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1 Limits
Consider an open interval I and a ∈ I, and a function f defined on I, except possibly at a. The limit of f when x
tends to a is equal to L, written as

lim
x→a

f(x) = L,

if, for every ϵ > 0, there is a δ > 0 such that 0 < |x− a| < δ implies |f(x)− L| < ϵ, for every x.
Intuitively, this means that it is possible to get f(x) within any ϵ > 0 of L from any x within δ > 0 of a.
Let c be a constant and suppose that limx→a f(x) and limx→a g(x) exist. The following properties hold:

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x),

lim
x→a

cf(x) = c lim
x→a

f(x),

lim
x→a

[f(x)g(x)] = lim
x→a

f(x) · lim
x→a

g(x),

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
, if lim

x→a
g(x) ̸= 0.

A function f is continuous at a if it is defined at a and limx→a f(x) = f(a). This definition extends naturally
to intervals. Intuitively, a function is continuous on an interval if its graph has no jumps on this interval.

The intermediate value theorem states that if f is continuous on the closed interval [a, b], and f(a) ̸= f(b), then,
for any N between f(a) and f(b), there is a c ∈ (a, b) such that f(c) = N .

Let f be a function defined on an open interval that contains a, except possibly at a itself. Then

lim
x→a

f(x) = ∞

denotes that, for every positive M , there is a positive δ such that 0 < |x− a| < δ implies f(x) > M , for every x.
Intuitively, it is possible to surpass any fixed M with f(x) from any x within δ > 0 of a. An analogous definition
applies to limx→a f(x) = −∞.

Let a be a constant and f a function defined for every x > a. Then

lim
x→∞

f(x) = L

if, for every ϵ > 0, there is a N > a such that x > N implies |f(x)− L| < ϵ. An analogous definition definition
applies to limx→−∞ f(x) = L.

Consider the functions f, g and h defined on an interval I, except possibly at a ∈ I, and let f(x) ≤ g(x) ≤ h(x)
for every x ∈ I, except possibly when x = a. Then limx→a f(x) = limx→a h(x) = L implies limx→a g(x) = L.

2 Derivatives
The derivative f ′ of a function f is defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

for the x for which the limit exists. If f ′(x) is defined, then f is differentiable at x. Intuitively, f ′(x) is the
instantaneous rate of change of f at x, or the slope of a line tangent to the curve of f at x.

It can be shown that if f is differentiable at a, then f is continuous at a. The converse is not true.
In an alternative notation, and letting y = f(x),

f ′(x) =
d

dx
f(x) =

dy

dx
.

1



Let a, b, c and n be constants and e denote Euler’s number. The following identities can be shown:

d

dx
(c) = 0,

d

dx
(xn) = nxn−1,

d

dx
[cf(x)] = c

d

dx
f(x),

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x),

d

dx
[f(x)g(x)] = f(x)

d

dx
g(x) + g(x)

d

dx
f(x),

d

dx

[f(x)
g(x)

]
=

g(x) d
dxf(x)− f(x) d

dxg(x)

g(x)2
,

d

dx
(ex) = ex,

d

dx
(ax) = ax ln(a),

d

dx
ln(x) =

1

x
d

dx
logb(x) =

1

x ln(b)

d

dx
sin(x) = cos(x),

d

dx
cos(x) = − sin(x).

Let g and f be functions, and let F (x) = f(g(x)). If g is differentiable at x and f is differentiable at g(x), then
F ′(x) = f ′(g(x))g′(x). Alternatively, (f ◦ g)′(x) = f ′(g(x))g′(x). This is the chain rule for differentiation.

Therefore, if u = g(x) and y = f(u), then
dy

dx
=

dy

du

du

dx
.

This provides a useful mnemonic when dx, du and dy are interpreted if they were real numbers, because the
terms du would cancel each other. This should be used carefully, and should respect the differentiability conditions
for the chain rule.

Suppose f(x) = g(x) for every x on an open interval I. If f and g are differentiable on I, Then f ′(x) = g′(x)
for every x ∈ I. This observation can be used for implicit differentiation. As an example, consider the equation of
the circle x2 + y2 = 1, where y = h(x). If the equation is true for every x ∈ (−1, 1), d

dx (x
2 + y2) = d

dx (1), which
gives 2x+ d

dx (y
2) = 0. Consider only the upper semicircle y = h(x) =

√
1− x2. Then h is differentiable in (−1, 1)

and d
dy (y

2) is defined for every y. By the chain rule, 2x+ d
dx (y

2) = 2x+ d
dy (y

2) dydx = 2x+2y dy
dx and dy

dx = −x
y on the

interval (−1, 1). The last step is valid because y ̸= 0 for every x ∈ (−1, 1). This is a very important differentiation
technique in the cases where it is easier to establish that h is differentiable than to differentiate it explicitly.

Let f be a function defined on the domain D and let c ∈ D. Then f(c) is the global maximum value of f on
D if f(c) ≥ f(x) for all x ∈ D. When f(c) ≥ f(x) for every x on an open interval containing c, f(c) is a local
maximum value. An analogous definition applies to global and local minimum values.

The following is the extreme value theorem. If f is continuous on a closed interval [a, b], there are c, d ∈ [a, b]
such that f(c) is the global maximum value of f on [a, b] and f(d) is the global minimum value of f on [a, b].

By Fermat’s theorem, if f is differentiable and has a local maximum or minimum at c, then f ′(c) = 0. This
theorem is extremely important in applied calculus.

A critical point c of a function f is such that f ′(c) = 0 or f ′(c) is not defined. Consider a function f differentiable
on a closed interval [a, b]. It is possible to find its global maximum (or minimum) on [a, b] by comparing f(a) and
f(b) to f(c), for every critical point c ∈ [a, b].

If a function f is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b), then f ′(c) = 0 for some
c ∈ (a, b). This is Rolle’s theorem.
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The mean value theorem states the following. If f is continuous on [a, b] and differentiable on (a, b), then there
is a c in (a, b) such that

f ′(c) =
f(a)− f(b)

b− a
.

Intuitively, this theorem states that the slope of a line through (a, f(a)) and (b, f(b)) is equal to the slope of the
curve f at some point c between a and b.

By the mean value theorem, if f ′(x) = 0 for every x ∈ (a, b), then f(a) = f(b). Also, if f ′(x) = g′(x) for every
x ∈ (a, b), then f(x) = g(x) + c for every x ∈ (a, b).

Also by the mean value theorem, if f ′(x) > 0 on (a, b) for every x, then f is increasing on (a, b). Analogously,
if f ′(x) < 0 on (a, b) for every x, then f is decreasing on (a, b).

The following is the first derivative test. If c is a critical point of a continuous function f , then f has a local
maximum at c if f ′ changes from positive to negative at c. It has a local minimum if f ′ changes from negative to
positive. If f ′ is defined and does not change sign at c, it has no minimum or maximum at c.

The second derivative test states the following. Let f be a continuous function, and let f ′′ be continuous on an
open interval containing c. If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c. If f ′(c) = 0 and f ′′(c) > 0,
then f has a local minimum at c.

Suppose f and g are differentiable on an open interval I and g′(x) ̸= 0 for every x ∈ I, except possibly at a ∈ I.
Suppose also that limx→a f(x) = 0 and limx→a g(x) = 0. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

This result also holds when limx→a f(x) = ∞ and limx→a g(x) = ∞, and is called L’Hospital’s rule.
Consider a function f differentiable on the interval (a, b), and suppose we are interested on finding an x such

that f(x) = 0. Newton’s method is a procedure that starts at an arbitrary point x0 ∈ (a, b) and computes
xi+1 = xi − f(xi)

f ′(xi)
, as long as f ′(xi) ̸= 0 and xi+1 ∈ (a, b), until convergence. If the procedure converges, xi+1 = xi

and f(xi+1) = 0. However, convergence is not guaranteed. Intuitively, each step of this procedure finds the
intersection (xi+1, 0) of the line with slope f ′(xi) that goes through (xi, f(xi)) with the line with slope 0 that goes
through (0, 0).

A function F is an antiderivative of a function f on an interval I if F ′(x) = f(x) for every x ∈ I. If F is an
antiderivative of f on I, C is a constant and G(x) = F (x) + C, then G is also an antiderivative of f on I.

3 Integrals
Let f be a function defined on the interval [a, b], and ∆x = b−a

n . Consider the intervals Ii = [a+(i−1)∆x, a+ i∆x],
for i ∈ {1, . . . , n}, and let x∗

i denote an element of Ii. The definite integral of f from a to b is∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x,

if the limit exists and is the same for all choices of x∗
i , for all i. In this case, the function f is integrable on

[a, b]. If f is continuous on [a, b], then f is integrable on [a, b]. Intuitively, the definite integral of f from a to b
corresponds to the signed area bellow the curve of f between a and b, or an accumulation of f(x) for all x between
a and b.

The following properties hold for definite integrals of an integrable function f :∫ b

a

f(x) dx = −
∫ a

b

f(x) dx,∫ a

a

f(x) dx = 0,∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx,∫ b

a

[f(x) + g(x)] dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

where c is any constant.
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If f(x) ≥ 0 for every x ∈ [a, b], then
∫ b

a
f(x) dx ≥ 0. If f(x) ≥ g(x) for every x ∈ [a, b], then

∫ b

a
f(x) dx ≥∫ b

a
g(x) dx.
If m ≤ f(x) ≤ M for every x ∈ [a, b], then m(b− a) ≤

∫ b

a
f(x) dx ≤ M(b− a).

The mean value theorem for integrals states that given a function f continuous on [a, b], there exists a number
c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a

f(x) dx.

Consider a function f and suppose
∫ t

a
f(x) dx exists for every t ≥ a. Then∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx,

and an analogous definition can be made for limt→−∞
∫ b

t
f(x) dx.

The following two statements correspond to the fundamental theorem of calculus.
Consider a function f continuous on [a, b] and let g(x) =

∫ x

a
f(t) dt for x ∈ [a, b]. Then g is continuous and

differentiable on [a, b] and g′(x) = f(x). Intuitively, the instantaneous rate at which f is accumulated on g at x is
equal to the value of f at x.

If f is continuous on [a, b], then ∫ b

a

f(x) dx = F (b)− F (a) = F (x)
]b
a
,

where F is any antiderivative of f .
We let the indefinite integral

∫
f(x) dx of f denote any antiderivative of f .

Let a, c, k, n and C be constants. The following properties of indefinite integrals can be shown:∫
k dx = kx+ C,∫

xn dx =
xn+1

n+ 1
+ C, if n ̸= −1,∫

1

x
dx = ln(|x|) + C,∫

ex dx = ex + C,∫
ax dx =

ax

ln(|a|)
+ C,∫

sin(x) dx = − cos(x) + C,∫
cos(x) dx = sin(x) + C.

There are two main techniques to evaluate more complicated indefinite integrals: the substitution rule and
integration by parts.

Let F (x) = f(g(x)) for every x in an interval I. By the chain rule, if g is differentiable on I and f is differentiable
on the image of g, then F ′(x) = f ′(g(x))g′(x). Therefore,∫

f ′(g(x))g′(x) dx = f(g(x)) + C.

If we let u = g(x), ∫
f ′(u)

du

dx
dx =

∫
f ′(u) du+ C.

Once again, dx and du may serve as mnemonic devices, because the terms dx would cancel each other if they
were real numbers. However, the differentiability conditions for f and g must hold.
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Intuitively, the substitution rule can be seen as an inversion of the chain rule. It is often challenging to choose
f and g so that the indefinite integral of interest results in f(g(x)) + C. As a general guideline, it is useful to look
for f and g such that the neglected factors in the integrand would cancel g′(x).

Integration by parts is based on the product rule for differentiation. Let f and g be differentiable functions.
Then (fg)′(x) = f(x)g′(x) + f ′(x)g(x). Therefore,∫

f(x)g′(x) + f ′(x)g(x) dx = f(x)g(x) + C,

and ∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx+ C.

Integration by parts is a good solution for evaluating an indefinite integral that is the product of two functions
f and g′, under the conditions that f is easy to differentiate, and g′ and f ′g are easy to antidifferentiate. Once
again, it may be challenging to choose f and g′ with these properties.

4 Differential equations
A differential equation is an equation that involves an unknown function f and at least one of its derivatives.
Differential equations are often useful to find models for phenomena that are naturally described by a rate of
change.

The order of a differential equation is the order of the highest derivative in the equation. A first order differential
equation can often be written as

f ′(x) = F (x, f(x)),

where F is a known function and f is an unknown function. A solution for a differential equation is any function
f that satisfies the equation. Finding the set of all solutions for a differential equation may be very challenging.

A first order differential equation is separable if it can be written as

f ′(x) =
g(x)

h(f(x))
,

where g and h are continuous functions. In this case,∫
f ′(x)h(f(x)) dx =

∫
g(x) dx+ C,

for any choice of antiderativatives and some constant C. Letting y = f(x) and using the chain rule,∫
f ′(x)h(f(x)) dx =

∫
dy

dx
h(y) dx = H(f(x)) + C1,

for some antiderivative H of h. Choosing C1 = 0, it follows that

H(f(x)) =

∫
g(x) dx+ C.

A function H−1 is the inverse of H in an interval if H−1(H(y)) = y, for every y in that interval. If H is invertible
on the image of f on I, every solution has the form

f(x) = H−1
(∫

g(x) dx+ C
)
,

for any antiderivative of g and some C. Alternatively, choosing an antiderivative G of g,

f(x) = H−1
(
G(x) + C

)
,

for any C and some antiderivative H of h.
A first order differential equation is linear when it can be written as

f ′(x) + f(x)p(x) = q(x),
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where p and q are continuous functions. Suppose there is a differentiable function I such that I ′(x) = I(x)p(x) for
every x in the domain of f . By multiplying I on both sides of the linear differential equation,

I(x)f ′(x) + I(x)f(x)p(x) = I(x)q(x).

For any choice of antiderivatives and some C,∫
I(x)f ′(x) + I(x)f(x)p(x) dx =

∫
I(x)q(x) dx+ C.

By the product rule and the supposition about I ′,

I(x)f(x) + C1 =

∫
I(x)q(x) dx+ C.

By choosing C1 = 0 and assuming I is non-zero in its domain, every solution has the form

f(x) =
1

I(x)

[ ∫
I(x)q(x) dx+ C

]
,

for some C. Alternatively, let G denote some antiderivative of I · q. Then, for any C,

f(x) =
1

I(x)

[
G(x) + C

]
.

Finding a suitable function I requires solving the first order differential equation I ′(x) = I(x)p(x). Because
I must be non-zero in its domain, this is a separable differential equation with g(x) = p(x) and h(I(x)) = 1

I(x) .
Therefore, I(x) = e

∫
p(x) dx. By choosing any antiderivative P of p, a suitable I is I(x) = eP (x).

When a first order differential equation is not separable or linear, it is still possible to obtain useful information
about the unknown function.

If the differential equation is in the form f ′(x) = F (x, f(x)) for a known F , it is possible to evaluate (or
approximate) F at every pair (x, y) in the Cartesian plane. Therefore, a graph can be created to illustrate the
behavior of the derivative f ′ by supposing that the curve corresponding to f goes through a selected set of points in
the plane. For each selected point, a small line segment with appropriate slope can be drawn. A given line segment
would be tangent to the curve of f if the function went through the respective point. A graph resulting from this
process is known as a direction field of f .

Euler’s method is a method for approximating the curve of a function f that follows the differential equation
f ′(x) = F (x, f(x)) for a known F . For a chosen x0 and y0, let xi+1 = xi + h and yi+1 = yi + hF (xi, yi). For a
sufficiently small |h|, the sequence of points (x0, y0), . . . , (xn, yn) can be connected to approximate the curve of f
between x0 and x0 + nh. It is important to note that approximation errors accumulate at each step.

5 Partial derivatives
Consider a function f : Rn → R of multiple variables. In vector notation, let x = (x1, . . . , xn) and f(x1, . . . , xn) =
f(x). An open ball B around a ∈ Rn is a set B = {x ∈ Rn | ||x− a|| < δ} for some δ > 0.

Consider a function f defined on an open ball B around a, except possibly at a. The limit of f as x approaches
a is L, denoted by

lim
x→a

f(x) = L,

if for every ϵ > 0, there is an δ > 0 such that 0 < ||x− a|| < δ implies |f(x)− L| < ϵ, for every x ∈ B. Intuitively,
this happens if every x at a small (non-zero) distance from a corresponds to f(x) at a small distance from L.

A function of multiple variables f is continuous at a if

f(a) = lim
x→a

f(x).

Consider a function f : Rn → R of multiple variables x1, . . . , xn. The partial derivative of f with respect to xi

at a = (a1, . . . , an), denoted by ∂
∂xi

f(a1, . . . , an), is defined as

∂

∂xi
f(a1, . . . , an) = lim

h→0

f(a1, . . . , ai + h, . . . , an)− f(a1, . . . , ai, . . . , an)

h
,
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if the limit exists.
If z = f(a), the following notation is also used for the partial derivative of f with respect to xi at a = (a1, . . . , an):

∂

∂xi
f(a) =

∂z

∂xi
= ∂xi

f(a) = ∂xi
z.

If the partial derivatives ∂
∂xi

f(a) exist in an open ball containing a and are continuous on a for every xi, then
f is differentiable at a.

Consider the function g(x) = f(a1, . . . , x, . . . , an), where x is placed as the i-th argument of f . Clearly, ∂
∂xi

f(a) =
g′(ai). Therefore, to compute the partial derivative of f with respect to xi at point a, it is possible to treat aj as a
constant for every i ̸= j and differentiate f as usual.

Intuitively, ∂
∂xi

f(a1, . . . , an) is the slope (or instantaneous rate of change) of g at the point ai, where g is a
function that corresponds to f with all of its arguments fixed to a, except for xi. The partial derivative of f with
respect to xi at point a can also be seen as the derivative of f in the direction of the standard basis vector êi at
point a.

Because ∂
∂xi

f is a function, its partial derivatives may also be defined. The partial derivative with respect to xj

of the partial derivative with respect to xi of f at point a is denoted by

∂

∂xj

∂

∂xi
f(a) =

∂2

∂xj∂xi
f(a).

The notation is analogous for higher derivatives.
The following is Clairaut’s theorem. If f is defined on an open ball B that contains a = (a1, . . . , an), and

∂2

∂xj∂xi
f(a) and ∂2

∂xi∂xj
f(a) are both continuous on B, then ∂2

∂xj∂xi
f(a) = ∂2

∂xi∂xj
f(a). Therefore, under simple

conditions, partial differentiation with respect to possibly distinct variables is commutative.
Consider the function of two variables f defined on the domain D, and the surface S = {(x, y, f(x, y)) | (x, y) ∈

D}. The directional vector between p1 ∈ D and p2 ∈ D is defined as the vector p2 − p1. Consider the directional
vector d between p = (x0, y0, f(x0, y0)) and (x0 + h, y0, f(x0 + h, y0)):

d = (x0 + h, y0, f(x0 + h, y0))− (x0, y0, f(x0, y0)) = (h, 0, f(x0 + h, y0)− f(x0, y0)).

Intuitively, this vector represents the direction in which an increase of h in x0 takes the value of f , when y0 is
kept constant. For h ̸= 0, the vector d

h has the same direction as d :

d

h
=

(h, 0, f(x0 + h, y0)− f(x0, y0))

h
=

(
1, 0,

f(x0 + h, y0)− f(x0, y0))

h

)
.

Therefore,

lim
h→0

d

h
=

(
1, 0,

∂

∂x
f(x0, y0)

)
= u,

if the partial derivative with respect to x is defined at (x0, y0). Analogously, let v =
(
0, 1, ∂

∂yf(x0, y0)
)
. The

vectors u and v are clearly linearly independent, and so they span a plane in R3.
Consider the vector w =

(
∂
∂xf(x0, y0),

∂
∂yf(x0, y0),−1

)
. Clearly, u ·w = v ·w = 0. The plane tangent to the

surface S at (x0, y0, f(x0, y0)) is defined as the set of t ∈ R3 such that w · (t− p) = 0. Therefore, (x, y, z) belongs
to the plane tangent to the surface S at (x0, y0, f(x0, y0)) if

z =
∂

∂x
f(x0, y0)(x− x0) +

∂

∂y
f(x0, y0)(y − y0) + f(x0, y0),

when these partial derivatives are defined. The equation above can also be used to approximate f at a point
near (x0, y0) by the corresponding tangent plane, and can be generalized to any number of variables.

Consider a differentiable function f : Rn → R of multiple variables x1, . . . xn and differentiable functions
gi : R → R of a single variable t, for every 1 ≤ i ≤ n. The chain rule for partial derivatives states that

d

dt
f(g1(u), . . . , gn(u)) =

n∑
i=1

∂

∂xi
f(g1(u), . . . , gn(u))

d

dt
gi(u).

Letting xi = gi(t) and z = f(x1, . . . , xn),
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dz

dt
=

n∑
i=1

∂z

∂xi

dxi

dt
.

The statement above is only valid if changes in t affect z only through changes in some of the xi, and if changes
in xi do not directly affect xj for i ̸= j.

More generally, consider the differentiable function f : Rn → R of n variables x1, . . . , xn and the differentiable
functions gi : Rm → R of m variables t1, . . . , tm, for 1 ≤ i ≤ n. The chain rule also states that

∂

∂tj
f(g1(u1, . . . , um), . . . , gn(u1, . . . , um)) =

n∑
i=1

∂

∂xi
f(g1(u1, . . . , um), . . . , gn(u1, . . . , um))

∂

∂tj
gi(u1, . . . , um),

for every 1 ≤ j ≤ m. Letting xi = gi(t1, . . . , tm) and z = f(x1, . . . , xn),

∂z

∂tj
=

n∑
i=1

∂z

∂xi

∂xi

∂tj
.

The statement above is only valid if changes in tj affect z only through changes in some of the xi, and if changes
in xi do not directly affect xj for i ̸= j.

The gradient ∇f : Rn → Rn of a differentiable function f : Rn → R of multiple variables x1, . . . , xn is defined
by

∇f(a) =
( ∂

∂x1
f(a), . . . ,

∂

∂xn
f(a)

)
.

Consider a function f : Rn → R and a unit vector u. The derivative Duf(a) of f in the direction u at point a
is defined as

Duf(a) = lim
h→0

f(a+ hu)− f(a)

h
.

If f is differentiable, it can be shown that

Duf(a) = ∇f(a) · u.

Because u is a unit vector, Duf(a) = ||∇f(a)|| cos θ, where θ is the angle between ∇f(a) and u. Therefore,
∇f(a)

||∇f(a)|| is the direction of maximum instantaneous increase of f at a. Similarly, if ∇f(a) · u = 0, then u is
orthogonal to ∇f(a) and f has derivative zero at a in the u direction.

A function f of multiple variables x1, . . . , xn has a local minimum at a if f(a) ≤ f(x) for every x in an open
ball around a. A local maximum is defined analogously. If f(a) ≤ f(x) for every x in a given domain, then f has
a global minimum in a.

The following theorem is extremely important in practical applications of calculus. If f has a local minimum or
maximum at a, then ∇f(a) = ( ∂

∂x1
f(a), . . . , ∂

∂xn
f(a)) = 0. The converse statement is not generally true.

Every a for which ∇f(a) = 0 is called a critical point. A critical point that is not a local minimum or maximum
is called a saddle point.

Consider the differentiable function f : Rn → R of variables x1, . . . , xn for which the second partial derivatives
also exist. The Hessian matrix H(a) of f at a is defined as

H(a) =


∂2

∂x2
1
f(a) · · · ∂2

∂x1∂xn
f(a)

...
. . .

...
∂2

∂xn∂x1
f(a) · · · ∂2

∂x2
n
f(a)

 .

If a is a critical point of f , the Hessian matrix of f at a is useful to determine whether a is a local minimum,
maximum or saddle point. If all eigenvalues of H are positive, then a is a local minimum. If all eigenvalues of H
are negative, then a is a local maximum. If H has negative and positive eigenvalues, then a is a saddle point. In
other cases, the test is inconclusive. This is the generalization of the second derivative test presented in a previous
section.

Finding the global minima (or maxima) of a function f often requires evaluating its local minima and the points
on the boundary of its domain D (points for which no open ball is contained in D).
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Many problems of practical interest can be modeled as a search for a = (a1, . . . , an) such that f(a) =
mina′∈Rn f(a′) under the restriction that F (a) = 0. Such a minimization problem can often be solved by elim-
inating one degree of freedom. Concretely, suppose it is possible to write xn = h(x1, . . . , xn−1) for any x ∈ Rn such
that F (x) = 0. The minimization problem becomes finding (a1, . . . , an−1) such that

f(a1, . . . , an−1, h(a1, . . . , an−1)) = min
a′∈Rn−1

f(a′1, . . . , a
′
n−1, h(a

′
1, . . . , a

′
n−1)),

with no additional restrictions, and letting an = h(a1, . . . , an−1).
A constrained minimization problem is defined by a differentiable function f : Rn → R and differentiable

functions g1, . . . , gm. The set of feasible solutions is X = {x ∈ Rn | ∀i ∈ {1, . . . ,m}, gi(x) = 0}. The vector a ∈ X
is a local minimum subject to constraints if a ≤ x, for every x ∈ X ∩B, for every open ball B centered on a. Note
that a local minimum subject to constraints is not necessarily a local minimum of f .

The Lagrange multiplier theorem states the following. If a is a local minimum subject to the constraints of the
minimization problem defined above and the vectors ∇g1(a), . . . ,∇gm(a) are linearly independent, then there exist
unique λ1, . . . , λm such that

∇f(a) =

m∑
i=1

λi∇gi(a),

or, equivalently, ∇f(a) ∈ span(∇g1(a), . . . ,∇gm(a)).
The system of equations above can be used to find candidate solutions to the constrained minimization problem.

It is not trivial to determine which candidates are in fact local minima subject to constraints, although it may
suffice to know which are the global minima subject to constraints.

6 Multiple integrals
Consider a function f : R2 → R over variables x and y. Let f be defined on a rectangular region R = {(x, y) | x ∈
[a, b], y ∈ [c, d]} = [a, b]× [c, d], where a, b, c and d are constants. Let m and n be positive integers, and let ∆x = b−a

m

and ∆y = d−c
n . Consider also the rectangle Ri,j ⊆ R defined as Ri,j = [a+(i−1)∆x, a+i∆x]×[c+(j−1)∆y, c+j∆y].

The double integral of f over R is defined as∫∫
R

f(x, y) dx dy = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗
i,j , y

∗
i,j)∆x∆y,

when the limit in the right exists and is the same for all choices of (x∗
i,j , y

∗
i,j) ∈ Ri,j , for all i and j. In that case,

f is integrable over R. If f is continuous on R, then f is integrable over R.
Intuitively, if f(x, y) ≥ 0 for all (x, y) ∈ R, the double integral of f over R can be interpreted as the volume

below the surface of f over R.
Consider integrable functions f and g over R and let c be a constant. The following properties hold:∫∫

R

[f(x, y) + g(x, y)] dx dy =

∫∫
R

f(x, y) dx dy +

∫∫
R

g(x, y) dx dy,

∫∫
R

cf(x, y) dx dy = c

∫∫
R

f(x, y) dx dy.

Furthermore, if f(x, y) ≥ g(x, y) for all (x, y) ∈ R, then
∫∫
R

f(x, y) dx dy ≥
∫∫
R

g(x, y) dx dy.

The following statement follows from Fubini’s theorem. If f is continuous on R = [a, b]× [c, d], where a, b, c and
d are constants, then ∫∫

R

f(x, y) dx dy =

∫ d

c

[ ∫ b

a

f(x, y) dx
]
dy =

∫ b

a

[ ∫ d

c

f(x, y) dy
]
dx.

The two equations to the right are referred to as iterated integrals. Note the commutativity under change of
the limits of integration, which are constants. The square brackets are usually omitted when there is no ambiguity.

9



If f is continuous on R = [a, b]× [c, d] and f(x, y) = g(x)h(y), then∫
R

f(x, y) dx dy =

∫
R

g(x)h(y) dx dy =

∫ b

a

g(x) dx

∫ d

c

h(y) dy.

Consider the rectangle R = [a, b] × [c, d], where a, b, c and d are constants, and let D ⊆ R. Consider also a
continuous function f over variables x and y, defined on D. The double integral of f over D is defined as∫∫

D

f(x, y) dx dy =

∫∫
R

F (x, y) dx dy,

where

F (x, y) =

{
f(x, y) if (x, y) ∈ D,

0 otherwise.

This is a generalization of double integration to an arbitrary region D bounded by a rectangle R. Since F is
not necessarily continuous, iterated integration does not apply directly.

Consider the region D = D1 ∪D2, with D1 ∩D2 containing any subset of the boundary points of the two sets.
If f is integrable over D1 and D2, then

∫∫
D

f(x, y) dx dy =

∫∫
D1

f(x, y) dx dy +

∫∫
D2

f(x, y) dx dy.

Consider a rectangle R = [a, b] × [c, d] for constants a, b, c and d. Consider also D ⊆ R such that D = {(x, y) |
x ∈ [a, b], g(x) ≤ y ≤ h(x)}, for continuous functions g and h. The double integral of f over D is given by∫∫

D

f(x, y) dx dy =

∫ b

a

[ ∫ h(x)

g(x)

f(x, y) dy
]
dx.

Therefore, the integral over a region D that is between two continuous functions of x can also be expressed as
an iterated integral. Note that the commutativity of iterated integration does not appy in this case, because the
limits of integration in the innermost integral are functions of x. An analogous property also holds for a region D
that is between two continuous functions of y.

It is often possible to obtain the double integral of a function over a region by partitioning it into subregions
and combining the resulting double integrals. It is also possible to perform double integration in polar coordinates,
although the details are omitted in this text.

We now present a generalization of double integrals to functions of more than two variables.
Consider a function f : Rn → R over variables x = (x1, . . . , xn). Let f be defined on the hyperrectangular

region R = [a1, b1]× · · · × [an, bn], where ai and bi are constants for every i. Consider also positive integers mi, for
i ∈ {1, . . . , n}, and let ∆xi =

bi−ai

mi
.

Consider also the hyperrectangles Ri1,...,in ⊆ R defined as

Ri1,...,in = [a1 + (i1 − 1)∆x1, a1 + i1∆x1]× · · · × [an + (in − 1)∆xn, an + in∆xn],

for ij ∈ {1, . . . ,mj}.
The multiple integral of f over R is defined as∫

R

f(x) dx =

∫
· · ·

∫
R

f(x1, . . . , xn) dx1 . . . dxn =

m1∑
i1=1

· · ·
mn∑
in=1

f(x∗
1,i1,...,in , . . . , x

∗
n,i1,...in)∆x1 · · ·∆xn,

when the limit in the right exists and is the same for all choices of (x∗
1,i1,...,in

, . . . , x∗
n,i1,...in

) ∈ Ri1,...,in . In that
case, f is integrable over R. If f is continuous on R, then f is integrable over R.

Consider integrable functions f and g over R and let c be a constant. The following properties hold:∫
R

f(x) + g(x) dx =

∫
R

f(x) dx+

∫
R

g(x) dx,∫
R

cf(x) dx = c

∫
R

f(x) dx.
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Also, if f(x) ≥ g(x) for any x ∈ R, then
∫
R
f(x) dx ≥

∫
R
g(x) dx.

Iterated integrals can also be used to compute multivariate integrals.
If f is continuous on R = [a1, b1]× · · · × [an, bn], where ai and bi are constants for every i, then∫

R

f(x) dx =

∫ b1

a1

· · ·
[ ∫ bn

an

f(x1, . . . , xn) dxn

]
· · · dx1.

Multiple integrals can also be defined over more general regions, although the details are omitted in this text.
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