same cluster is minimum.
This allows assigning each observation in D to its closest centroid once again, and the process may continue until
convergence (or for a maximum number of iterations).

The kernel trick can also be applied to (l2-regularized) linear regression, as we now show. We start by reformu-
lating the original optimization problem, which leads to the kernel-based method by analogy.

Consider a dataset D = (x1, y1), . . . , (xN , yN ), where xi ∈ RD and yi ∈ R. In l2-regularized linear regression, a
maximum a posteriori estimate may be obtained by minimizing the cost J given by

J(w) =

N∑
i=1

(yi −wxi)
2 + λ||w|| = (y −Xw)T (y −Xw) + λww,

where X is the N ×D design matrix, y = (y1, . . . , yN ) is the target vector, and λ ≥ 0 is a hyperparameter.
We have already shown that if λI +XTX is invertible, then the desired minimum w is given by

w = (λI +XTX)−1XTy.

Let α = (λI+XXT )−1y. It can be shown that w can also be written as

w = XT (λI+XXT )−1y = XTα =

N∑
i=1

αixi.

Finally, the prediction for a new observation x ∈ RD using the estimate w ∈ RD is given by

E[Y | X = x,W = w] = wx =

N∑
i=1

αixix.

We are now ready to introduce kernelized linear regression by analogy with linear regression. We omit a rigorous
derivation of kernelized linear regression.

Let K be the Gram matrix of a Mercer kernel κ : X ×X → R for the dataset D = (x1, y1), . . . , (xN , yN ), where
xi ∈ X and yi ∈ R. Furthermore, let ϕ : X → V denote the feature map corresponding to κ.

If X ⊆ RD, then XXT would be equivalent to the Gram matrix of a linear kernel for D. By analogy, substituting
XXT by the Gram matrix K, it is possible to compute α = (λI +K)−1y. Although it is generally impossible to
compute w ∈ V, we can compute the prediction wϕ(x) for a new observation x ∈ X using

wϕ(x) =

N∑
i=1

αiϕ(xi)ϕ(x) =

N∑
i=1

αiκ(xi,x).

In summary, it is possible to fit the model using only the Gram matrix K and the targets, and perform prediction
for a new observation x using only κ(x1,x), . . . , κ(xN ,x).

The kernel trick can also be applied to principal component analysis, as we now show. Once again, we start by
reformulating the original method, which leads to the kernel-based method by analogy.

Consider a dataset D = x1, . . . ,xN , where xi ∈ RD. The empirical covariance matrix Σ of D is given by

Σ =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T =
1

N
XTCX,
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where X is the N ×D design matrix corresponding to D, and C is the N ×N centering matrix given by

C = I− 1

N
11T ,

where I is the N × N identity matrix, and 1 ∈ RN is a vector whose elements are all equal to one. It is worth
mentioning that CX is the centered design matrix (whose columns sum to zero) corresponding to the design matrix
X, and that C is symmetric and idempotent.

Recall that principal component analysis finds a list containing orthonormal eigenvectors of the empirical covari-
ance matrix Σ sorted in non-increasing order of corresponding eigenvalues. The kernel trick requires an alternative
way to find such eigenvectors, which we now discuss.

Consider the N × N matrix M = CX(CX)T = CXXTCT = CXXTC. Because M is real symmetric, it can
be written as M = UΛUT , where each column j of the N × N matrix U is an eigenvector uj of M, and Λ is a
diagonal matrix such that Λj,j = λj is the eigenvalue that corresponds to uj . Furthermore, U is chosen so that
UTU = UUT = I, which means that (u1, . . . ,uN ) is an orthonormal basis for RN .

By the definition of eigenvector,
(
CXXTC

)
U = UΛ. By left-multiplying these expressions by XTC,

XTC
(
CXXTC

)
U = XTCX

(
XTCU

)
= NΣ

(
XTCU

)
=
(
XTCU

)
Λ,

where we have used the fact that CC = C, and the definition of the empirical covariance matrix Σ.
Therefore, each column j of XTCU corresponds to an eigenvector of the matrix NΣ with eigenvalue λj . This

implies that each column j of XTCU corresponds to an eigenvector of the empirical covariance matrix Σ with
eigenvalue λj

N . Although we omit the details, a D × K matrix V containing orthonormal eigenvectors of the
empirical covariance matrix Σ can be obtained from these columns, where K is the rank of the centered design
matrix CX.

We are now ready to introduce kernel principal component analysis by analogy with principal component anal-
ysis. We omit a rigorous derivation of kernel principal component analysis.

Let K be the Gram matrix of an arbitrary Mercer kernel κ : X ×X → R for the dataset D = x1, . . . ,xN , where
xi ∈ X . Once again, we use the fact that if X ⊆ RD, then XXT would be equivalent to the Gram matrix of a
linear kernel for D. By analogy, substituting XXT by the Gram matrix K, it is possible to compute the matrix U
containing eigenvectors of M = CKC. Although it is generally impossible to compute the corresponding matrix V
containing orthonormal eigenvectors of the empirical covariance matrix Σ, it is possible to compute the alternative
representation z of a new observation x using only κ(x1,x), . . . , κ(xN ,x), although we omit the details.

Support vector machines are supervised learning models that also benefit from the kernel trick. In what follows,
we present both classification and regression based on these models.

Consider the dataset D = (x1, y1), . . . , (xN , yN ), where xi ∈ RD, and yi ∈ {−1, 1}. A hard margin support
vector machine is a classification technique that assumes that there is a hyperplane that separates the observations
in such dataset by class. Furthermore, the technique finds the separating hyperplane such that its distance to the
nearest observation is maximum, a choice motivated by statistical learning theory.

Any (affine) hyperplane S in RD can be written as S = {x ∈ RD | wx+ b = 0}, for some nonzero weight vector
w ∈ RD, and intercept b ∈ R. Consider any x,x′ ∈ S. Clearly, wx + b = wx′ + b, which implies w(x − x′) = 0.
Intuitively, w is orthogonal to any vector pointing between vectors in S.

Consider any vector x ∈ RD, and let x⊥ denote its closest vector in S. Recall that x can be written as

x = x⊥ + r
w

||w||
,

where r ∈ R is the so-called signed distance between x and S. By introducing w and b into the equation above,

wx+ b = wx⊥ + b+ r
||w||2

||w||
,

wx+ b

||w||
= r,

since wx⊥ + b = 0. Notice that the signed distance between S and the origin is given by b
||w|| .

Consider the dataset D = (x1, y1), . . . , (xN , yN ), and the task of finding the parameters w and b of a separating
hyperplane S such that wxi + b > 0 if yi = 1 and wxi + b < 0 if yi = −1, for all i, assuming that such hyperplane
exists. This task is equivalent to finding parameters that satisfy the constraint yi(wxi + b) > 0, for all i.
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The margin m(w, b) of a hyperplane S = {x ∈ RD | wx+ b = 0} that satisfies the constraints is defined as

m(w, b) = min
i

yi(wxi + b)

||w||
=

1

||w||
min
i

yi(wxi + b).

Because we assumed that the hyperplane S satisfies the constraints, the margin corresponds to the (unsigned)
distance between the hyperplane S and the closest observation in D.

Notice that if the hyperplane S defined by w and b satisfies the constraints, then the hyperplane S′ defined by
κw and κb also satisfies the constraints, for any κ > 0. Both S and S′ also have the same margin, since

m(κw, κb) = min
i

yi(κwxi + κb)

||κw||
=

κ

κ||w||
min
i

yi(wxi + b) =
1

||w||
min
i

yi(wxi + b) = m(w, b).

Consider the task of finding the parameters w∗ and b∗ of a separating hyperplane with maximum margin. In
other words, maximizing m(w, b) with respect to w and b subject to yi(wxi+b) > 0, for all i. The margin m(w∗, b∗)
of such a hyperplane is given by

m(w∗, b∗) =
1

||w∗||
min
i

yi(w
∗xi + b∗) = max

w
max

b

1

||w||
min
i

yi(wxi + b).

Consider the task of maximizing m(w, b) with respect to w and b subject to mini yi(wxi+b) = 1. This constraint
is clearly stronger than the constraint that yi(wxi + b) > 0, for all i. Suppose that a hyperplane S defined by w
and b satisfies the weaker constraints, and let κ = 1/mini yi(wxi + b), where the denominator is certainly positive.
Consider the hyperplane S′ defined by κw and κb. As shown previously, m(w, b) = m(κw, κb). Since

min
i

κyi(wxi + b) = min
i

yi(wxi + b)

minj yj(wxj + b)
= 1,

any hyperplane S that satisfies the weaker constraints has a corresponding hyperplane S′ with the same margin that
satisfies the stronger constraint. Thus, we can maximize m(w, b) with respect to w and b subject to the stronger
constraint without loss of generality.

The constraint mini yi(wxi+b) = 1 implies that the maximum margin hyperplane defined by w∗ and b∗ is given
by

m(w∗, b∗) = max
w

max
b

1

||w||
min
i

yi(wxi + b) = max
w

1

||w||
.

Instead, we consider the equivalent, and more convenient, task of minimizing 1
2 ||w||2 with respect to w and b subject

to the same constraint.
We will change constraints one last time. Consider minimizing 1

2 ||w||2 with respect to w and b subject to
yi(wxi + b) ≥ 1, for all i. These constraints are apparently weaker than the previous. However, suppose that w
and b minimize 1

2 ||w||2, and yi(wxi + b) > 1, for all i. Let κ = 1/mini yi(wxi + b). A hyperplane defined by κw
and κb satisfies the new constraints, since yi(κwxi+κb) = κyi(wxi+ b) ≥ 1, for all i. However, 1

2 ||kw||2 < 1
2 ||w||2,

since 0 < κ < 1, which is a contradiction because we assumed w and b corresponded to a minimum.. Therefore, a
minimum that satisfies the new constraints also satisfies the previous constraint.

In summary, the parameters of the separating hyperplane with maximum margin are given by minimizing 1
2 ||w||2

with respect to w and b subject to yi(wxi + b) ≥ 1, for all i. Given the optimum w and b, a new observation x can
be classified as 1 if wx+ b > 0, and as −1 otherwise.

The optimization task stated above is a quadratic programming problem, a class of widely studied optimization
problems. However, the kernel trick requires restating this optimization task using the Lagrangian dual, which we
cover next.

Let the generalized Lagrangian L be given by

L(w, b,a) =
1

2
||w||2 −

N∑
i=1

ai
[
yi(wxi + b)− 1

]
.

The Karush-Kuhn-Tucker conditions state that if w and b correspond to a local minimum subject to the constraints,
then ∇L(w, b,a) = 0 for some vector a whose elements are all nonnegative. The relevant gradients are given by

∇wL(w, b,a) = w −
N∑
i=1

aiyixi,

∂

∂b
L(w, b,a) =

N∑
i=1

aiyi.
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Therefore, if w and b correspond to a local minimum subject to the constraints, then

w =

N∑
i=1

aiyixi,

0 =

N∑
i=1

aiyi,

for some a whose elements are all nonnegative.The Lagrangian dual L̃ is obtained by substituting the expressions
above into the generalized Lagrangian L, and is given by

L̃(a) =

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajyiyjxixj .

It can be shown that if a maximizes L̃ subject to ai ≥ 0, for all i, and
∑

i aiyi = 0, then the corresponding
w =

∑
i aiyixi is the desired local minimum subject to constraints, and thus represent the maximum margin

separating hyperplane.
The support vectors are the observations in D that are closest to the maximum margin separating hyperplane.

It can be shown that only the coefficients ai associated to these vectors are nonzero. Therefore, given the expression
for w in terms of a, only the support vectors directly affect classification. Intuitively, the other observations in
D can move freely as long as they do not affect the margin, resulting in the same maximum margin separating
hyperplane. The intercept b can be obtained by noting that yi(wxi + b) = 1, for any support vector xi.

Although maximizing the Lagrangian dual L̃ subject to the constraints is also a quadratic programming problem,
the observations in D only affect L̃ through inner products.

Consider a Mercer kernel κ : X × X → R, and let ϕ : X → V denote the corresponding feature map. By
using the fact that ϕ(xi)ϕ(xj) = κ(xi,xj), it is possible to find the maximum margin separating hyperplane for
observations transformed by ϕ without evaluating ϕ. In that case, the maximum margin separating hyperplane
in the transformed space would not necessarily be a hyperplane in the original space. The same trick also allows
classifying new observations, since wϕ(x) + b = b+

∑
i aiyiϕ(xi)ϕ(x) = b+

∑
i aiyiκ(xi,x), for any x ∈ X .

There are two very simple strategies to adapt support vector machines for classification problems with C > 2
classes. One of them is to train C one-vs-rest classifiers, and to classify a new observation by the class for which the
observation is further away from the corresponding maximum margin separating hyperplane (on the correct side).
Another heuristic is to train C(C − 1)/2 one-vs-one classifiers, and to classify a new observation according to the
class that receives more votes. Both strategies offer few guarantees in the general case.

A soft margin support vector machine is a technique that finds a separating hyperplane that may ignore some
observations (subject to a penalty), as long as doing so increases the margin. Intuitively, this alternative formulation
is more robust to outliers.

Recall that the parameters of the separating hyperplane with maximum margin are given by minimizing 1
2 ||w||2

with respect to w and b subject to yi(wxi + b) ≥ 1, for all i.
In a soft margin support vector machine, the parameters w and b of the desired hyperplane are obtained by

introducing a vector ξ = (ξ1, . . . , ξN ) containing so-called slack variables and minimizing

1

2
||w||2 + C

N∑
i=1

ξi

with respect to w, b and ξ, subject to yi(wxi + b) ≥ 1 − ξi, and ξi ≥ 0, for all i. Intuitively, the hyperparameter
C ≥ 0 penalizes using the slack variables to relax the constraints. Soft margin support vector machines are also
compatible with the kernel trick, although we omit the details.

Support vector machine regression predicts the target y ∈ R associated to an observation x ∈ RD using y =
wx+ b, where w ∈ RD and b ∈ R are the model parameters.

Consider a dataset D = (x1, y1), . . . , (xN , yN ), where xi ∈ RD and yi ∈ R. Support vector machine regression
minimizes the cost function J given by

J(w, b) =
1

2
||w||2 + C

N∑
i=1

L(yi,wxi + b),
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where C is a hyperparameter, and L : R× R → R≥0 is the ϵ-insensitive loss function given by

L(y, ŷ) =

{
0 if |y − ŷ| < ϵ,

|y − ŷ| − ϵ if |y − ŷ| ≥ ϵ,

for some hyperparameter ϵ ≥ 0.
Equivalently, it is possible to introduce the vectors ξ+, ξ− ∈ RN containing so-called slack variables, and

minimize the cost function J given by

J(w, b, ξ+, ξ−) =
1

2
||w||2 + C

N∑
i=1

(
ξ+i + ξ−i

)
subject to the constraints yi ≤ wxi + b+ ϵ+ ξ+i , yi ≥ wxi + b− ϵ− ξ−i , ξ+i ≥ 0, and ξ−i ≥ 0, for all i. Intuitively,
the prediction for xi must be in [yi − ϵ− ξ−i , yi + ϵ+ ξ+i ], for all i.

The aforementioned optimization task is a quadratic programming problem. It is possible to show that the
desired minimum w is given by w =

∑
i αixi, where α ∈ RN

≥0 is typically sparse. Therefore, the prediction y

associated to an observation x ∈ RD is given by wx+ b = b+
∑

i αixix. Support vector machine regression is also
compatible with the kernel trick, although we omit the details.

The term kernel has an additional meaning. A smoothing kernel is a zero-mean joint probability density function
κ : RD → R≥0. A typical example is the Gaussian smoothing kernel κ : RD → R given by

κ(x) =
1

hD (2π)
D
2

D∏
j=1

exp

(
−

x2
j

2h2

)
,

where h > 0 is a hyperparameter called bandwidth.
Consider an iid dataset D = x1, . . . ,xN , where xi ∈ RD. Kernel density estimation supposes that D is distributed

according to a joint probability density function p given by

p(x) =
1

N

N∑
i=1

κ(x− xi),

where κ is a smoothing kernel. If κ is a Gaussian smoothing kernel, the model is analogous to a Gaussian mixture
model composed of N multivariate Gaussian density functions whose means are given by the observations in D.

Kernel regression is a regression technique based on modeling the joint probability density function over obser-
vations and targets using kernel density estimation, and predicting the target associated to an observation x ∈ RD

using E[Y | X = x].

15 Gaussian processes
A Gaussian process is a (possibly infinite) set of random variables whose finite subsets are jointly distributed
according to (mutually consistent) multivariate Gaussian distributions. Although there are several machine learning
models based on Gaussian processes, this section focuses solely on Gaussian process regression.

Consider the dataset D = (x1, y1), . . . , (xN , yN ), where xi ∈ RD, and yi ∈ R. In linear regression, recall that
the (conditional) likelihood p(D | w) = p(y | X,w) associated to a weight vector w ∈ RD is given by

p(y | X,w) =

N∏
i=1

N (yi | wxi, σ
2) = N (y | Xw, σ2I),

where X is the N ×D design matrix, y = (y1, . . . , yN ) is the target vector, and σ2 is a pre-defined variance.
Furthermore, recall that the typical prior density p(w) associated to a weight vector w ∈ RD is given by

p(w) =

D∏
j=1

N (wj | 0, τ2) = N (w | 0, τ2I).

55



Suppose that p(w) = p(w | X), for any w and X. Using a property of linear Gaussian systems (Sec. 4), the
marginal likelihood p(y | X) associated to a target vector y given a design matrix X is given by

p(y | X) =

∫
Val(W)

p(y,w | X) dw =

∫
Val(W)

p(y | X,w)p(w | X) dw =

∫
Val(W)

p(y | X,w)p(w) dw

=

∫
Val(W)

N (y | Xw, σ2I)N (w | 0, τ2I) dw = N (y | 0, τ2XXT + σ2I) = N (y | 0,M).

In other words, our choice of multivariate Gaussian prior over weight vectors (given a design matrix) is equivalent
to a multivariate Gaussian prior over target vectors (given a design matrix). Notice that it is easy to sample target
vectors from the latter prior. The matrix M = τ2XXT + σ2I roughly encodes the covariance between a pair of
targets according to the similarity between the corresponding pair of observations.

Consider a design matrix X′ obtained by prepending xT as a first row to another design matrix X. For
convenience, we denote the marginal likelihood p(y′ | X′) associated to the target vector y′ by p(y′ | X′) = p(y,y |
x,X), where y is the target corresponding to xT , and y is the target vector corresponding to X. Such marginal
likelihood is given by p(y,y | x,X) = N (y,y | 0,Σ), where Σ is an (N + 1)× (N + 1) block matrix given by

Σ =

(
s mT

m M

)
,

where s = τ2xx+ σ2, m = τ2Xx, and M = τ2XXT + σ2I.
Using a conditioning property of a multivariate Gaussian distribution (Sec. 4), the posterior predictive density

p(y | x,X,y) associated to target y given observation x ∈ RD and the training data is given by

p(y | x,X,y) = N (y | mTM−1y, s−mTM−1m).

Notice that the marginal likelihood and the posterior predictive are only affected by observations through inner
products. Therefore, Gaussian process regression is susceptible to the kernel trick.

Let K be the Gram matrix of a Mercer kernel κ : X × X → R for the dataset D = (x1, y1), . . . , (xN , yN ),
where xi ∈ X and yi ∈ R. Firstly, let M = τ2K + σ2I. For a new observation x, let s = τ2κ(x,x) + σ2, and
mi = τ2κ(xi,x), for every i. These steps complete the kernel trick for Gaussian process regression.

Notice that substituting XXT by K always leads to a valid covariance matrix M, since K is positive semidefinite
by a property of Mercer kernels, and therefore M = τ2K+ σ2I is positive definite (for τ2, σ2 > 0).

As usual, the hyperparameters τ2 and σ2 may be chosen by cross-validation. Alternatively, it is also possible to
look for hyperparameters that maximize the marginal log-likelihood log p(y | X) given by

log p(y | X) = logN (y | 0,M) = −1

2
yTM−1y − N

2
log 2π − 1

2
log |M|.

Recall that p(y | X) may be obtained by marginalizing p(y | X,w)p(w) with respect to w. Intuitively, a poor
choice of hyperparameters might have many choices of parameter vector w that lead to a low likelihood p(y | X,w),
even if some parameter vectors achieve high likelihood.

If log p(y | X) is differentiable with respect to the hyperparameters (including possible kernel hyperparameters),
the optimization task stated above may be addressed by gradient-based methods (Sec. 2.4).

16 Decision trees
In the context of supervised learning, a decision tree assigns observations to targets according to a sequence of
logical tests that involve their features. We focus on building classification trees that perform inequality tests using
the so-called CART (classification and regression trees) approach.

A classification tree is a full rooted binary tree T = (V,E). By definition, T either has a single vertex (root), or
can be built by connecting (by two edges) a single vertex (root) to the roots of two other binary trees.

Consider the task of classifying observations in RD. Each vertex u in the classification tree T is associated to a
set Ru ⊆ RD. Suppose v and w are children of u. The vertex v is associated to the set Rv = {x ∈ Ru | xj < τ},
and w is associated to the set Rw = {x ∈ Ru | xj ≥ τ}, for some feature j and constant threshold τ . The root r
is associated to the set Rr = RD. Therefore, the leaves of T partition RD into hyperrectangular regions. If each
leaf of T is also associated to a class, an observation x can be classified by finding the leaf u such that x ∈ Ru, by
following the appropriate branches starting from the root.
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Consider the dataset D = (x1, y1), . . . , (xN , yN ), and the task of building a classification tree that is expected
to generalize well to new observations. A typical strategy is to find a pure classification tree T , whose leaves are all
pure. A leaf u is pure if Ru contains only observations from D that belong to the same class.

Suppose a dataset has as many distinct classes as there are observations. In that case, define the cost of a pure
classification tree T for the dataset D as the cumulative number of tests required to classify each observation in D
using T . Determining whether there is a classification tree with cost less or equal to k given D and pre-defined pairs
of features and thresholds is an NP-complete problem, among other related problems. The computational burden
of finding optimal trees is typically avoided by employing greedy heuristic methods.

We now describe a common heuristic to choose the feature j∗ and threshold τ∗ for the root of a classification
tree given the dataset D.

For each feature j and threshold τ , define the cost C(j, τ) of partitioning a dataset D into non-empty datasets
Dv = {(x, y) ∈ D | xj < τ} and Dw = D −Dv = {(x, y) ∈ D | xj ≥ τ} as

C(j, τ) = c(Dv) + c(Dw),

where c is a pre-defined cost function, which we discuss later. We choose by exhaustive search a feature j∗ and
threshold τ∗ such that

C(j∗, τ∗) = min
j

min
τ

C(j, τ).

Notice that the cost C of at most D(N − 1) pairs of features and thresholds needs to be computed to find j∗

and τ∗, even if the features are real-valued (since at most N − 1 distinct thresholds would affect the partitioning of
D into non-empty Dv and Dw, for each feature).

A typical choice of cost function c is the entropy of the empirical distribution of classes in D, given by

c(D) = −
∑
y

πy log πy,

where πy is the fraction of observations in D that belongs to class y, and 0 log 0 is substituted by 0. Intuitively,
such entropy is minimized whenever all observations in D belong to the same class.

After choosing j∗ and τ∗ for the root vertex, its children u and w can be seen as roots of two distinct classification
trees. By restricting each children v to its corresponding dataset Dv ⊂ Rv, the procedure described above can be
applied recursively. The procedure should not create children for a root when the dataset is already pure, since
that would not affect future classifications. This completes a recursive algorithm for building a classification tree.

It is also possible to stop creating children whenever a pre-defined tree depth is achieved, or whenever the
remaining dataset contains few observations. In such cases, a new observation x is classified according to the class
majority in the leaf u such that x ∈ Ru. The objective of these stop criteria is to make the classifier more robust
to small changes in the training data. Another way to prevent overfitting is to prune the resulting classification
tree, by eliminating branches according to their effect on training set accuracy. In all of these cases, the associated
hyperparameters may be chosen by cross-validation.

Classification trees have some highly desirable properties. For instance, they are insensitive to monotonic
transformation of features, since they are based on thresholds. More importantly, classification trees are more
interpretable than many other classifiers, whose outputs cannot be easily understood in terms of the original
features.

Consider sampling N elements (with replacement) from the elements in the dataset D = (x1, y1), . . . , (xN , yN )
to create each dataset in a sequence D1, . . . ,DS , and training a distinct classification tree for each dataset in this
sequence. Suppose also that any observation x ∈ RD is classified according to the class that receives more votes
from the S independent classifiers. This strategy is called bagging, and the meta-classifier is a type of ensemble.
Intuitively, aggregating votes from classification trees trained using distinct datasets is typically more robust than
depending on a classification tree that learned rules that may be overly specific for a particular dataset.

A random forest classifier is an ensemble of classification trees based on bagging. Each classification tree in the
ensemble also considers only a random subset of d < D features in each step of finding a (locally) optimum pair of
feature j∗ and threshold τ∗.

Similarly to a random forest classifier, an extremely randomized tree classifier is an ensemble classifier that
introduces randomness into the learning process in an attempt to reduce overfitting. However, extremely randomized
trees typically do not perform bagging. Instead, the technique fits S distinct classification trees to the entire dataset.
In each step that requires choosing a feature j∗ and a threshold τ∗ to split the remaining dataset D, only a random
subset F ⊆ {1, . . . , D} containing d ≤ D features is considered. Furthermore, for each feature j ∈ F , a single
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threshold τ is chosen uniformly at random in the range of j (in the remaining dataset D). From these candidates,
the feature j∗ and threshold τ∗ with the lowest cost C(j∗, τ∗) are chosen, as usual.

Both random forests and extremely randomized trees have shown remarkable empirical efficacy results.

17 Feedforward neural networks
This section presents two models of feedforward neural networks: multilayer perceptrons and convolutional neural
networks. For information on related models (including recurrent neural networks), see the corresponding notes.

Multilayer perceptrons compose the most widely known class of artificial neural networks. This section focuses
solely on classification, although these models can also perform regression.

Consider an iid dataset D = (x1,y1), . . . , (xN ,yN ), where xi ∈ RD, and yi ∈ {0, 1}C . In this context, given a
pair (x,y) ∈ D, we assume yj = 1 if and only if observation x belongs to class j. As usual, we also assume that
each observation belongs to a single class.

Let L represent the number of layers in the network, and N (l) represent the number of neurons in layer l, with
N (L) = C. These hyperparameters determine the so-called network architecture. We will refer to a neuron in layer
l by a corresponding number between 1 and N (l). The neurons in the first layer are also called input units, the
neurons in the output (last) layer called output units, and the other neurons called hidden units. Networks with
more than 3 layers are called deep networks.

Let w
(l)
j,k ∈ R represent the weight reaching neuron j in layer l from neuron k in layer (l − 1). The order of

the indices is counterintuitive, but makes the presentation simpler. Furthermore, let b
(l)
j ∈ R represent the bias for

neuron j in layer l.
Consider a layer l, for 1 < l ≤ L, and neuron j, for 1 ≤ j ≤ N (l). The weighted input to neuron j in layer l is

defined as

z
(l)
j = b

(l)
j +

N(l−1)∑
k=1

w
(l)
j,ka

(l−1)
k ,

where the activation a
(l)
j of neuron j in layer 1 < l < L is defined as

a
(l)
j = σ(z

(l)
j ),

for some differentiable activation function σ. We consider the sigmoid activation function defined by σ(z) = 1
1+e−z .

We will also consider a so-called softmax output layer, where the activation a
(L)
j of neuron j is given by

a
(L)
j =

ez
(L)
j∑C

k=1 e
z
(L)
k

.

It will be useful to define some vectors and matrices that represent quantities associated to each neuron in a
given layer. The weighted input for layer l > 1 is defined as z(l) = (z

(l)
1 , . . . , z

(l)

N(l)), and the activation vector for
layer l is defined as a(l) = (a

(l)
1 , . . . , a

(l)

N(l)). Furthermore, we define the bias vectors as b(l) = (b
(l)
1 , . . . , b

(l)

N(l)), and
the N (l) ×N (l−1) weight matrices W(l) such that W

(l)
j,k = w

(l)
j,k.

Using these definitions, the output of each layer 1 < l < L can be written as

a(l) = σ(W(l)a(l−1) + b(l)),

where the activation function is applied element-wise.
The output of a multilayer perceptron when a(1) = x is defined as the activation vector a(L) of the output layer.

Notice how a(L) is implicitly dependent on x.
This completes the definition of the model. We now focus on learning parameters for classification given a

dataset.
Suppose the dataset D is iid according to p(· | θ∗), for an unknown parameter vector θ∗. Furthermore, suppose

the probability of any class y given any observation x is given by the corresponding output neuron of a particular
multilayer perceptron with a fixed architecture when a(1) = x. More concretely, suppose

p(y | x,θ∗) = a(L)
y ,
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such that the unknown θ∗ defines the parameters (weights and biases) of a multilayer perceptron (among the prior
probability densities of observations, which are irrelevant for our purposes). It is important to notice that a softmax
output layer would yield a valid probability mass function for any choice of observation, weights and biases.

The (conditional) likelihood p(D | θ) of the parameter vector θ given the dataset D may be written as

p(D | θ) =
N∏
i=1

p(yi | xi,θ),

by ignoring for a moment that we encoded the target classes using vectors. Once again, this likelihood is not based
on the joint density over observations and classes, which is irrelevant for our purposes.

A natural goal is to find the weights and biases that minimize the (average) negative log-likelihood J , which is
given by

J = − 1

N
log p(D | θ) = − 1

N

∑
(x,y)∈D

C∑
k=1

yk log a
(L)
k ,

where a(L) is the output activation when the network parameterized according to θ receives x as input. Notice that
a single yk is nonzero inside the second summation. Furthermore, notice that −yk ln a

(L)
k → ∞ when yk = 1 and

a
(L)
k → 0, which characterizes a prediction error (a(L)

k > 0 due to the softmax output layer).
If we let E = −

∑
k yk log a

(L)
k be a cost variable implicitly associated to a pair (x,y) ∈ D, then J =

N−1
∑

(x,y) E. The fact that the cost J can be written as an average of costs E for each element of the dataset will
be crucial to the proposed optimization procedure. The procedure requires the computation of partial derivatives
of the cost with respect to weights and biases, which are usually computed by a technique called backpropagation.

Let the error2 of neuron j in layer l for a given (x,y) ∈ D be defined as

δ
(l)
j =

∂E

∂z
(l)
j

.

Furthermore, the error for the neurons in layer l is denoted by δ(l) =
(
δ
(l)
1 , . . . , δ

(l)

N(l)

)
.

Backpropagation is a method for computing the partial derivatives of the cost function of a multilayer perceptron
with respect to its parameters. Given our choice of activation functions, the method is based solely on the following
six equalities:

δ(L) = a(L) − y, (1)

δ(l) = ((W(l+1))T δ(l+1))⊙ σ′(z(l)), (2)
∂E

∂b
(l)
j

= δ
(l)
j , (3)

∂E

∂w
(l)
j,k

= a
(l−1)
k δ

(l)
j , (4)

∂J

∂b
(l)
j

=
1

N

∑
(x,y)∈D

∂E

∂b
(l)
j

, (5)

∂J

∂w
(l)
j,k

=
1

N

∑
(x,y)∈D

∂E

∂w
(l)
j,k

, (6)

where ⊙ denotes element-wise multiplication. Notice how every quantity on the right side can be computed
easily from our definitions, by starting with the errors in the output layer for every pair (x,y) ∈ D. This originates
the term backpropagation.

As an illustration, we will demonstrate Eq. 2, which states that

δ
(l)
j = σ′(z

(l)
j )

N(l+1)∑
k=1

w
(l+1)
k,j δ

(l+1)
k ,

2This arguably misleading term is widely employed.
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for 1 < l < L and 1 ≤ j ≤ N (l). Since layer l < L only affects the output through the next layer, and z
(l+1)
k is a

differentiable function of z(l)1 , . . . , z
(l)

N(l) , and E is a differentiable function of z(l+1)
1 , . . . , z

(l+1)

N(l+1) ,

δ
(l)
j =

∂E

∂z
(l)
j

=

N(l+1)∑
k=1

∂E

∂z
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

=

N(l+1)∑
k=1

δ
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

.

By definition,

z
(l+1)
k = b

(l+1)
k +

N(l)∑
i=1

w
(l+1)
k,i a

(l)
i ,

therefore,
∂z

(l+1)
k

∂z
(l)
j

=
∂

∂z
(l)
j

[
w

(l+1)
k,j a

(l)
j

]
= w

(l+1)
k,j σ′(z

(l)
j ).

This gives

δ
(l)
j =

N(l+1)∑
k=1

δ
(l+1)
k w

(l+1)
k,j σ′(z

(l)
j ) = σ′(z

(l)
j )

N(l+1)∑
k=1

w
(l+1)
k,j δ

(l+1)
k ,

as we wanted to show. For proofs of the remaining equalities, see the corresponding notes.
Intuitively, for each observation, backpropagation considers the effect of a small increase of ∆w on a parameter

w in the network. This change affects every subsequent neuron on a path to the output, and ultimately changes
the cost J by a small ∆J .

Gradient descent (Sec. 2.4) can be used as a heuristic to find the parameters that minimize the cost J . More
concretely, if we let ∇θJ(θ) denote the gradient (direction of maximum local increase) of J given the parameter
vector θ (which represents weights and biases), the technique starts at a parameter vector θ0 chosen arbitrarily,
and visits the sequence of parameter vectors given by

θt+1 = θt − η∇θJ(θt),

where the learning rate η > 0 is a small constant. Gradient descent is not guaranteed to converge. Even if it
converges, the point at convergence may be a saddle point or a poor local minima. The choice of η considerably
affects the success of gradient descent.

In a given iteration t of gradient descent, instead of computing ∂J

∂w
(l)
j,k

and ∂J

∂b
(l)
j

as averages derived from a

computation involving all (x,y) ∈ D, it is also possible to consider only a subset D′ ⊆ D of randomly chosen
observations. The dataset D may also be partitioned randomly into subsets called batches, which are considered
in sequence. In this case, another random partition is considered once every subset is used. This procedure, called
mini-batches stochastic gradient descent, is widely used due to its efficiency. Intuitively, the procedure makes faster
decisions based on sampling. Regardless of these choices, a sequence of iterations that considers all observations in
the dataset is called an epoch.

The basic choices involved in learning the parameters for a multilayer perceptron using mini-batches include at
least the number of hidden layers, the number of neurons in each hidden layer, size of the mini-batches, the number
of epochs, and the learning rate η.

The momentum technique is a common heuristic for training deep artificial neural networks. In momentum-
based stochastic gradient descent, each parameter w in the network (weight or bias) has a corresponding velocity
v. The velocity is defined by v0 = 0 and

vt+1 = µvt − η

[
∂J

∂wt

]
,

where vt and wt correspond, respectively, to v and w at iteration t of stochastic gradient descent. At each iteration,
the parameter w is updated by the rule wt+1 = wt + vt+1. Intuitively, the momentum technique remembers the
velocity of each parameter, allowing larger updates when the direction of decrease in cost is consistent over many
iterations. The parameter 0 ≤ µ ≤ 1 controls the effect of the previous velocity on the next velocity, and 1 − µ is
commonly interpreted as a coefficient of friction. If µ = 0, the technique is equivalent to gradient descent.

Dropout is another common heuristic for training deep artificial neural networks. At every iteration of stochastic
gradient descent, half the hidden neurons are removed at random. In most implementations, this can be accom-
plished by forcing the outputs of the corresponding neurons to be zero. The modified network is applied as usual to
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the observations in a mini-batch, and backpropagation follows, as if the network were not changed. The resulting
partial derivatives are used to update the parameters of the neurons that were not removed. After training is fin-
ished, the weights incoming from hidden neurons are halved. This heuristic is believed to make the network robust
to the absence of particular features, which might be particular to the training data. Dropout is considered related
to regularization for trying to reduce overfitting.

There are many more heuristics for implementing multilayer perceptrons that will not be described in detail in
this text. Although we focused most of the discussion on sigmoid neurons, rectified linear neurons have achieved
superior results in important benchmarks.

In summary, training a multilayer perceptron involves a large number of hyperparameters, such as number of
layers, number of neurons per layer, learning rate, momentum coefficient, mini-batch size, and number of epochs.
The success of multilayer perceptrons is highly dependent on these hyperparameters.

Convolutional neural networks were first developed for image classification, which will be the focus of our
presentation, although they have also been successfully applied to other tasks.

A two-dimensional image may be represented by a function f : Z2 → Rc. An element a ∈ Z2 is called a pixel,
and f(a) is the value of pixel a. If f(a) = (f1(a), . . . , fc(a)), then fi is called channel i.

A window W ⊂ Z2 is a finite set W = [s1, S1] × [s2, S2] that corresponds to a rectangle in the image domain.
The size of this window W is denoted by w×h, where w = S1 − s1 +1 and h = S2 − s2 +1. Because the domain Z
of images of interest is usually a window, it is possible to flatten an image f into a vector x ∈ Rc|Z|. In this vector,
there is a scalar value fi(a) corresponding to the value of each channel i of each pixel a ∈ Z.

Consider an iid dataset D = (x1,y1), . . . , (xN ,yN ), such that xi ∈ RD, and yi ∈ {0, 1}C , where each vector
xi corresponds to a distinct image Z2 7→ Rc. Also, suppose that all images are defined on the same window Z,
such that D = c|Z|. The task of image classification consists on assigning a class label for a given image based on
generalization from D.

A convolutional neural network is particularly well suited for image classification, because it explores the spatial
relationships between pixels (organization in Z2). Similarly to multilayer perceptrons, a convolutional neural net-
work is also a parameterized function, and the parameters are usually learned by stochastic gradient descent on a
cost function defined on the training set. In contrast to multilayer perceptrons, there are three main types of layers
in a convolutional neural network: convolutional layers, pooling layers and fully connected layers.

A convolutional layer receives an input image f and outputs an image o. A convolutional layer is composed
solely of artificial neurons. Each artificial neuron h in a convolutional layer l receives as input the values in a window
W = [s1, S1] × [s2, S2] ⊂ Z of size w × h, where Z is the domain of f . The weighted output z

(l)
h of that neuron is

given by

z
(l)
h = b

(l)
h +

c∑
i=1

S1∑
j=s1

S2∑
k=s2

w
(l)
h,i,j,ka

(l−1)
i,j,k .

In the equation above, a(l−1)
i,j,k = fi(j, k) is the value of pixel (j, k) in channel i of the input image f . Also, b(l)h is

the bias of neuron h and w
(l)
h,i,j,k is the weight that neuron h in layer l associates to fi(j, k). The activation function

for a convolutional layer is typically rectified linear, so a
(l)
h = max(0, z

(l)
h ). The definition of z(l)h is similar to the

definition of the weighted input for a neuron in a multilayer perceptron. The only difference is that a neuron in a
convolutional layer is not necessarily connected to the activations of all neurons in the previous layer, but only to
the activations in a particular w×h window W . Each neuron in a convolutional layer has cwh weights and a single
bias.

A neuron in a convolutional layer is replicated (through parameter sharing) for all windows of size w× h in the
domain Z whose centers are offset by pre-defined steps. These steps are the horizontal and vertical strides. The
activations corresponding to a neuron replicated in this way correspond to the values in a single channel of the
output image o (appropriately arranged in Z2). Thus, an output image o : Z2 → Rn is obtained by replicating n
neurons over the whole domain of the input image. The total number of free parameters in a convolutional layer is
only n(cwh + 1). If the parameters in a convolutional layer were not shared by replicated neurons, the number of
parameters would be mn(cwh + 1), where m is the number of windows of size w × h that fit into f (for the given
strides).

The weighted outputs (minus the bias) of replicated neurons correspond to an output channel that is analogous
to the discrete (multichannel) convolution of the input f with a particular image g. The values of g correspond to
the (shared) weights of the replicated neurons (appropriately arranged in Z2). This assumes that the horizontal and
vertical strides are 1 and that the domain of the resulting image is always restricted to the window domain of f . In
other words, each channel ou in the output o of a convolutional layer corresponds to a (multichannel) convolution
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with an image gu, which is also called a filter. This is the origin of the name convolutional network. Therefore,
to define a convolutional layer, it is enough to specify the size of the filters (window size), the number of filters
(number of channels in the output image), horizontal and vertical strides (which are usually 1).

Each channel in the output of a convolutional layer can also be seen as the response of the input image to a
particular (learned) filter. Based on this interpretation, each channel in the output image is also called an activation
map.

Backpropagation can be adapted to compute the partial derivative of the cost with respect to every parameter
in a convolutional layer. The fact that a single weight affects the output of several neurons must be taken into
account. We omit the details of backpropagation for convolutional neural networks in this text.

A pooling layer receives an input image f : Z2 → Rc and outputs an image o : Z2 → Rc. A pooling layer reduces
the size of the window domain Z of f by an operation that acts independently on each channel. A typical pooling
technique is called max-pooling. In max-pooling, the maximum value of channel fi in a particular window of size
w×h corresponds to an output value in channel oi. To define a max-pooling layer, it is enough to specify the size of
these windows and the strides (which usually match the window dimensions). The objective of reducing the spatial
domain of the image is to achieve similar results to using comparatively larger convolutional filters in the next
layers. This supposedly allows the detection of higher-level features in the input image with a reduced number of
parameters. It is also believed that max-pooling improves the invariance of the classification to translations of the
original image. In practice, a sequence of alternating convolutional and max-pooling layers has obtained excellent
results in many image classification tasks. Backpropagation can also be performed through max-pooling layers.

In summary, a max-pooling layer receives an input image f : Z2 → Rc and outputs an image o : Z2 → Rc defined
by

oi(j, k) = max
a∈Wj,k

fi(a),

where i ∈ {1, . . . , c}, (j, k) ∈ Z2, Z is the window domain of f , and Wj,k ⊆ Z is the input window corresponding
to output pixel (j, k).

A fully connected layer receives an input image f : Z2 → Rc or an input vector x and outputs a vector o. A
fully connected layer is precisely analogous to a layer in a multilayer perceptron, and can only be succeeded by
other fully connected layers. The final layer in a convolutional neural network is always a fully connected layer
with C neurons, which is responsible for representing the classification. Backpropagation in fully connected layers
is analogous to backpropagation in multilayer perceptrons.

Deep convolutional neural networks are usually trained in large labeled datasets, requiring (non-trivial) efficient
implementations. After training a convolutional neural network for a particular dataset, it is possible to re-use the
parameters of the network (up to its last fully connected layer) as a starting point for another classification task.
This technique decouples representation learning from a specific image classification problem, and has been very
successful in practice.

In summary, convolutional neural networks are highly specialized models that were originally conceived for
image classification. The choice of hyperparameters (including types of layers, number of layers, filters per layer,
filter sizes, strides, and the usual training procedure hyperparameters) is crucial for efficacy.

18 Variational inference
The task of obtaining a posterior density for a parameter θ given a dataset D has been tackled several times in
this text. Unfortunately, there is often no convenient conjugate prior for a given likelihood function. In such
cases, evaluating the posterior distribution or computing corresponding expectations may be intractable. Section
8 presents a technique that addresses this issue by approximating the desired posterior distribution. This section
presents variational inference methods that also find (analytical) approximations to posterior distributions.

The Kullback-Leibler divergence KL(p||q) between two pdfs p and q is given by

KL(p||q) =
∫
Val(X)

p(x) ln
p(x)

q(x)
dx.

It can be shown that KL(p||q) = 0 if and only if p and q are equal almost everywhere.
The approach taken by the variational inference methods presented in this section corresponds to finding the

function q that minimizes the Kullback-Leibler divergence KL(q||p(· | D)), where p(· | D) is the posterior density
function over Θ given a dataset D. The function q is also required to belong to a tractable family of probability
density functions.
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Note that KL(q||p(· | D)) strongly discourages q from overestimating the posterior, especially where q achieves
high densities. In comparison, KL(p(· | D)||q) strongly discourages q from underestimating the posterior, especially
where the posterior achieves high densities.

If a multimodal posterior p(· | D) is to be approximated by a unimodal distribution q by minimizing a Kullback-
Leibler divergence, it is often advisable to minimize KL(q||p(· | D)) with respect to q, even though the resulting
distribution may underestimate uncertainty. This is because minimizing KL(p(· | D)||q) with respect to q may
result in a distribution whose mode is on a region of low posterior density.

Consider the task of minimizing the Kullback-Leibler divergence KL(q||p(· | D)) with respect to q for a fixed
p(· | D). Firstly, note that KL(q||p(· | D)) can be written

KL(q||p(· | D)) =

∫
Val(Θ)

q(θ) ln
q(θ)

p(θ | D)
dθ =

∫
Val(Θ)

q(θ) [ln q(θ)− ln p(θ | D)] dθ

=

∫
Val(Θ)

q(θ) ln q(θ) dθ −
∫
Val(Θ)

q(θ) ln p(θ | D) dθ

=

∫
Val(Θ)

q(θ) ln q(θ) dθ −
∫
Val(Θ)

q(θ) ln
p(D,θ)

p(D)
dθ

=

∫
Val(Θ)

q(θ) ln q(θ) dθ −
∫
Val(Θ)

q(θ) ln p(D,θ) dθ + ln p(D)

∫
Val(Θ)

q(θ) dθ

= ln p(D) +

∫
Val(Θ)

q(θ) [ln q(θ)− ln p(D,θ)] dθ = ln p(D)− L(q),

where

L(q) =

∫
Val(Θ)

q(θ) ln
p(D,θ)

q(θ)
dθ.

Since L(q) = ln p(D)−KL(q||p(· | D)) and KL(q||p(· | D)) ≥ 0 for any pdf q, note that L(q) ≤ ln p(D). In other
words, L(q) is a lower bound on the log-marginal likelihood ln p(D) for any pdf q.

Because ln p(D) is constant with respect to q, the task of minimizing the Kullback-Leibler divergence KL(q||p(· |
D)) with respect to q is equivalent to maximizing L(q) with respect to q.

Note that L(q) can also be written as

L(q) =

∫
Val(Θ)

q(θ) ln
p(D | θ)p(θ)

q(θ)
dθ =

∫
Val(Θ)

q(θ)

[
ln p(D | θ) + ln

p(θ)

q(θ)

]
dθ

=

∫
Val(Θ)

q(θ) ln p(D | θ) dθ +

∫
Val(Θ)

q(θ) ln
p(θ)

q(θ)
dθ = Eq [ln p(D | Θ)]−KL(q||p).

Therefore, minimizing the Kullback-Leibler divergence between q and p(· | D) with respect to q is equivalent to
maximizing the expected log-likelihood under q minus the Kullback-Leibler divergence between q and the prior p.

Naturally, L(q∗) = maxq L(q) = ln p(D) if and only if q∗ is equal to p(· | D) almost everywhere. However,
in order to guarantee that q∗ is tractable, we will instead consider the task of maximizing L(q) with respect to
distributions q that can be written as

q(θ) =

D∏
i=1

qi(θi),

for some pdfs q1, . . . , qD. In words, we consider the task of finding an approximate posterior where each parameter
is independent of the others (given the dataset D).

In order to find a solution q∗ to this optimization problem, we begin by isolating terms in L(q) corresponding
to qj for an arbitrary j, which will allow us to write the pdf q∗j using the pdfs q∗1 , . . . , q

∗
j−1, q

∗
j+1, . . . , q

∗
D. From the

definition of L(q∗),

L(q) =

∫
Val(Θ)

q(θ) ln p(D,θ) dθ −
∫
Val(Θ)

q(θ) ln q(θ) dθ.
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We let T1 denote the first term in the previous expression for L(q), which is given by

T1 =

∫
Val(Θ)

q(θ) ln p(D,θ) dθ =

∫
Val(Θj)

∫
Val(θ−j)

qj(θj)

∏
i̸=j

qi(θi)

 ln p(D,θ) dθ−j dθj

=

∫
Val(Θj)

qj(θj)

∫
Val(θ−j)

∏
i̸=j

qi(θi)

 ln p(D,θ) dθ−j

 dθj =

∫
Val(Θj)

qj(θj)Eq [ln p(D, θj ,Θj)] dθj ,

where the expectation relies on the fact that, for any pdf q and corresponding pdfs q1, . . . , qD,

q(θ−j) =

∫
Val(Θj)

qj(θj)
∏
i ̸=j

qi(θi) =
∏
i̸=j

qi(θi).

We let T2 denote the second term in the previous expression for L(q), which is given by

T2 = −
∫
Val(Θ)

q(θ) ln q(θ) dθ = −
∫
Val(Θ)

q(θ)

ln qj(θj) +∑
i ̸=j

ln qi(θi)

 dθ

= −
∫
Val(Θ)

q(θ) ln qj(θj) dθ −
∫
Val(Θ)

q(θ)
∑
i ̸=j

ln qi(θi) dθ.

We let T2,1 denote the first term in the previous expression for T2, which is given by

T2,1 = −
∫
Val(Θj)

∫
Val(Θ−j)

q(θ) ln qj(θj) dθ−j
dθj = −

∫
Val(Θj)

∫
Val(Θ−j)

qj(θj)

∏
i ̸=j

qi(θi)

 ln qj(θj) dθ−j
dθj

= −
∫
Val(Θj)

qj(θj) ln qj(θj)

∫
Val(Θ−j)

∏
i ̸=j

qi(θi)

 dθ−j

 dθj = −
∫
Val(Θj)

qj(θj) ln qj(θj) dθj .

we let T2,2 denote the second term in the previous expression for T2, which is given by

T2,2 = −
∫
Val(Θ−j)

∫
Val(Θj)

q(θ)
∑
i ̸=j

ln qi(θi) dθj dθ−j = −
∫
Val(Θ−j)

∫
Val(Θj)

qj(θj)

∏
i̸=j

qi(θi)

∑
i ̸=j

ln qi(θi) dθj dθ−j

= −
∫
Val(Θ−j)

∏
i ̸=j

qi(θi)

∑
i ̸=j

ln qi(θi)

[∫
Val(Θj)

qj(θj) dθj

]
dθ−j = −

∫
Val(Θ−j)

∏
i ̸=j

qi(θi)

∑
i̸=j

ln qi(θi) dθ−j .

Combining these results, L(q) may be written as

L(q) =

∫
Val(Θj)

qj(θj)Eq [ln p(D, θj ,Θj)] dθj −
∫
Val(Θj)

qj(θj) ln qj(θj) dθj −
∫
Val(Θ−j)

∏
i ̸=j

qi(θi)

∑
i ̸=j

ln qi(θi) dθ−j
.

Note that the last term is a constant with respect to qj . Therefore, the task of maximizing L(q) with respect to
qj for fixed q1, . . . , qj−1, qj+1, . . . , qD is equivalent to maximizing Lj , which is given by

Lj =

∫
Val(Θj)

qj(θj)Eq [ln p(D, θj ,Θj)] dθj −
∫
Val(Θj)

qj(θj) ln qj(θj) dθj .

For any j, let fj be a function given by

fj(θ) =
eEq [ln p(D,θj=θ,Θj)]

Cj
,
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where

Cj =

∫
Val(Θj)

eEq [ln p(D,θj ,Θj)] dθj

is a constant with respect to θ. Clearly, fj is a valid probability density function, since fj(θ) > 0 for any θ and∫
Val(Θ)

fj(θ) dθ = 1.
Finally, note that the Kullback-Leibler divergence KL(qj ||fj) is given by

KL(qj ||fj) =
∫
Val(Θj)

qj(θj) ln
qj(θj)

fj(θj)
dθj =

∫
Val(Θj)

qj(θj) ln qj(θj) dθj −
∫
Val(Θj)

qj(θj) ln fj(θj) dθj

=

∫
Val(Θj)

qj(θj) ln qj(θj) dθj −
∫
Val(Θj)

qj(θj) [Eq [ln p(D, θj ,Θj)]− lnCj ] dθj

=

∫
Val(Θj)

qj(θj) ln qj(θj) dθj −
∫
Val(Θj)

qj(θj)Eq [ln p(D, θj ,Θj)] dθj + lnCj = lnCj − Lj .

Because lnCj is a constant with respect to qj , minimizing KL(qj ||fj) with respect to qj is equivalent to maxi-
mizing Lj with respect to qj . Naturally, KL(qj ||fj) is minimized by q∗j if and only if q∗j = fj .

Consider a process that starts with appropriately initialized q1, . . . , qD, and that updates each qj to the corre-
sponding fj given by the other q1, . . . , qj−1, qj+1, . . . , qD. It can be shown that this process will eventually converge
to the unique optimal q∗1 , . . . , q∗j−1, q

∗
j+1, . . . , q

∗
D.
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