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1 Vector spaces
The set of complex numbers is defined as C = {a+ bi|a, b ∈ R}. By definition, i2 = −1.

Addition and multiplication are defined as follows:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

Addition and multiplication of complex numbers is commutative and associative. Multiplication is distributive
over addition. There exists an additive identity (0) and an multiplicative identity (1).

For every z ∈ C there is an unique w such that w + z = 0, which we denote by −z. There exists, for every
z ∈ C, with z ̸= 0, a w such that zw = 1, which we denote by 1/z. Division is defined as as follows: z/w = z(1/w).
Powers are defined as usual and have the properties (zm)n = zmn and (zw)m = zmwm.

By convention, F will denote either R or C depending on context. We call a ∈ F a scalar.
Let z = a + bi be a complex number. Then Re z = a and Im z = b. The complex conjugate of z is defined as

z = a− bi. The absolute value is defined as |z| =
√
a2 + b2. The following properties hold:

Re(w + z) = Rew +Re z,

Im(w + z) = Imw + Im z,

z + z = 2Re z,

z − z = 2(Im z)i,

zz = |z|2,
w + z = w + z,

wz = w z,

z = z,

|wz| = |w||z|.

A vector space is a set V along with operations of addition and scalar multiplication. Addition is a function
that assigns an element u+ v ∈ V to each pair u, v ∈ V . Scalar multiplication is a function that assigns an element
av ∈ V for every a ∈ F and v ∈ V . A member of a vector space is called a vector. We leave the context determine
whether 0 represents a vector or a scalar. The following properties must hold for V to be considered a vector
space. V must be closed under addition and scalar multiplication. Addition and scalar multiplication must be
commutative and associative. There must be one additive and one multiplicative identity. Scalar multiplication
must be distributive over addition.

There are several examples of vector spaces: Rn (the set of real number n-uples), P (F) (the set of polynomial
functions with coefficients in F) etc. Particularly interesting is R2, where addition and scalar multiplication can be
interpreted geometrically (arrow addition and scaling).

A subspace U of V is a vector space contained in V that contains 0 and is closed over addition and scalar
multiplication.

We define the sum of vector spaces as follows: U = U1 + U2 + · · · + Un = {u1 + u2 + · · · + un |uj ∈ Uj}. It is
interesting to note that U is the smallest set that contains every Uj . We say V is a direct sum of U1, · · · , Un if and
only if every element of v can be written uniquely as the sum of u1 + u2 + · · ·+ un, uj ∈ Uj , in which case we say
V = U1 ⊕ · · · ⊕Un. V is a direct sum of U1, · · · , Uj if and only if there exists only one way of writing 0 as the sum
of u1 + · · ·+ un, uj ∈ Uj . Also interesting, if V = U ⊕W , then U ∩W = {0}.

2 Finite-Dimensional Vector Spaces
A linear combination of a list of vectors (v1, · · · , vn) is a vector of the form a1v1 + · · ·+ anvn, where aj ∈ F .
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The span of (v1, · · · , vn) is the set of all linear combinations using these vectors. The span of any list of vectors
in V is a subspace of V . If a list of vectors (finite by definition) spans V , then V is said to be finite dimensional.

A list of vectors (v1, · · · , vn) is considered linearly independent if a1v1 + · · · + anvn = 0 implies aj = 0. A list
of size two is linearly independent iff one vector is not a scalar multiple of the other. If a vector is removed from a
linear independent list the resulting list will be independent. The empty list has span {0}.

In a finite dimensional vector space, the length of every list of linearly independent vectors is less than or equal
the length of every spanning list. A list (v1, · · · vn) is linearly dependent and v1 ̸= 0 iff there exists j ∈ {2, · · · ,m}
such that vj ∈ span(v1, · · · , vj−1) and removing vj from this last list results in a list with the same span. If, for
every positive integer n, there exists a linearly independent list of vectors in V , V is infinite dimensional. Every
subspace of a finite dimensional space is finite dimensional.

A basis for a vector space V is a list of vectors in V that is linearly independent and spans V .
A list (v1, · · · , vn) of vectors in V is a basis of V iff every v ∈ V can be written uniquely in the form

v = a1v1 + · · ·+ anvn.

Every spanning list in a vector space can be reduced to a basis of the vector space. Every finite dimensional
space has a basis.

Any linearly independent list of vectors in V can be extended to a basis of V .
If V is a finite dimensional vector space and U is a subspace of V , then there is a subspace W of V such that

V = U ⊕W .
Any two basis of a vector space have the same length, which is called the dimension dimV of V .
If V is finite dimensional and U is a subspace of V , then dimU ≤ dimV .
Every spanning list of V with length dimV is a basis of V . Every linearly independent list with dimV vectors

in V is a basis of V .
If U1 and U2 are two subspaces of a finite dimensional space, then

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2).

Suppose V is finite dimensional and U1, · · · , Um are subspaces of V such that

V = U1 + · · ·+ Um,

dimV = dimU1 + · · ·+ dimUm.

In that case, V = U1 ⊕ · · · ⊕ Um.

3 Linear Maps
A linear map from V to W is a function T : V → W with the following properties:

T (u+ v) = T (u) + T (v), for all u, v ∈ V ,

T (av) = aT (v), for a ∈ F.

We denote by L(V,W ) the set of linear maps from V to W . Two important linear maps are the map 0, defined
as 0(v) = 0 (on the left side, 0 denotes a linear map, on the right side, 0 denotes a vector) and the identity map I,
defined as I(v) = v.

Suppose that (v1, · · · , vn) is a basis of V and T ∈ L(V,W ). Then, by the linearity of T , T (v) = a1T (v1) + · · ·+
anT (vn). This implies that T (vj) ∈ W define a linear transformation completely.

Let S, T ∈ L(V,W ). We can define addition and scalar multiplication on L(V,W ) as follows:

(S + T )(v) = S(v) + T (v),

(aT )(v) = aT (v).

Thus, it can easily be shown that L(V,W ) is a vector space. We can also define the multiplication ST to be the
composition of functions: (ST )(v) = S(T (V )). It can be shown that this operation is associative, distributive and
has an additive identity.

We say the null space of a linear transformation T : V → W is the set nullT = {v ∈ V |T (v) = 0}. It can be
shown that nullT is a subspace of V . We say T is injective whenever T (u) = T (v) implies u = v. T is also injective
if and only if nullT = {0}.
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We say the range of a linear transformation T : V → W is the set rangeT = {T (v)|v ∈ V }. It can be shown
that rangeT is a subspace of W . We say T is surjective whenever rangeT = W .

If V is a finite dimensional vector space and T ∈ L(V,W ), then rangeT is a finite dimensional subspace of W
and dimV = dimnullT + dim rangeT .

If V and W are finite dimensional vector spaces and dimV > dimW then no linear map from V to W is
injective. Also, if dimV < dimW , no linear map from V to W is surjective.

Let T : Fn → Fm be defined as

T (x) = T (x1, · · · , xn) =

(
n∑

k=1

a1,kxk, · · · ,
n∑

k=1

am,kxk

)
.

Using the statements above, it can be shown that T (x) = 0 has more than one solution when n > m (more
variables than equations). Also if n < m (more equations than variables), then there is not a x such that T (x) = c
for every choice of c for all choices of coefficients ai,j . This relates linear maps to systems of linear equations.

An m-by-n matrix M is a rectangular array with m rows and n columns that can be represented as

M =

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

 .

Suppose (v1, · · · , vn) is a basis of V and (w1, · · · , wm) is a basis of W . We can write T (vk) = a1,kw1+· · ·+am,kwm

for every k = 1, . . . , n and scalars aj,k for j = 1, . . . ,m. The m-by-n matrix formed by the a’s is called the matrix
of T with respect to the basis (v1, · · · , vn) and (w1, · · · , wm), which we denote by M(T, (v1, · · · , vn), (w1, · · · , wm)),
or M(T ) when the context makes the basis clear. The values in column k are the scalars that need to be multiplied
by w1, . . . , wm to obtain T (vk).

Unless stated otherwise, if T is a linear map from Fn to Fm, the basis is the standard (where the k-th vector in
the basis is 0 in every slot except the k-th).

Define matrix addition and scalar multiplication to be element-wise. The set Mat(m,n,F) contains all m-by-n
matrices over F. It is also a vector space.

If M(T ) is a m-by-n matrix that can be indexed by a’s and M(S) is a n-by-p matrix that can be indexed by
b’s, then we define the m-by-p matrix M(S)M(T ) (indexed by c’s) to have the following elements:

cj,k =

n∑
r=1

aj,rbr,k.

Using this definition of matrix multiplication, M(T )M(S) = M(TS).
Suppose (v1, · · · , vn) is a basis of V . If v ∈ V , then there exist unique scalars b1, · · · , bn such that v =

b1v1 + · · ·+ bnvn. We denote the matrix of v as

M(v) =

b1...
bn

 .

Using this definition, M(T (v)) = M(T )M(v).
We say a linear map T ∈ L(V,W ) is invertible if there exists a linear map S such that ST = I (identity map

on V ) and TS = I (identity map on W ). If T is invertible, its inverse is unique and denoted by T−1. A linear
map is invertible if and only if it is injective and surjective. Two vector spaces are called isomorphic if there is an
invertible linear map between them.

Two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension. Thus, every
finite-dimensional vector space is isomorphic to some Fn.

Suppose (v1, · · · , vn) is a basis of V and (w1, · · · , wm) is a basis of W . Then M is as an invertible map between
L(V,W ) and Mat(m,n, F ). In other words, there is a matrix for every linear map from Fn to Fm.

If V and W are finite dimensional, then L(V,W ) is finite dimensional and dimL(V,W ) = (dimV )(dimW ).
A linear map from a vector space V to itself is called an operator, denoted by L(V ). If V is finite dimensional

and T ∈ L(V ), the following are equivalent: T is injective, T is surjective, T is invertible.
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4 Polynomials
A function p : F → F is called a polynomial with coefficients in F if there exist a0, . . . , am ∈ F such that

p(z) = a0 + a1z + . . .+ amzm,

for all z ∈ F. If p can be written in the form above and am ̸= 0, we say p has degree m. We use P(F) to denote
the vector space of all polynomials and Pm(F) to denote the vector space of polynomials with degree at most m. A
number λ ∈ F is called a root of p if p(λ) = 0. The polynomial p(z) = 0 has degree −∞. If p ∈ P(F) is a polynomial
with degree m ≥ 1, λ is a root of p if and only if there is q ∈ P(F) with degree m− 1 such that p(z) = (z − λ)q(z)
for all z ∈ F.

A polynomial with degree m ≥ 0 has at most m distinct roots in F. Suppose p(z) = a0 + a1z + . . .+ amzm = 0
for every z ∈ F, then a0 = . . . = am = 0. This implies that (1, z, . . . , zm) is a basis for P(F).

If p, q ∈ P(F) and p ̸= 0, then there exist unique s, r ∈ P(F) such that q = sp+ r and deg r < deg p.
The fundamental theorem of algebra states that every nonconstant polynomial with complex coefficients has a

root.
If p ∈ P(C) is a nonconstant polynomial, then p has an unique factorization of the form

p(z) = c(z − λ1) . . . (z − λm),

where c, λ1, . . . , λm ∈ C.
If p is a polynomial with real coefficients and λ ∈ C is a root of p, then so is λ.
Let α, β ∈ R. Then there is a polynomial factorization of the form x2 + αx + β = (x − λ1)(x − λ2), with

λ1, λ2 ∈ R, if and only if α2 ≥ 4β.
If p ∈ P(R) is a nonconstant polynomial, then p has an unique factorization of the form

p(x) = c(x− λ1) . . . (x− λm)(x2 + α1x+ β1) . . . (x
2 + αM + βM ),

where c, λ1, . . . , λm ∈ R, (α1, β1), . . . , (αM , βM ) ∈ R2 with α2
j < 4βj for each j, and m or M may be equal to 0.

There exists a polynomial p ∈ Pn(F) with m roots for 1 ≤ m ≤ n.
Suppose that z1, . . . , zm+1 are distinct elements of F and w1, . . . , wm+1 ∈ F. Then there exists an unique

polynomial p ∈ P(F) such that p(zj) = wj .
If p is a polynomial with degree m, then p and its derivative p′ have no roots in common if and only if p has m

distinct roots. Every polynomial with odd degree and real coefficients has a real root.

5 Eigenvalues and Eigenvectors
Suppose V = U1 ⊕ · · · ⊕ Um. It is useful to consider the behavior of an operator T ∈ L(V ) on a subspace Uj of V .
We denote by T |Uj

the restriction of T to the domain Uj . We say that Uj is invariant under T if T |Uj
is an operator

on Uj . In other words, if for any u ∈ Uj , T (u) ∈ Uj . It is easy to see that nullT and rangeT are invariant under T .
A scalar λ ∈ F is called an eigenvalue of T ∈ L(V ) if there exists a nonzero vector u ∈ V such that T (u) = λu.

Therefore, T has an one dimensional invariant subspace if and only if T has an eigenvalue. Since the equation
T (u) = λu is equivalent to T (u) − λI(u) = 0, λ is an eigenvalue of T if and only if T (u) − λI(u) is not injective
(maps a nonzero vector to 0), surjective or not invertible.

Suppose T ∈ L(V ) and λ ∈ F is an eigenvalue of T . A vector u ∈ V is called an eigenvector of T corresponding
to λ if T (u) = λu. Thus, the set of eigenvectors corresponding to λ is null(T (u)− λI(u)), a subspace of V .

As an example, consider T ∈ L(F2), where T (w, z) = (−z, w). If F = R, T has no eigenvalues. If F = C, its
eigenvalues are i and −i.

Let T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T and v1, . . . , vm are corresponding nonzero
eigenvectors. Then (v1, . . . , vm) is linearly independent. As a corollary, each operator on V has at most dimV
distinct eigenvalues.

If T ∈ L(V ), we can denote TT by T 2. In general, Tm denotes the application of T m times. We let T 0

denote I. If T is invertible, its inverse is denoted by T−1 and T−m = (T−1)m. From these definitions, it follows
that TmTn = Tm+n and (Tm)n = Tmn for arbitrary integers n and m as long as T is invertible and non-negative
integers if T is not invertible.

If T ∈ L(V ) and p ∈ P(F) is a polynomial given by p(z) = a0 + a1z + . . .+ amzm for z ∈ F , we define p(T ) as
the operator p(T ) = a0I+a1T + . . .+amTm. The function from P(F) to L(V ) is linear. If p and q are polynomials,
(pq)(z) = p(z)q(z). It is also true that (pq)(T ) = p(T )q(T ) for any T ∈ L(V ).

4



Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.
If V is a complex vector space, there exists a basis with respect to which the matrix of T has has zeros everywhere

in the first column except in the first entry.
The diagonal of a square matrix consists of the entries along the straight line from the upper left corner to the

bottom right corner (a1,1, . . . , an,n). A matrix is called upper triangular if all the entries bellow the diagonal are
zero (∗ denotes irrelevant values, 0 represents all the entries bellow the diagonal):λ1 ∗

. . .
0 λn

 .

Suppose T ∈ L(V ) and (v1, . . . , vn) is a basis of V . Then the following are equivalent: the matrix of T wrt
(v1, . . . , vn) is upper triangular, T (vk) ∈ span(v1, . . . , vk) and span(v1, . . . , vk) is invariant under T .

Suppose V is a complex vector space and T ∈ L(V ). Then T has an upper-triangular matrix with respect to
some basis of V .

Suppose T ∈ L(V ) has an upper-triangular matrix wrt some basis of V . Then T is invertible if and only if all
the entries on the diagonal of that upper-triangular matrix are nonzero.

Suppose T ∈ L(V ) has an upper-triangular matrix wrt some basis of V . Then the eigenvalues of T consist
precisely of the entries in the diagonal of that upper-triangular matrix.

A diagonal matrix is a square matrix that is 0 everywhere except possibly the diagonal. An operator T ∈ L(V )
has a diagonal matrix wrt some basis of V if and only if V has a basis consisting of eigenvectors of T . If T ∈ L(V )
has dimV distinct eigenvalues, then T has a diagonal matrix wrt some basis of V .

Suppose T ∈ L(V ). Let λ1, . . . , λm denote the distinct eigenvalues of T . Then the following are equivalent:

• T has a diagonal matrix wrt some basis of V ;

• T has a basis consisting of eigenvectors of T ;

• there exist one-dimensional subspaces U1, . . . , Un of V , each invariant under T , such that V = U1 ⊕ . . .⊕ Un;

• V = null(T − λ1I)⊕ . . .⊕ null(T − λmI);

• dimV = dimnull(T − λ1I) + . . .+ dimnull(T − λmI).

Every operator on a finite-dimensional, nonzero, real vector space has an invariant subspace of dimension 1 or
2.

Suppose U and W are subspaces of V with V = U ⊕W . Each vector v ∈ V can be written uniquely in the form
v = u + w. With this representation, define PU,W ∈ L(V ) by PU,W (v) = u. This is called the projection onto U
with null space W .

Every operator on an odd-dimensional real vector space has an eigenvalue.
If T ∈ L(V ) is invertible and λ ∈ F {0}, then λ is an eigenvalue of T if and only if 1

λ is an eigenvalue of T−1.
For any S, T ∈ L(V ), ST and TS have the same eigenvalues.

6 Inner-Product Spaces
The length of a vector x in R2 or R3 is called the norm of x and denoted by ||x||. For x = (x1, x2) ∈ R2,
||x|| =

√
x2
1 + x2

2. In general, the norm ||x|| of x ∈ Rn equals
√

x2
1 + . . .+ xn

n.
The dot product of x, y ∈ Rn, denoted x · y is defined by x · y = x1y1 + . . .+ xnyn. Therefore, ||x||2 = x · x. For

x, y ∈ Cn the dot product is defined as x·y = x1y1+. . .+xnyn, and the norm is defined as ||x|| =
√
|x1|2 + . . .+ |xn|n.

The dot product is a special case of a function called an inner product.
An inner-product on V is a function that takes each pair (u, v) of elements of V to a number ⟨u, v⟩ ∈ F such that

⟨v, v⟩ ≥ 0 for every v; ⟨v, v⟩ = 0 if and only if v = 0; ⟨u+v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩ for all u, v, w ∈ V ; ⟨av,w⟩ = a⟨v, w⟩
for all v, w ∈ V ; and ⟨v, w⟩ = ⟨w, v⟩ for all v, w ∈ V . Clearly, when F = R, ⟨v, w⟩ = ⟨w, v⟩. An inner-product
space is a vector space V along with an inner-product on V . The Euclidean inner-product on Fn is the standard
inner-product on Fn and is defined in the same way as the dot product.

We can define the inner product between polynomials in Pm(F) in the following way:

⟨p, q⟩ =
∫ 1

0

p(x)q(x)dx. (1)
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From the basic properties of an inner product space V , the following can also be derived for any a ∈ F and
v, u, w ∈ V : ⟨w, 0⟩ = ⟨0, w⟩ = 0; ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩; ⟨u, av⟩ = a⟨u, v⟩.

The norm of v ∈ V is given by ||v|| =
√

⟨v, v⟩. We have that ||v|| = 0 iff v = 0. Also, ||av|| = |a|||v|| for any
a ∈ F.

Two vectors u and v are said to be orthogonal if ⟨u, v⟩ = 0. This also implies that ⟨v, u⟩ = 0. The vector 0 is
orthogonal to every vector, and the only to be orthogonal to itself.

If u and v are nonzero vectors in R2, ⟨u, v⟩ = ||u|| ||v|| cos θ, where θ is the angle between the two vectors.
The following properties have important geometrical interpretations in R2 and R3.
If u, v ∈ V are orthogonal, then ||u+ v||2 = ||u||2 + ||v||2. This is known as the Pythagorean theorem.
For any vector u ∈ V and a given vector v ∈ V , we can write u as a scalar multiple of v plus a vector orthogonal

to v in the following way:

u =
⟨u, v⟩
||v||2

v + (u− ⟨u, v⟩
||v||2

v).

If u, v ∈ V , then |⟨u, v⟩| ≤ ||u||||v||, and this is a equality if and only one of u, v is a scalar multiple of the other.
This is known as the Cauchy-Schwarz inequality.

If u, v ∈ V , then ||u+v|| ≤ ||u||+ ||v||, and this is an equality if and only if one of u, v is a non-negative multiple
of the other. This is known as the Triangle Inequality.

If u, v ∈ V , then ||u+ v||2 + ||u− v||2 = 2(||u||2 + ||v||2). This is known as the parallelogram equality.
A list (e1, . . . , em) of vectors in V is orthonormal if ⟨ej , ek⟩ = 0 when j ̸= k and ⟨ej , ek⟩ = 1 when j = k.
If (eq, . . . , em) is an orthonormal list of vectors, then ||a1e1 + . . . amem||2 = |a1|2 + . . . + |am|2. Thus, every

orthonormal list of vectors is linearly independent. An orthonormal basis of V is an orthonormal list of vectors in
V that is also a basis of V .

The following is very useful to find the scalars to write any v as a linear combination of an orthonormal
basis of V . Suppose (e1, . . . , en) is an orthonormal basis of V . Then v = ⟨v, e1⟩e1 + . . . + ⟨v, en⟩en. Also,
||v||2 = |⟨v, e1⟩|2 + . . .+ |⟨v, en⟩|2.

The Gram-Schmidt process can be used to find an orthonormal list of vectors given a linearly independent list.
If (v1, . . . , vm) is a linearly independent list of vectors in V , then there exists an orthonormal list (e1, . . . , em) of
vectors in V such that span(v1, . . . , vj) = span(e1, . . . , ej) for j = 1, . . . ,m. We let e1 = v1/||v1||, and ej for j > 1
is given by the following:

ej =
vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1

||vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1||
.

Every finite-dimensional inner-product space has an orthonormal basis. Also, every orthonormal list of vectors
in V can be extended to an orthonormal basis of V .

Suppose T ∈ L(V ). If T has an upper-triangular matrix with respect to some basis of V , then T has an
upper-triangular matrix with respect to some orthonormal basis of V .

If V is a complex vector space and T ∈ L(V ), then T has an upper-triangular matrix with respect to some
orthonormal basis of V .

If U is a subset of V , the orthogonal complement of U , denoted by U⊥, is the set of vectors that are orthogonal
to every vector in U . Thus, U⊥ = {v ∈ V |⟨v, u⟩ = 0 for all u ∈ U}. It can be shown that U⊥ is always a subspace
of V , V ⊥ = {0}, and that {0}⊥ = V . Also, if U1 ⊂ U2, U⊥

1 ⊃ U⊥
2 .

If U is a subspace of V , then V = U ⊕ U⊥. Also, (U⊥)⊥ = U .
A vector v ∈ V can be written uniquely in the form v = u + w for u ∈ U and w ∈ U⊥, in which case we say

PU (v) = u. The function PU is an operator on V and also has the following properties: rangePU = U ; nullPU = U⊥,
v − PU (v) ∈ U⊥ for every v ∈ V ; PU

2 = PU ; ||PU || ≤ ||v|| for every v ∈ V .
It is also important to note that if (e1, . . . , em) is an orthonormal basis of U , PU (v) = ⟨v, e1⟩e1+ · · ·+ ⟨v, em⟩em.
The following proposition has led to many applications of inner-product spaces outside of pure mathematics.
Suppose U is a subspace of V and v ∈ V . Then ||v − PU (v)|| ≤ ||v − u|| for every u ∈ U . Furthermore, if u ∈ U

and the inequality is an equality, then u = PU (v). Intuitively, this proposition means that for a given v, the nearest
point in U to v is the projection of v onto U .

The general form of this minimization problem is as follows. Consider a vector space V and a subspace U . Given
a vector v ∈ V , the objective is to find the nearest vector u ∈ U . The solution to this problem consists simply on
finding an orthonormal base for U and projecting v onto U .

In this minimization scenario, it is particularly interesting to consider C[a, b], the (infinite dimensional) vector
space composed of continuous functions in an interval [a, b]. Given the inner product defined by Eq. 1 (pg. 5),

6



it is easy to find the polynomial that best approximates a given continuous function by computing some definite
integrals.

A linear functional on V is a linear map from V to the scalars F. For instance, let φ : F3 → F be defined as
φ(z1, z2, z3) = 2z1 + 3z2 + 1z3, then φ is a linear functional on F3.

Suppose φ is a linear functional on V . Then there is an unique vector v ∈ V such that φ(u) = ⟨u, v⟩ for every
u ∈ U .

Let T ∈ L(V,W ). The adjoint of T , denoted T ∗, is defined as follows. Fix w ∈ W . Consider the linear functional
that maps v ∈ V to ⟨Tv,w⟩. Let T ∗w be the unique vector in V such that this linear functional is given by taking
inner products with T ∗w. In other words, T ∗w is the unique vector in V such that ⟨Tv,w⟩ = ⟨v, T ∗w⟩ for all v ∈ V .

It is possible to show that T ∗ ∈ L(W,V ). Adjoints also has the following properties: (S + T )∗ = S∗ + T ∗ for all
S, T ∈ L(V,W ); (aT )∗ = aT ∗ for all a ∈ F, T ∈ L(V,W ); (T ∗)∗ = T for all T ∈ L(V,W ); I∗ = I; (ST )∗ = T ∗S∗.
Also, nullT ∗ = (rangeT )⊥ and rangeT ∗ = (nullT )⊥.

The conjugate transpose of a matrix is obtained by exchanging rows and columns and then taking the complex
conjugate of each entry. Suppose T ∈ L(V,W ). If (e1, . . . , en) is an orthonormal basis of V and (f1, . . . , fm) is an or-
thonormal basis of V , then M(T ∗, (f1, . . . , fn), (e1, . . . , em)) is the conjugate transpose of M(T, (e1, . . . , em), (f1, . . . , fn)).

Let T ∈ L(V ). A scalar λ ∈ F is an eigenvalue of T if and only if λ is an eigenvalue of T ∗.
Let T ∈ L(V ) and U be a subspace of V . Then U is invariant under T if and only if U⊥ is invariant under T ∗.
Let T ∈ L(V ). Then T is injective if and only if T ∗ is surjective. Also, T ∗ is surjective if and only if T is

injective. Also, dim rangeT ∗ = dim rangeT .
Let A be an m-by-n matrix of real numbers. The dimension of the span of the columns of A (in Rm) equals the

dimension of the span of the rows of A (in Rn).
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